ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Биполярные и униполярные шаговые двигатели:. Униполярный двигатель


Униполярный двигатель Фарадея

До сих пор не решена загадка движения униполярного двигателя Фарадея. Дело в том, что изобретенный им двигатель вращается вопреки физическим законам. Ученые не могут пока преодолеть парадокс движущей силы в его двигателе, в котором функционирует вращающийся магнит-ротор.

Двигатель Фарадея

Двигатель Фарадея

Взгляните на фото, как выглядит простой двигатель Фарадея, сделанный из винта,  батарейки, провода, и магнитного диска.

Любой человек, знакомый с элементами электротехники, знает, что обычные электродвигатели состоят из неподвижного статора и вращающегося ротора. В качестве статора используются два вида магнитов: постоянный или электромагнит (постоянный или переменный). Как правило в моторах устанавливается переменный электромагнит. Вращение ротора происходит за счет притягивания и отталкивания его от статора, таким образом ротору передается непрерывное движение.

Если ротор притягивается к статору, то и статор притягивается к ротору. Если ротор отталкивается от статора, то и статор отталкивается от ротора. На двигателе Фарадея отсутствует статор. Ротору в этом случае не от чего отталкиваться. В соответствии с известными законами физики  двигатель не должен вращаться. А он вращается.

Униполярный двигатель впервые был продемонстрирован Майклом Фарадеем в 1821 году в Королевском институте в Лондоне.

Рассмотрим несколько конструкций двигателей на неодимовых магнитах. На обычных магнитах такой двигатель не работает.

Первая модель одна из наиболее простейших, такой мотор можно сделать за минуту. В качестве ротора используется обыкновенный саморез и соединенный с ним неодимовый магнит. Ток подается непосредственно от одного полюса батарейки и через провод.

Вторая разработка мотора на неодимовых магнитах, создание которого понятно из видео

Третий вариант двигателя на магните. Неодимовые магниты в этом магазине.

Что нужно для сборки двигателя на магнитах и катушке? Использовано следующее. Одна батарея AAA, некоторое количество обмоточных проводов, два провода, изолента для крепления проводов к контактам батарейки, набор магнитов или один магнит (тогда и катушка поменьше диаметром). А подробное описание и указание на один важный секрет в данном варианте устройства читайте в статье «Сделайте своими руками двигатель на магните».

Можно и так, не обязательно ставить магниты на батарейку:

Четвертая модель двигателя на неодимовых магнитах на видео, в котором вращается сама батарейка вместе с магнитом.

МАЙКЛ ФАРАДЕЙ (1791-1867)

Английский физик и химик. Майкл Фарадей родился в 1791 году в Ньюингтоне, Англия. Он происходил из бедной семьи и в значительной степени был самоучкой. Посвященный в возрасте четырнадцати лет изучению переплетчика и книготорговца, он использовал эту возможность и много читал. В возрасте двадцати лет он присутствовал на лекциях известного британского ученого сэра Хамфри Дэви, который его очаровал. Он написал Дэви и, наконец, получил работу в качестве помощника.

Несколько лет спустя Фарадей уже делал важные открытия самостоятельно. Ему не хватало хорошей математической основы, но он был непревзойденным как физик-экспериментатор. Первое важное открытие в области электричества, Фарадей сделал в 1821. Два года назад Эрстед обнаружил, что магнитная стрелка отклоняется, когда электрический ток течет через проводник, расположенный близко. Фарадей подумал, что если магнитная стрелка будет прикреплена, шнур будет двигаться. Во время работы над этой идеей ему удалось построить устройство, в котором шнур вращается вокруг магнита, пока электрический ток проходит через кабель. Фактически, Фарадей изобрел первый электродвигатель, первое устройство, которое использует электричество для перемещения объектов. Хотя он очень примитивен, Двигатель Фарадея был прародителем всех электродвигателей, которые в настоящее время используются. Это был огромный прорыв, но его практическое значение оставалось ограниченным, поскольку единственным известным источником электрического тока были примитивные химические батареи. Фарадей был убежден, что должен быть какой-то способ, чтобы использовать магнетизм для генерирования электрического тока, и упорно искал такого метода. Оказалось, что неподвижный магнит не генерирует электрический ток в соседнем проводнике, но в 1831 году Фарадей обнаружил, что если магнит проходит через замкнутую проволочную петлю, ток течет через кабель. Это явление называется электромагнитной индукцией, и открытие закона, регулирующего это явление (закон Фарадея), широко рассматривается как величайшее достижение Фарадея. Открытие Фарадея имело большое значение по двум причинам. Прежде всего, закон Фарадея имеет фундаментальное значение в теории электромагнетизма. Во-вторых, электромагнитная индукция может быть использована для генерации электрического тока, как показал сам Фарадей, построив первый генератор. Современные электрогенераторы, которые обеспечивают электроэнергией наши города и фабрики, конечно, гораздо сложнее, но все они основаны на одном и том же принципе электромагнитной индукции.

Фарадей также внес большой вклад в химию. Он изобрел метод сжижения газов и обнаружил множество различных химических веществ, включая бензол. Еще важнее его открытия в области электрохимии (изучение влияния электрического тока на химические соединения). В результате тщательно проведенных экспериментов Фарадей установил два закона электролиза, которые были названы в его честь. Эти законы составляют основу электрохимии. Он также популяризировал многие важные термины, используемые в этой области, такие как анод, катод, электрод и ион. Фарадей представил такие важные понятия для физики, как линии напряженности магнитного поля и линии напряженности электрического поля. Подчеркивая важность не столько магнитов, сколько полей между ними, он подготовил почву для многих достижений современной физики, в том числе уравнений Максвелла. Фарадей также обнаружил, что изменяется плоскость поляризации света, проходящего через магнитное поле. Это открытие было важно, потому что это был первый сигнал, что есть связь между светом и магнетизмом.

Фарадей был не только очень талантливым человеком, но и очень красивым. Он также был очень хорошим научным пропагандистом. Тем не менее он оставался скромным и не придавал значения славе, деньгам и почестям. Он не принял титул дворянина или позицию председателя Британского королевского общества, которую он предложил. Его брак был долгим и счастливым, но бездетным. Он умер в 1867 году недалеко от Лондона.

izobreteniya.net

Вараксина Е., Майер Проф. В. | Учебные униполярные электродвигатели

Эксперимент

Е. И. Вараксина,ГГПИ им. В.Г.Короленко, г. Глазов, Удмуртская респ.;Проф. В. В. Майер,, ГГПИ им. В.Г.Короленко, г. Глазов, Удмуртская Респ.

Предлагаются учебные экспериментальные исследования униполярных электродвигателей. Подробно описаны конструкции приборов и технологии их изготовления. Внимание читателя обращается на богатейшую информацию о моделях униполярных двигателей в интернете. Статья написана так, что её можно непосредственно рекомендовать учащимся для изучения и последующего планирования исследовательского проекта. При необходимости учитель может давать школьникам отдельные задания, используя для их формулировки соответствующие фрагменты статьи.

В школе изучают коллекторный электродвигатель постоянного тока. Он состоит из неподвижного статора, вращающегося ротора и коллектора, обеспечивающего питание двигателя электрическим током. В качестве статора используют двухполюсный постоянный магнит или электромагнит. Ротор представляет собой электромагнит, ток на который подаётся через полукольца и щётки, образующие коллектор. Однако первый электродвигатель, созданный в 1821 г. великим Фарадеем, был униполярным: в нём использовался только один полюс магнита, коллектор вообще отсутствовал. Экспериментальным исследованиям униполярных электродвигателей и посвящена настоящая статья.

1. Униполярный электродвигатель

рис.1

Рис. 1. Демонстрационный униполярный электродвигатель

Известно немало различных конструкций униполярных электродвигателей. Один из приборов, применявшихся для демонстрации принципа действия униполярного электродвигателя, изображён на рис. 1. В нём вокруг северного полюса постоянного магнита 1 вращается проволочная рамка 2. Середина рамки соединена с остриём, которое погружено в чашечку со ртутью 3, концы рамки опущены в кольцевой сосуд с ртутью 4.

Электрический ток от правой клеммы проходит через центральную металлическую стойку, ртутный контакт 3, ветви рамки 2, кольцевой сосуд с ртутью 4 и боковую металлическую стойку к левой клемме. Воспользовавшись правилом левой руки, нетрудно сообразить, что для указанных на рисунке положения северного магнитного полюса и направления тока на рамку действует пара сил, заставляющая её вращаться в направлении, показанном стрелками.

2. Обсуждение конструкции униполярного двигателя

Рассмотренную модель униполярного двигателя в настоящее время нельзя использовать для воспроизведения в школе или дома. Дело не только в том, что она конструктивно сложна. Главная причина в том, что пары ртути ядовиты, поэтому применение ртути в учебных опытах неприемлемо.

Ртуть в описанных приборах выполняет две функции. Во-первых, обладая хорошей проводимостью, ртуть обеспечивает надёжный электрический контакт с небольшим электрическим сопротивлением между подвижными и неподвижными проводниками. Во-вторых, являясь при комнатной температуре жидкостью, создаёт сравнительно небольшое механическое сопротивление движущимся в ней проводникам.

Отсюда следует, что для создания пригодного для учебных опытов прибора нужно решить проблему хорошего контакта и малого сопротивления между движущимися проводниками.

Сразу приходит в голову идея использовать в кольцевом сосуде вместо ртути доступный электролит, например, водный раствор медного купороса. А как быть со ртутным контактом 3? Нужно, чтобы сила трения, возникающая при вращении рамки на острие, была мала, а контакт тем не менее был надёжным.

Нетрудно сообразить, что этим противоречивым требованиям может удовлетворить магнитный контакт, состоящий из постоянного стального магнита и примагниченного к его полюсу стального острия.

3. Учебная модель униполярного двигателя

рис.2

Рис. 2. Основные элементы учебной модели униполярного двигателя

Для изготовления учебной модели униполярного двигателя придётся немного потрудиться. Все элементы, необходимые для сборки модели и выполнения экспериментального исследования, изображены на рис. 2.

Из медной проволоки диаметром около 1 мм согните П-образную рамку размером примерно 80 × 200 мм. Середину рамки и концы медной проволоки очистите от изоляции. От стального гвоздя диаметром 3–4 мм отрежьте кусок длиной 2–3 см и хорошо заострите один его конец. Получившийся стальной сердечник припаяйте к середине рамки из медной проволоки и подвесьте его к полюсу зажатого в штативной лапке стального полосового или подковообразного магнита. К другому полюсу магнита примагнитьте стальную шайбу с прикрученным к ней многожильным медным проводом в полихлорвиниловой изоляции. Толкните рамку, и вы увидите, как легко она колеблется и крутится на магнитном подвесе.

Подберите цилиндрический пластиковый сосуд диаметром примерно 110 мм и глубиной 40 мм. В центре дна сосуда сделайте круглое отверстие и посредством резинового колечка герметично закрепите в нём медный электрод диаметром 4–6 мм. Вместо медного можно использовать угольный электрод, в качестве которого подойдёт анод одного из элементов батареи карманного фонаря. С частью электрода, выступающей из дна сосуда вниз, соедините многожильный медный провод в изоляции. Сосуд установите на кольцевой керамический магнит диаметром 80 мм от старого динамика.

Статья подготовлена при поддержке салона свадебной и вечерней моды «моя Леди». Если Вы решили приобрести качественный и надежный костюм или платье, то оптимальным решением станет обратиться в салон «моя Леди». На сайте, расположенном по адресу www.salonmylady.ru, вы сможете, не отходя от экрана монитора, заказать офисные платья и костюмы по выгодной цене. Более подробную информацию о ценах и акциях действующих на данный момент вы сможете найти на сайте www.salonmylady.ru.

рис.3

Рис. 3. Учебная модель униполярного двигателя в работе

Из пенопласта или другого материала малой плотности сделайте диск с отверстием в центре так, чтобы он мог свободно плавать на поверхности жидкости вокруг угольного электрода. Возьмите также две батарейки карманного фонаря на 4,5 В и соедините их последовательно. В стакане воды приготовьте насыщенный раствор медного купороса. Теперь всё готово для эксперимента.

В стоящий на магните пластиковый сосуд налейте раствор медного купороса. Над сосудом в магнитном держателе подвесьте проволочную рамку так, чтобы её оголенные концы погрузились в электролит. Провода, идущие от магнитного держателя и от угольного электрода, соедините с полюсами одной батарейки так, чтобы на прибор было подано напряжение 4,5 В. Если всё сделано правильно, вы увидите, что рамка начинает медленно вращаться вокруг своей оси!

Увеличьте напряжение – рамка начнёт крутиться значительно быстрее. Понятно, что если у вас под руками имеется источник, дающий большее напряжение, вы можете ещё увеличить скорость вращения ротора своего униполярного двигателя. Смените полярность напряжения – и рамка начнёт крутиться в противоположную сторону.

Посмотрите в сосуд с жидкостью: вы видите, что электролит также вращается, но в сторону, противоположную вращению рамки. Чтобы лучше продемонстрировать это явление, поместите на поверхность электролита плавающий диск: он будет крутиться в одну сторону, а рамка – в противоположную (рис. 3)!

4. Современные постоянные магниты

Успех построенной вами модели униполярного электродвигателя в значительной мере обеспечен мощным магнитным полем, создаваемым кольцевым керамическим магнитом. Основой этого магнита является феррит – керамический ферромагнитный материал, получивший широкое распространение около полувека назад.

рис.4

Рис. 4. Внешний вид неодимовых магнитов

Однако за прошедшие после создания ферритовых магнитов десятилетия техника шагнула далеко вперёд. Современные неодимовые магниты, которые изготавливаются из сплава редкоземельного металла неодима c железом и бором (NdFeB), не идут ни в какое сравнение с керамическими. Они обладают огромной остаточной магнитной индукцией и весьма значительной коэрцитивной силой. Кроме того, поверхности этих магнитов покрыты защитным проводящим слоем. Сфера применения неодимовых магнитов настолько обширна, что легче указать те области, в которых эти магниты пока не используются.

Неодимовые магниты небольших размеров (рис. 4) вполне доступны по цене, и нет ничего проще, как приобрести их в интернет-магазине. Будем считать, что в вашем распоряжении имеется несколько неодимовых магнитов с продольной поляризацией в виде никелированных дисков или шайб диаметром 8–19 мм и толщиной 2–8 мм. На всякий случай напомним, что небольшие неодимовые магниты цилиндрической формы можно извлечь из вышедших из строя миниатюрных динамиков, телефонов и другой электронной техники.

5. Современные модели униполярного двигателя

Теперь приступим к созданию неодимового аналога двигателей, изображённых на рис. 1, 3.

рис.5

Рис. 5. Униполярный двигатель с неодимовыми магнитами: а – верхний контакт отсутствует, т.к. на катоде элемента лежит изолирующая прокладка; б – прокладка убрана, двигатель работает

К положительному полюсу гальванического элемента 1 примагнитьте один или несколько неодимовых магнитов 2 (рис. 5, a). Из медной проволоки диаметром около 1 мм согните рамку 3, форма которой понятна из фотографии. Очистите от изоляции середину и концы рамки. Установите середину рамки на отрицательный полюс элемента так, чтобы её концы слегка касались боковой поверхности магнита. Как только вам удастся уравновесить рамку и обеспечить такой электрический контакт, что по ней пойдёт ток, рамка начнёт вращаться вокруг оси гальванического элемента (рис. 5, б)!

Чтобы вращение было заметно издали, к рамке можно приклеить полоски разноцветной изоленты.

6. Впечатляющая демонстрация униполярного двигателя

Размышляя об униполярном двигателе, мы пришли к выводу, что было бы интересно разработать такую конструкцию, которая обеспечивает вращение массивного ротора. Но такой ротор нужно ещё сделать. А что, если вместо металлического ротора использовать массивные гальванические элементы?

рис.6

Рис. 6. Демонстрационный униполярный двигатель с массивным ротором

На рис. 6, а показано, к чему привели мысли о мощном униполярном двигателе. Демонстрационную модель униполярного двигателя соберите так. В муфте универсального штатива горизонтально закрепите стальной никелированный стержень 1 и к нему через стальной шарик 2 диаметром 8 мм от подшипника подвесьте неодимовый магнит 3 диаметром 10 мм и толщиной 2 мм. К магниту присоедините анод гальванического элемента 4 на 1,5 В. К первому гальваническому элементу посредством такого же неодимового магнита 5 присоедините второй элемент 6 так, чтобы оба элемента были включены последовательно. На катод второго элемента навесьте 2–3 неодимовых магнита 7 диаметром 19 мм и толщиной 6 мм. С помощью стальной шайбы на магнитах закрепите изогнутую из толстой бумаги П-образную полоску 8, служащую индикатором вращения. На стержне 1 изолентой закрепите оголённый конец многожильного провода 9 в полихлорвиниловой изоляции, скрученного в спираль для придания ему упругих свойств.

Второй оголённый конец многожильного провода приведите в соприкосновение с боковой поверхностью неодимовых магнитов, висящих на последнем элементе. При этом батарея из последовательно соединённых элементов приходит в быстрое вращение вокруг своей оси (рис. 6, б)!

На зрителей опыт производит сильное впечатление, поскольку, на первый взгляд, отсутствует причина, заставляющая массивную батарею вращаться столь энергично. Вместо двух элементов в опыте можно использовать один, три или четыре последовательно соединённых неодимовыми магнитами гальванических элементов.

В заключение заметим, что нет физических явлений, которые не нашли бы практического применения. Из самых общих соображений вам должно быть ясно, что униполярный электродвигатель может служить и электрогенератором. В производствах, для которых нужны токи силой в сотни тысяч и даже миллионы ампер используют униполярные генераторы, подобные тем машинам, с которыми вы имели дело. Но подробности в следующий раз.

7. Для самостоятельного исследования

1. Магниты и магнитное поле. Какие бывают магниты и как их изготавливают? Что такое остаточная магнитная индукция? Что понимают под коэрцитивной силой? Чему равна магнитная энергия? Ответы на эти и многие другие вопросы вы найдёте на сайте www.valtar.ru/, где очень интересно и вполне доступно рассказано о современных магнитах и магнитном поле.

2. Неодимовые магниты. Узнать, какие неодимовые магниты имеются в продаже, вы сможете на сайте www.magnitos.ru.

3. Униполярные двигатели. На сайте www.youtube.com/results?search_query=homopolar+motor&search=Search имеется видеоинформация о многочисленных моделях униполярного двигателя, построенных зарубежными учёными-физиками и любителями физики. С этими моделями полезно познакомиться, если вы хотите придумать что-нибудь новенькое.

4. Направления вращения элементов униполярного двигателя. Пользуясь правилом левой руки, определите направления силы Лоренца, действующей на положительные и отрицательные ионы электролита, рис. 3. Определите направление силы Лоренца, действующей на электроны, перемещающиеся в проволочной рамке. Сопоставьте полученные выводы с результатами эксперимента.

5. Сила Ампера. Допустим, что остаточная магнитная индукция вашего неодимового магнита 1,2 Тл, его диаметр 19 мм, сила тока, проходящего по поверхности магнита, 1 А. Оцените модуль силы, приводящей во вращение ротор униполярного двигателя, рис. 6.

Продолжение следует

fiz.1september.ru

Униполярный двигатель Фарадея - Размышлизмы разумного человека

06:36 pm: Униполярный двигатель Фарадея

Прогулки про странным сайтам посвященным, к примеру, "исследованиям альтернативных источников энергии и транспортных средств. Свободной энергии, вечным двигателям, антигравитации и многому другому" изредка дают любопытные результаты.

Вот здесь, например, предлагается построить некий простой мотор Стефана Маринова. Уж не знаю, кто такой Стефан Маринов, но на картинке изображен т.н. униполярный двигатель Фарадея и даже сама картинка поперта с Википедии из статьи "Homopolar motor". Конструкция мотора до крайности проста и его изготовление требует покупки разве что сильного магнита - чем сильнее, тем лучше. Это если под рукой не окажется аудиодинамика или наушников, которых не жалко, так что можно вытащить магнит оттуда.

А вот тут можно найти еще более детальные инструкции по изготовлению такого мотора.

Для тех кто не читает по-английски:

Весь мотор состоит из дискообразного магнита (нижняя шайба на рисунке) изготовленного из токопроводящего материала, шурупа (обеспечивающего точечный подвесной контакт для минимизации трения), источника питания (батарейка типа D, но подойдет подойдет любой источник питания выдающий ток в 1-10А в режиме короткого замыкания) являющегося одновременно и контактной площадкой (эти функции можно развести, если есть желание) и проволочки подающей электричество от другой стороны батарейки.

При достаточном токе и силе магнита магнит начинает вращаться и раскручивается до нескольких тысяч оборотов в минуту. Этот эффект связан с возникновением т.н. силы Ампера в проводнике через который течет ток перпендикулярный магнитному полю. Направление силы Ампера перпендикулярно как линиям магнитного поля, так и направлению тока (правило правой руки) и раскручивает диск магнита. При изменении полярности направление вращения меняется на противоположное.

Конструкцию двигателя можно менять и усложнять - например, магнит может не быть токопроводящим, достаточно иметь немагнитный диск из токопроводящего материала закрепленный сверху на той же оси так, чтобы он был соединен с шурупом. Второй контакт (проволочка) может не касаться металла непосредственно, чтобы избежать механического трения - например, круглая крышка банки из-под кофе (металлическая или пластиковая) с налитым в нее электропроводящей жидкостью (раствором медного купороса, к примеру) помещенная между магнитом и шурупом обеспечит замечательный жидкостный контакт практически без трения. Магнит можно заменить электромагнитом. И т.д.

Я видел работающий униполярный двигатель Фарадея - он действительно работает и действительно так как описано. Собственно, я лично и не сомневался, что будет, хотя анализ принципа работы униполярного двигателя может, вообще-то, вызвать некоторые вопросы и недоразумения типа рассмотренных в разделе "Sources of Confusion". Однако в этом разделе, как впрочем, и во многих других статьях и темах форумов посвященных этому двигателю, не упоминается самая главная проблема - этот двигатель нарушает закон сохранения момента импульса.

Любой, кому доводилось разбирать любой электродвигатель знает, что они состоят из неподвижного статора и вращающегося ротора. Статор может быть сделан из постоянного магнита как в простейших моторчиках типа тех, что стояли в советских электрических игрушках или быть электромагнитом - постоянным или переменным. Ротор практически всегда - переменный электромагнит. Движение ротора происходит за счет притягивания и/или отталкивания его от статора, причем в определенных фазах вращения ротора намагничивание ротора, а возможно и статора меняется, так что притягивание и/или отталкивание продолжается сообщая ротору непрерывное вращение.

В предыдущем абзаце обратите внимание на слова - притягивание и отталкивание. Если ротор притягивается к статору, то и статор притягивается к ротору. Если ротор отталкивается от статора, то и статор отталкивается от ротора. В полном соответствии с 3м законом Ньютона. Если вам когда-нибудь приходилось держать в руках электромотор в стадии начальной раскрутки, то вы могли чувствовать, что корпус (со статором внутри него) пытается провернуться в направлении противоположном направлению вращения ротора. Тот самый закон сохранения момента импульса. А теперь посмотрите на двигатель Фарадея - у него нет статора. Ему не от чего отталкиваться. В соответствии с законом сохранения импульса ни магнит, ни двигатель в целом не должны вращаться. А он вращается. Наблюдается так называемое безопорное вращение, в терминологии "альтернативщиков".

Этому эффекту без малого 200 лет и он до сих пор не объяснен официальной наукой. Более того, она старается о нем просто не упоминать (кто сказал - "Нонконспирология"?). И только любители "свободной энергии, вечных двигателей, и антигравитации" говорят о нём, но кто же будет слушать этих юродивых, верно?

Между тем, этот же эффект может быть использован для изготовления линейного двигателя (задача чисто инженерная), что позволяет создать так называемый безопорный двигатель - т.е. двигатель не нуждающийся в отбрасывании от себя других масс в любом виде (так, колесо отбрасывает от себя Землю, винтовой самолет - воздух, ракета - разогретый газ и т.п.). Такой двигатель будет нарушать родственный закон - закон сохранения импульса. Сравните:

HotLog SpyLOG

Tags: важное, наука

From:Date:
iss_shoo
May 11th, 2007 07:29 pm (UTC)

В компьютерре было объяснение

(Link)
http://offline.computerra.ru/2007/684/316736/цитирую:А теперь зададим себе очень простой вопрос: как все обстоит на самом деле? Какие заряды создают электрическое поле, которое, как Афина из головы Зевса, вдруг является во всеоружии, но из ничего, из перехода от одной системы координат к другой.Это ведь не квантовый мир с его эффектами Наблюдателя. Это самый что ни на есть макромир. Обыденный, повседневный. И в нем поле, порождающее токи весьма большой величины, берется ниоткуда. Из того, что присутствует в одной системе отсчета и отсутствует в другой.

Ответ на этот вопрос дает релятивистская теория. Дело в относительном характере деления единого электромагнитного поля на поле электрическое и магнитное. Которые зависят от той системы координат, в которой ведется наблюдение. И о чем, несмотря на сданные курсы электродинамики, обычно неосведомлено большинство обладателей инженерных дипломов постсоветских вузов.Подробно и строго с явлением униполярной индукции можно познакомиться в [ Тамм И. Е., Основы теории электричества. М., 1966..]...И самое интересное:Мало кто знает и о существовании самих униполярных генераторов, в промышленном исполнении использующих, конечно, не постоянные магниты, а тороидальные катушки возбуждения. Для съема тока с подвижных частей часто используются устройства на основе жидкого металла.

Униполярные генераторы дают рекордные токи, в экспериментальных образцах до миллионов ампер, как правило, при невысоких напряжениях. Отсутствие пульсаций тока делает их весьма эффективными для питания электролизных установок, дуговых печей…

Узнать о последних достижениях в области униполярных генераторов по открытым зарубежным источникам автору не удалось. Дело в том, что униполярные генераторы весьма хороши для питания перспективных электромагнитных орудий сверхвысокой кинетической энергии (в опытных образцах, традиционно запитываемых от конденсаторных батарей большой мощности). А о роли, которая отводится таким орудиям как в перспективной космической ПРО, так и в системах более обычных вооружений бронетанковых, авиационных, хорошо известно.

Так что, эффект объяснен, машинки работают, просто используют их ребята в пятнистых спецовках, а эта публика всегда работает "бэз шума и пыли, как говорит наш любимый шеф"...

[User Picture]
From:Date:
nkgb
May 11th, 2007 08:00 pm (UTC)

Re: В компьютерре было объяснение

(Link)
http://offline.computerra.ru/2007/684/316736/

Компьютерру я читаю регулярно, как можно было бы догадаться уже по тому факту, что ссылки оттуда часто возникают у меня в журнале. И, да, эту статью я читал. Она - о генераторах, а не о моторах. А с униполярными генераторами все как раз нормально.

[User Picture]
From:Date:
nkgb
May 11th, 2007 08:07 pm (UTC)

Re: В компьютерре было объяснение

(Link)

Впрочем, если вы полагаете что в этой статье есть ключ и к описанному мной феномену нарушения закона созранения момента импульса у этого мотора - с интересом выслушаю ваше объяснение.

From:Date:
iss_shoo
May 12th, 2007 02:58 am (UTC)

Re: В компьютерре было объяснение

(Link)

Если его раскрутить, то возникнет ток - это будет генератор.Если приложить ток, то появится вращение - это будет мотор.Принцип действия от этого не меняется.К заявлениям о нарушениях законов сохранения стоит относиться с известной долей юмора.Подобные нарушения могут происходить на уровне квантовых взаимодействий, где подобные события совершенно законны и обоснованы, а данный механизм работает на уровне ОТО, где законы сохранения прописаны явным образом.

[User Picture]
From:Date:
nkgb
May 12th, 2007 11:26 am (UTC)

Re: В компьютерре было объяснение

(Link)
Обратимость эффекта никаких сомнений не вызывает - и генератор и мотор работают.

К заявлениям о нарушениях законов сохранения стоит относиться с известной долей юмора

Юмор - это, конечно, хорошо. "Расслабтесь и попробуйте получить удовльствие"? Но все равно хотелось бы физического объяснения.

From:Date:
iss_shoo
May 12th, 2007 02:43 pm (UTC)

Re: В компьютерре было объяснение

(Link)
http://en.wikipedia.org/wiki/Homopolar_generatorМагнит неподвижен. Статор.Диск, на который подано (или снимается) напряжение - вращается. Ротор.Эта система ничем не отличается от любого другого электродвигателя.Феномена нарушения закона сохранения импульса я не вижу. В чем он заключается?
[User Picture]
From:Date:
nkgb
May 12th, 2007 03:02 pm (UTC)

Re: В компьютерре было объяснение

(Link)
Боюсь, вы запамятовали - мы обсуждаем другую конструкцию - ту, в которой диск является магнитом и вращается. Перечитайте исходный пост, пожалуйста с начала. http://timt.livejournal.com/291060.html
From:Date:
iss_shoo
May 12th, 2007 03:58 pm (UTC)

Re: В компьютерре было объяснение

(Link)

Хм... Пойду куплю батарейку. Тогда и обсудим.

[User Picture]

статором будет внешняя цепь, независимо от того вращается она или нет совместно с магнитом.ваш оппонент ничего в физике не смыслит. по внешней цепи идет ток. цепь замкнута и является контуром, в котором появляется внешнее поле взаимодействующее с полем магнита. в зависимости от направления тока и его величины появляются силы, стремящиеся развернуть контур в соответствии с направлением вектора магнитной индукции магнита или наоборот контура. величина тока командует этим. это для генератора.. эти силы пытаются изгибать жесткую конструкцию внешней цепи..и благодаря им и возникает крутящий момент.

[User Picture]
From:Date:
izhkul
May 11th, 2007 09:52 pm (UTC)
(Link)
Тимур, любой электродвигатель можно перевести в генераторный режим. И наоборот, любой генератор - в двигательный. Все зависит от того, выдает крутящий момент агрегат или же напротив, его крутят.

Это я к тому, что разницы в математике работы генераторов/двигателей нет.

[User Picture]
From:Date:
izhkul
May 11th, 2007 09:56 pm (UTC)
(Link)

а про сохранение импульса момента могу сказать только одно - ему больше некуда деваться, как не уходить в эти самые электромагнитные поля.

[User Picture]
From:Date:
nkgb
May 11th, 2007 10:42 pm (UTC)
(Link)

Момент импульса "уходящий" в элекромагнитные поля - это очень интересно. Где можно почитать подробнее? Ну, т.е. я знаю что такое "эфир" и туда импульс действительно может уходить, но мы-то знаем, что "эфир" - лженаука, верно? Так что "эфир" не предлагать. Предлагать официальную теорию.

[User Picture]

Не физик, поэтому возможно чушь скажу. Но ведь и у обычного эл. двигателя "импульс уходит в поле", а потом, из поля, "приходит в статор". Зазор-то есть.

[User Picture]
From:Date:
nkgb
May 12th, 2007 05:35 am (UTC)
(Link)

В зазоре находится электромагнитное поле передающее взаимодействие между статором и ротором - как оглобля между лошадью и телегой.

[User Picture]

Да, оглобля... Хорошо!Но вопрос-то, я понял, так стоит: может поле воспринимать момент импульса или нет. Т.е. если зазор между статором и ротором 10 свет. лет, то ротор начнет сразу крутиться или через 10 лет, когда поле об ротор обопрется? Мне думается, что сразу, но я не физик, могу ошибаться.

[User Picture]
From:Date:
nkgb
May 12th, 2007 11:22 am (UTC)
(Link)
Очень хороший вопрос. Объект 1 излучает поле достигающее объекта 2, который воздействует через него так, что воздействие должно достичь объекта 1. Утверждается, что взаимодействие не может передаваться быстрее скорости света, так что в системе отсчета объекта 1 пройдет не мнее 20 лет между началом излучения поля и получением воздействия. Однако, объект 1 за это время может изменить координаты или даже вообще исчезнуть.

Что-то такое я читал, но с ходу не вспомню.

[User Picture]
From:Date:
izhkul
May 11th, 2007 10:58 pm (UTC)
(Link)

Почему генератор, делающий из механической энергии его натужного верчения электромагнитное поле/энергию, которое впоследствии передается по проводам для тебя норма? А импульс, какой бы он не был, это тоже всего навсего энергия...

[User Picture]
С точки зрения механики противоречия нет - это незамкнутая система (диск, на который действует внешняя сила, энергия поступает извне). Закон сохранения импулься для таких систем не действует. Проблема в современной (максвелловской)электродинамике, которая действительно не может внятно объяснить этот и другие эффекты без привлечения теории относительности.Народ копает потихоньку:http://www.skif.biz/lib/Niksovrel.djvu
[User Picture]
From:Date:
nkgb
May 12th, 2007 05:37 am (UTC)
(Link)
С точки зрения механики противоречия нет - это незамкнутая система (диск, на который действует внешняя сила, энергия поступает извне)

Энергия поступает из батарейки, являющейся часть рассмотренной конструкции. Система униполярный двигатель Фарадея + батарейка совершенно замкнута - в том-то и дело.

при чём тут энергия до момента импульса ...

"Система униполярный двигатель Фарадея + батарейка совершенно замкнута"т.е. проволка батарейка и шуруп плавают в маловязкой жидкости ?или держатся в руках ??

[User Picture]
From:Date:
nkgb
May 12th, 2007 10:59 am (UTC)
(Link)
Прелесть этой конструкции - в простоте позволяющей не только ее построить за 10 минут в домашних условиях, но и модифицировать также без особых сложностей.

Одно из модификаций, и вы ее можете протестировать лично, вам не обязательно верить на слово - подвесить батарейку на длинной нитке. Это не даст вам сколь-нибудь точного числового значения момента на батарейке, но позволит оценить его хотя бы с точностью до порядка. В моем случае, момент импульса батарейки был по крайней мере на 2 порядка меньше, чем на магните и направлен в том же направлении. Трение между шурупом и корпусом батарейки всё-таки не нулевое...

[User Picture]

Н

nkgb.livejournal.com

Вариант униполярного магнитного двигателя

Власов В.Н.

Вариант униполярного магнитного двигателя.

 

На своём сайте я недавно разместил две интересные статьи примерно на одну тему. Это «Вечный двигатель первого рода», автор Головко Владимир Павлович. И «Роторный униполярный магнитный двигатель», автор Калашников Юрий Яковлевич. И это сделано неспроста.

 

Оба автора примерно с одинаковых позиций показывают, что довольно простым способом можно сконструировать магнитный двигатель, который способен работать практически вечно, настолько долго, насколько долго будет сохраняться намагниченность магнитов. Оба автора предлагают при необходимости вместо постоянных магнитов использовать электромагниты. В этом случае это уже не будет «выглядеть» как вечный двигатель, но при подборе параметров можно добиться, что энергетические расходы на поддержание необходимого магнитного поля в электромагнитах будут меньше работы, совершаемой двигателем.

 

Головко В.П. совершенно правильно формулирует техническое задание, но, к сожалению, до конца дело не доводит, согласившись с тем, что магнитов с требуемыми для его двигателя параметрами не существует и предлагает свой способ намагничивания постоянных магнитов. К сожалению, дальше теории дело не пошло. А жаль.

 

Калашников Ю.Я. предлагает более совершенную конструкцию, которая неплохо показала себя в виде простого макета. Для своего двигателя, у которого магнитные поля роторных магнитов должны быть подобны магнитным полям проводников, по которым протекает электрический ток. На плоскости это концентрические окружности, а объемно это будут концентрические цилиндры. Взаимодействие постоянного магнитного поля статора с цилиндрическим магнитным полем магнитов ротора приводит к тому, что вокруг каждого роторного магнита возникает перепад напряженности магнитного поля с одной точки зрения и перепад эфирного давления с другой. В итоге на каждый роторный магнит действует постоянная сила, направленная именно так, как предлагает в своей статье Головко В.П. Таким образом, Калашников Ю.Я. не только сформулировал техническое задание, но и предложил простое решение.

 

Мои предложения в некотором смысле можно считать усовершенствованием того, что предложил Калашников Ю.Я. Дело в том, что решение Калашникова Ю.Я. хоть и красивое, но для его реализации необходимо составлять своеобразный бутерброд из двух плоских, длинных и особым образом намагниченных магнитов. Такие магниты технически, наверное, проще собрать из нескольких более коротких магнитов, закрепив их в пазах ротора друг над другом.

 

Вторым недостатком можно считать то, что когда такие составные магниты будут расположены на роторе близко друг от друга, то в итоге мы рискуем получить вместо множества цилиндрических магнитных полей несколько иную магнитную конфигурацию, в которой магнитные поля составных роторных магнитов, замкнутся так, что силовые линии этого итогового поля будут располагаться перпендикулярно силовым линиям магнитного поля статора. А такое магнитное поле уже не сможет вращать ротор вокруг оси. Значит надо как-то из кругового магнитного поля соорудить полукруговое магнитное поле, сохранив за ротором способность вращаться в итоговом магнитном поле.

 

Униполярным двигателям и генераторам, как в прошлом, так и в настоящем, уделяется большое внимание. Хотя используются такие моторы и генераторы в специфических условиях. Например, когда надо получить постоянный электрический ток большой величины, но при малом напряжении. Или получить мотор, работающий от мощных аккумуляторов с небольшим напряжением, таких как магнето на автомобилях, тракторах и т.п.

 

Униполярный электродвигатель  - разновидность электрических машин постоянного тока. Содержит проводящий диск, постоянное магнитное поле, параллельное оси вращения диска, 1 токосъёмник на оси диска и 2-ой токосъёмник у края диска.

 

http://upload.wikimedia.org/wikipedia/commons/thumb/a/a5/Homopolar_Motor_Large.jpg/250px-Homopolar_Motor_Large.jpg

Рис. 1. Простой униполярный двигатель.

 

Наглядная демонстрация работы униполярного электродвигателя. На головке шурупа находится постоянный магнит, сила которого удерживает шуруп притянутым к полюсу батарейки.

 

Первый униполярный двигатель, колесо Барлоу, создал Питер Барлоу, описав его в книге «Исследование магнитных притяжений», опубликованной в 1824 году. Колесо Барлоу представляло собой два медных зубчатых колеса, находящихся на одной оси. В результате взаимодействия тока, проходящего через колёса с магнитным полем постоянных магнитов колёса вращаются. Барлоу выяснил, что при перемене контактов или положения магнитных полюсов происходит смена направления вращения колёс на противоположное.

 

Униполярный генератор — разновидность электрической машины постоянного тока. Содержит проводящий диск, постоянное магнитное поле, параллельное оси вращения диска, 1 токосъёмник на оси диска и 2-й токосъёмник у края диска.

 

http://upload.wikimedia.org/wikipedia/commons/thumb/1/19/Faraday_disk_generator.jpg/220px-Faraday_disk_generator.jpg

Рис.2. Диск Фарадея, первый униполярный генератор

 

С позиций электродинамики принцип действия униполярного генератора простой. Есть смысл его привести. На электроны, находящиеся в диске, действует Сила Лоренца, являющаяся векторным произведением напряжённости магнитного поля и скорости перемещения электрона вместе с проводником в результате вращения диска. Сила эта направлена вдоль радиуса диска. В результате при вращении диска возникает ЭДС между его центром и краем.

 

В отличие от других электрических машин, такой генератор имеет чрезвычайно низкую ЭДС (от долей до единиц вольт) при низком внутреннем сопротивлении и большом токе; равномерность получаемого тока, отсутствие необходимости коммутировать его коллектором ротора, или выпрямлять полученный другими машинами переменный ток внешними коммутирующими или электронным приборами; большие собственные потери энергии из-за протекающих по диску обратных токов, его бесполезно нагревающих. Эта проблема частично решается в конструкциях двигателей и генераторов с жидким проводящим токосъёмником по всему периметру диска; Сочетание этих свойств обусловило очень узкие сферы применения этого типа генераторов.

 

Чтобы принцип работы униполярного мотора и генератора был более понятным, воспользуемся рис.3. Данный рисунок составлен из двух рисунков, взятых с одного форума в Интернете.

 

Униполярный мотор и генератор

Рис.3. Объяснение работы униполярного мотора и генератора.

 

http://ut27972.narod.ru/Book_2/04_Book_2_part_4_files/image009.jpg

Рис.4. Еще одна схема для ознакомления с принципами работы униполярного двигателя и генератора.

 

В данных схемах предполагается, что магнит одновременно является как носителем магнитного поля, так и проводником электрического тока. Хотя с таким же успехом функции магнита можно разделить между диском из материала с высокой проводимостью и отдельным магнитом для создания магнитного поля. В этом случае необязательно, чтобы магнитное поле покрывало весь диск, достаточно, чтобы магнитное поле присутствовало пространственно только над тем сектором диска, где будет протекать электрический ток в случае, если мы имеем мотор, или над тем сектором, с которого мы будет этот ток получать в случае, если будем использовать конструкцию в качестве генератора. Это позволяет упрощать конструкцию, обеспечивая над нужными участками вращающего диска магнитное поле нужной напряженности, использую магниты (электромагниты) меньших габаритов при той же напряженности создаваемого магнитного поля.

 

С другой стороны можно эффективно использовать как всю площадь диска (дисков), так и площадь магнита (магнитов). Почему дисков и магнитов? А потому, что диски и магниты можно насадить на одну общую ось по схеме магнит-диск-магнит-диск-…-магнит-диск-магнит. Такую модификацию униполярного двигателя предложил Тесла, при этом он предложил диски разделить на спиральные сектора, а ток снимать фактически со всей окружности дисков. Многих мучает желание понять, зачем Тесла обратил свое внимание на униполярный двигатель и генератор, ибо это как-то, похоже, не связано с его основным изобретением – трансформатором Тесла. Но это только на первый взгляд.

 

Рис.5. Трансформатор Николы Тесла с электромагнитным гасителем искры.

 

На рис.5. показана схема знаменитого трансформатора Николы Тесла. До настоящего времени идут споры о механизмах, которые позволяют создавать ударные эфирные волны и шаровые молнии. В дополнении к тому, что я уже постарался показать в предыдущих статьях о Тесла, хотелось бы отметить, возможно, очень важное. Болотов Б.В., интересный во всех отношения ученый Украины, высказал интересную мысль о возможности использования волн на поверхности водоема, но не от брошенного камня, а от обода, который располагают на поверхности воды, а затем по определенному закону слегка опускается в воду и поднимается из неё, без отрыва обруча от воды. В этом случае при подборе параметров обода, а также частоты принудительных колебаний можно внутри обода создать стоячую волну, которая будет периодически создавать в центре поверхности водного круга всплески, достигающие большой амплитуды. А если повезет, от этой центральной волны периодически будет вверх отрываться определенный объем воды шаровидной или торовидной формы. Наблюдательные люди давно заметили, что нечто похожее возникает на месте падения капли воды на водную поверхность, но этот эффект крайне непродолжительный, так как зона падения капли на поверхность воды не ограничена обручем.

 

А теперь посмотрите с этих позиций на схему трансформатора Николы Тесла. Первичная обмотка А аналогична колеблещемуся на воде обручу, который формирует во вторичной обмотке С стоячую электромагнитную (эфирную) волну с одной стороны, а с другой стороны не дает этой волне покинуть вторичную обмотку. Форма, частота, напряжение и сила тока в первичной обмотке выбирается такой, чтобы её параметры согласовывались с параметрами (индуктивность, способ намотки, материал, емкость), чтобы затраты энергии на создание стоячей волны были минимальные. Поэтому Тесла и говорил в одном своем интервью, что его трансформатор практически не рассеивает энергию, а использует её на 98-99% для создания энергетических объектов – плазмоидов или, иначе, шаровых молний. Вторичная обмотка выполняла не только роль формирователя стоячей волны, но и своеобразного аккумулятора. И когда энергия, образно говоря, начинала переливаться через край, происходил выброс плазмоида на пике напряжения в центре вторичной обмотки путем отрыва шаровой молнии от эфирного всплеска в центре вторичной обмотки.

 

Но какая связь между униполярным динамо и трансформатором Тесла? Дело в том, что по виткам первичной обмотки протекал достаточно большой ток, поэтому Тесла делал её из проводника большого диаметра  с малым омическим сопротивлением. А там, где в селеноиде протекает большой ток, возникает сильное магнитное поле. И пусть это поле было в виде импульса, но напряженность его было высоким. Этот всплеск магнитного поля в первичной обмотке вызывал мощный импульс тока во вторичной обмотке, который волной распространялся по двум спиралям этой бифилярной обмотки, формирую в итоге стоячую волну напряжения (эфирного давления) над ней.

 

Как известно вынужденные колебания в колебательной системе, как правило, происходят с частотой вынужденных колебаний или его гармоник. Примем, что импульс тока в первичной обмотке и всплеск магнитного поля внутри её задавался Тесла в форме положительного прямоугольного импульса. Значит и колебания эфира над вторичной обмоткой задавались основной частотой колебаний в первичной обмотке, но вот форма этих стоячих волн определялась уже параметрами вторичной обмотки, а значит, что на одних частотах колебания усиливались, а на других могли заметно ослабевать. Это в итоге вело к тому, что солитонопорождающие колебания эфира над вторичной обмоткой уже не были похожи на прямоугольные импульсы, а определялись в заметной степени самой вторичной обмоткой. Не зря Тесла так тчательно относился к процессу выбора проводника для вторичной катушки и способу намотки. Кроме того изучающие наследие Тесла обратили внимание, что из математических методов он использовал проктически только преобразования Фурье. Тот, кто знает, что это такое понимает, что любой прямоугольный импульс в первичной обмотке ТТ можно промоделировать в виде суммы гармонических колебаний. Так вот, набор этих колебаний во вторичной обмотке будет представлен тем же набором гармоник, но уже с другими коэффициентами, что вызовет изменение формы стоячей волны во вторичной обмотке. И она вместо прямоуголной формы будет похожа на своеобразный пакет гармонических колебаний, амплитуда которых увеличивается от края к центру вторичной обмотки.

 

Получается, что вторичная обмотка в трансформаторе Тесла работала как оптический лазер, периодически выстреливая шаровые молнии или строго направленные локально ограниченные ударные волны. У лазера тоже ведь есть катушка для энергетической накачки, которая излучает когерентное излучение, энергия которого накапливается в кристалле, например рубине, длину которого подбирают очень строго, чтобы на ней могло уложиться целое число периодов выбранной световой волны, например красного цвета, а затем, когда энергии накапливается в достатке, «болтаясь» в виде стоячей волны вдоль всего кристалла от одного торца к другому, по достижению критического порога энергии стоячей световой волны кристалл выстреливает своеобразный световой солитон (волновой пакет) через один из своих торцов, который специально делают полупрозрачным.

 

Вот поэтому Тесла назвал свою вторичную бифилярную катушку катушкой для электромагнита. Только не «постоянного», а импульсного, в виде первичной катушки его любимого трансформатора.

 

Но вернёмся к униполярному динамо или мотору. Как для униполярного мотора, так и для униполярного генератора важно, чтобы вращался электропроводный диск, который должен обладать небольшим внутренним сопротивлением (золото, серебро, медь). Магнит может не вращаться или он может вращаться как вместе с диском, так и сам по себе, но исключительно параллельно вращающемуся диску.

 

Данное открытие было сделано А. Родиным. Им обнаружено, что реакция на цилиндрическом магните-статоре при вращающемся диске-роторе в униполярном двигателе полностью отсутствует (рис.6). С другой стороны вращение постоянного магнита никак не влияло на вращение диска. Важен лишь факт наличия магнитного поля, его напряженность и направление силовых линий. Проще говоря, наличие струй эфира, «вентилятором» для которых является магнит, у южного полюса он эфир «засасывает», а из северного полюса «выдувает». Так как в области северного полюса магнита создается зона с повышенным эфирным давлением, а возле южного полюса – с пониженным давлением, то «выдуваемый» из северного полюса эфир возвращается к южному полюсу, но уже обтекая магнит снаружи. Так магнитом формируется торовидный эфирный вихрь.

Опыт Родина

Рис. 6. Схема опыта  А.Родина.

 

В рамках известных представлений явление не имеет корректного объяснения, так как находится в противоречии с законами механики. В действительности к магниту приложены скомпенсированные продольные силы F║ от вращающегося диска и неподвижного проводника токоподвода, в результате чего суммарный момент на магните равен нулю и он остается в состоянии покоя. Роль статора выполняет неподвижный проводник токоподвода, на который передается реакция от магнита - поперечная сила F┴, однако непосредственного действия на вращающийся диск-ротор магнитное поле токоподводящего проводника-статора не оказывает. Таким образом, от токоподводящего проводника-статора вращающийся момент передается на магнит, а от магнита, в свою очередь, вращающийся момент передается на диск-ротор, при этом магнит выполняет роль активного передаточного тела, оставаясь все время неподвижным. Суммарный вращающий момент на магните всегда остается равным нулю.

С позиций эфиродинамики механизм вращения диска в униполярном моторе очень простой. Когда ток проходит в диске, находящемся в постоянном магнитном поле, направление силовых линий которого параллельно оси вращения диска, то данный ток создает вокруг себя круговое магнитное поле, направление вращения которого можно определить по правилу правой руки, которое и взаимодействует с постоянным магнитным полем. В результате с одной стороны от этой токовой «дорожки» магнитное поле усиливается, а с другой ослабляется. Или, если исходить из эффекта Магнуса для эфирных потоков, то с одной стороны токовой «дорожки» эфирное давление падает, а с другой возрастает. Разность эфирный давлений воздействует не на сам ток, а на носитель тока, коим является проводящий диск и проворачивает его вокруг оси на некоторый угол. Но токовая «дорожка» пространственно остается там же, на старом месте, поэтому вместе с ней остаются на месте зоны повышенного и пониженного эфирного давления, которые опять проворачивают токопроводящий диск. И так оборот за оборотом. Вот почему важно, чтобы магнитное поле достаточной напряженности располагалось как раз над (под) токовой «дорожкой». В другом месте магнитное поле бесполезно.

 

Объяснить работу униполярного генератора также можно с позиций эфиродинамики. При вращении токопроводящего диска электроны, как наиболее подвижные эфирные вихревые образования создают в диске концентрические токи, вокруг которых создается цилиндрическое магнитное поле. Это цилиндрическое магнитное поле взаимодействует с постоянным магнитным полем внешнего магнита, и в зависимости от направления вращения токопроводящего диска электроны будут либо оттесняться к периферии диска, либо собираться в центре диска. Разность концентраций электронов в центре и на периферии диска будут порождать напряжение. Но тут есть одна тонкость, на которую в известных мне материалах никто не обращает внимание.  Дело в том, что на электроны будет действовать и центробежная сила, которая равноценна разности давлений эфира и напряжению. Поэтому важно, чтобы диск, направление токовой «дорожки» в пространстве и расположение магнитных полюсов внешнего магнита было таким, чтобы электроны оттеснялись на периферию диска как под действием центробежной силы, так и под действием силы Лоренца (эффекта Магнуса), что позволит обеим силам усиливать эффект друг друга.

 

В итоге между центром и периферией диска возникает напряжение, а в случае замыкания электродов на нагрузку через неё протекает электрический ток. И как в случае с униполярным мотором достаточно, чтобы магнитное поле было расположено над (под) линией, соединяющие электроды, с которых снимается напряжение. Это позволит использовать мощные, но небольшие по габаритам магниты (электромагниты).

 

Таким образом, с позиций эфиродинамики легко объясняются особенности работы униполярного двигателя или униполярного генератора. И самое главное, становится понятно, почему вращение магнита при наличии отдельного проводящего диска необязательно. Важно, что все эти эффекты связаны с характером взаимодействия эфирных полей – магнитного поля постоянного магнита и цилиндрических магнитных полей, динамически возникающих или протекающих меду электродами токов во вращающемся диске. В гидродинамике и аэродинамике этот эффект имеет аналога в виде эффекта Магнуса. Например, аналогом униполярного двигателя может служить ветрогенератор с лопастями, выполненных в виде принудительно вращающихся цилиндров. Несколько таких ветрогенераторов установлены в Белоруссии.

 

Пытаясь упростить решение, предлагаемое Калашниковым Ю.Я., я обратил внимание на давно известный вариант постоянного магнита как подковообразный (рис.7)

 

Подковообразный магнит

Рис.7. Подковообразный магнит.

 

В таком магните, как он изображен на рисунке, магнитные линии тоже будут слева замыкаться между северным (синий) и южным (красный) магнитными полюсами «по воздуху», но остальные участки магнитных линий (в правой части магнита) будут проходить внутри магнита, и, таким образом, будут защищены от воздействия магнитного поля такого же магнита, когда, например, два или более таких магнитов будут выстроенны в цепочку (рис.8).

 

Цепочка подковообразных магнитов

Рис.8. Цепочка подковообразных магнитов.

 

Если подковообразный магнит расположить между полюсами мощного постоянного магнита как это показано на рисунке рис.9. то в результате враимодействия магнитных полей на подковообразный магнит начнет действовать сила, которая будет стремиться переместить подковообразный магнит вправо.

 

Подковообразный магнит в магнитном поле

Рис.9. Подковообразный магнит в магнитном поле мощного магнита.

 

Причины, по которым на подковообразной магнит в магнитном поле мощного постоянного магнита будет действовать сила, объясняются точно так же, как это было сделано в статье Калашникова Ю.Я. В самом деле, магнитные силовые линии от северного полюса подковообразного магнита к южному будут описывать если не окружность, то кривую, похожую на эллипс. Направление этих силовых линий будет совпадать с направлением силовых линий «статорного» мощного магнита. В результате слева от подковообразного магнита будет наблюдаться повышение плотности магнитного поля, тогда как справа от подковообразного магнита плотность магнитного поля будет снижаться. Исходя из эфирных представлений можно считать, что слева от подковоорбразного магнита давление эфира будет выше, чем справа. Все это указывает на то, что на подковообразный магнит будет действать горизонтальная сила F, как это указано на рис.9.

 

Теперь, думаю, понятно, почему я указал, что данный способ является некоторым усовершенствованием способа, предложенного Калашниковым Ю.Я. Говоря простым языком, я предлагаю замкнуть, например, правые полюса составного магнита по его схеме обычным магнитопроводом, тем самым защитив эти полюса от воздействия соседних составных роторных магнитов.

 

Остальное уже дело техники. В качестве роторных и статорных магнитов можно будет использовать электромагниты, но для моторов малой мощности в несколько киловатт можно будет использовать магниты. Думаю, что особое внимание придется уделить подковообразному магниту, которому, по идее, можно придать более удобную форму, как в целях упрощения технологии, так и в целях формирования между его полюсами магнитного поля, магнитные линии которого будут максимально приближены к полуокружностям.

 

Но это еще не все. Если два таких подковообразных магнита соединить противоположными полюсами, то магниты образуют кольцо, в котором магнитное поле обоих магнитов соединится в кольцевое (закольцованное) магнитное поле. Такой магнит перестанет притягивать железные предметы, так как за пределы этого магнита не выйдет ни одна силовая линия. Но это не значит, что такой магнит, а точнее его закольцованное магнитное поле, не будет взаимодействовать с другими магнитными полями. А так как магнитное поле такого магнита будет представлять собой вращающееся в одну сторону эфирное кольцо, то такое поле при взаимодействии с внешним магнитным полем постоянного магнита поведет себя также как и магнитное поле проводника с током, а может даже и лучше. Такой магнит, если его правильно расположить во внешнем магнитном поле будет перемещаться как проводник с током.

 

Подтверждением этому может служить опыт В.Черникова. На проводник с током в магнитном поле постоянного магнита действует сила Лоренца (рис.10).  Однако если проводник закрыть цилиндрическим экраном из магнитомягкого материала, то действие на проводник магнитного поля практически исчезает, но зато сила оказывается приложенной теперь к обесточенному экрану.

 

Опыт Черникова

Рис.10. Схема опыта В.Черникова.

 

 

Явление объяснимо только при учете взаимодействия токов проводника и индуцированных эквивалентных токов экрана с полями векторного потенциала во внутренней полости экрана. Этот опыт прекрасно объясняестя с эфиродинамических принципов. В цилиндре под действием магнитного поля проводника с током возникает цилиндрическое закольцованное магнитное поле, цилиндр с таким магнитным полем будет взаимодействовать с учетом эффекта Магнуса так же как и проводник с током. При выбранных на рисунке параметрах цилиндр будет выталкиваться из магнитного поля N-S. В итоге получаем схему униполярного мотора (рис.11).

 

Униполярный мотор 2345_2

Рис.11. Схема униполярного мотора Власова В.Н.

 

Но раз из двух подковообразных магнитов можно получить «закольцованный магнит» или магнит с закольцованным магнитным полем, то, скорее всего, такие магниты с закольцованным магнитным полем внутри можно сразу готовить из кольцевой заготовки, которые используются, например, для изготовления аксиальных или радиальных магнитов.

 

Тут главное принцип работы и способ создания кругового, закольцованного магнитного поля. Теперь остается подумать как наиболее рационально реализовать этот принцип на практике. И тут могут быть варианты. В первом же случае, который приходит на ум, вдоль ротора располагаем трубки из таких магнитов, эти трубки из магнитов не будут мешать таким же соседним трубкам, так как их магнитное поле надежно спрятано. Чтобы магниты не разрушались, их можно «насаживать» на цилиндр как на шампур из непроводящего электрический ток материала. Что-то похожее на такую конструкцию (рис.12). Единственно, что надо обеспечить, чтобы длина статора над трубками из кольцевых магнитов на роторе была чуток больше длины трубкок. Иначе часть магнитов будет вращаться без толку.

 

http://www.sciteclibrary.ru/ris-stat/3605/3.gif

Рис. 12. Униполярная машина.

 

В случае использования в качестве таких цилиндров, на которые будут «нанизываться» кольцевые магниты, алюминиевых или медных цилиндров (проводников) будет одновременно создаваться на концах цилиндров ЭДС, которую вроде бы можно будет задаром снимать и направлять в нагрузку. Но анализ порождаемого при этом магнитного поля по правилу правой руки показывает, что магнитное поле порождаемого тока будет закручиваться по часовой стрелке, тогда как магнитное поле в закольцованном магните закручено против часовой стрелки. В итоге у нас не будет ни двигателя, ни генератора. Но ничто не мешает посадить униполярный двигатель и униполярный генератор на одну ось, продумав их конструкции, чтобы иметь источник электрической энергии.

 

По правде говоря, не верится, что все так просто.

 

 

Источники:

  1. Калашников Ю.Я. Роторный униполярный магнитный двигатель [РУМД].
  2. Головко В.П. Вечный двигатель первого рода.
  3. Николаев В.Г. Современная электродинамика и причины её парадоксальности.

 

Безтопливная энергетика

На главную

vitanar.narod.ru

Униполярный двигатель (генератор) высокого напряжения

 

Использование: в качестве привода на электрическом транспорте, а также других маломощных устройств, стиральных машин, холодильников и т. д. Сущность изобретения: статор выполнен в виде тороидального соленоида 2, внутри которого расположены два ферромагнитных сердечника 3. По их окружности выполнены чередующиеся секторовидные области с сильно отличающимися значениями индукции. Радиальные проводники 5 ротора соединены последовательно. Две группы проводников, в которых ток течет в противоположных направлениях располагаются в области с сильно отличающимися значениями индукции. Сила, действующая на проводники 5, в областях с большей индукцией значительно больше и при этом возникает крутящий момент. При вращении проводники 5 с противоположным направлением тока в обмотке ротора входят в область статора с большим значением индукции. Чтобы вращение продолжалось, направление тока в обмотке ротора изменяется на противоположное с помощью коллектора. 1 з. п. ф-лы, 3 ил.

Изобретение относится к электротехнике, в частности к униполярным двигателям высокого напряжения.

Известны униполярные двигатели (генераторы) [1] Недостатком таких двигателей является то, что они работают при низких напряжениях (4 20 В)постоянного тока, вследствие чего для получения значительной мощности необходим большой ток. В связи с этим эти двигатели почти не используют. Наиболее близким к изобретению по технической сущности и достигаемому результату является униполярный двигатель высокого напряжения [2] Особенностью этого двигателя является то, что ротор выполнен в виде диска, его обмотка в виде радиально расположенных, последовательно соединенных проводников, находящихся в секторовидных участках с сильным и слабым магнитным полем, направление тока в которых (от оси ротора или в ней) обеспечивается коллектором, расположенным вблизи оси ротора. Подвод постоянного тока к коллектору обеспечивается контактными щетками, число которых равно числу секторовидных участков с сильным магнитным полем. Главным недостатком этого двигателя-прототипа является сложность обмотки ротора, которая должна быть выполнена подобно тому, как она изготавливается в традиционных многополюсных машинах постоянного тока. В мощных двигателях эта обмотка очень трудоемка и нередко изготавливается вручную вследствие своей сложности. Предлагаемый в [2] вариант изготовления обмотки ротора в виде печатной схемы при сохранении конструктивной сложности упрощает изготовление обмотки, однако, делает двигатель маломощным, что является дополнительным недостатком. Второй дополнительный недостаток двигателя-прототипа [2] сложная конструкция коллектора, обусловленная сложностью обмотки ротора, изготавливаемого подобно коллекторам в традиционных многополюсных машинах постоянного тока. Третьим дополнительным недостатком двигателя-прототипа [2] является сложная конфигурация магнитного сердечника обмотки возбуждения, формирующего секторовидные участки с сильным и слабым магнитным полем. Цель изобретения упрощение конструкции униполярного двигателя высокого напряжения (и устранение перечисленных недостатков) путем упрощения обмотки ротора, конструкции коллектора, конфигурации сердечника обмотки возбуждения и уменьшение числа контактных щеток до двух. Это обеспечивает создание униполярных двигателей высокого напряжения с упрощенной конструкцией, как большой так и малой мощности. Это достигается тем, что униполярный двигатель (генератор) высокого напряжения, содержащий систему возбуждения статора с одинаковыми секторовидными участками сильного и слабого магнитных полей, установленный на валу двигателя дисковый ротор с обмоткой из радиальных проводников, соединенных последовательно, начало и конец обмотки соединены с коллектором и токоподводящими к нему щетками, отличается тем, что обмотка ротора выполнена таким образом, что проводники с противоположным направлением тока расположены соответственно в сильном и слабом магнитных полях системы возбуждения статора, а коллектор выполнен в виде двух групп пластин, расположенных по кругу, причем, число пластин в каждой группе равно удвоенному числу участков с сильным магнитным полем, пластины в каждой группу электрически соединены друг с другом и с одним из концов обмотки ротора, а расстояние между пластинами на 5 10% больше поперечного размера каждой из двух токоподводящих щеток, что необходимо, чтобы избежать короткого замыкания через щетки в момент переключения на коллекторе. Униполярный двигатель (генератор) отличается тем, что система возбуждения статора выполнена в виде тороидальной обмотки и цилиндрических сердечников с секторовидными выступами, установленных с двух сторон ротора выступ к выступу. Сущность изобретения состоит в том, что радиально расположенные и последовательно соединенные проводники, образующие обмотку дискового ротора, находятся в неоднородном магнитном поле в виде секторовидных участков с сильным и слабым магнитными полями. При этом обмотка может быть выполнена из одинаковых секторовидных катушек, токоподвод к коллектору осуществляется с помощью всего двух контактных щеток, а неоднородное магнитное поле создается двумя ферромагнитными сердечниками с секторовидными выступами. Такой двигатель по конструкции проще двигателя-прототипа [2] и по рабочим характеристикам близок к традиционным многополюсным машинам постоянного тока, но значительно проще их по конструкции. На фиг.1 изображена схема предлагаемого двигателя в продольном разрезе; на фиг. 2а принципиальная схема обмотки дискового ротора; на фиг. 2б схема конструкции коллектора; на фиг. 3 конструкция одного из двух ферромагнитных сердечников, создающих неоднородное магнитное поле в виде секторовидных областей с сильным и слабым полем. Предлагаемое устройство (фиг. 1 3) содержит статор 1, тороидальную обмотку 2 возбуждения статора, два ферромагнитных сердечника 3 с секторовидными выступами фиг.3), ротор 4, обмотку 5 ротора, секторовидные области 6 слабого магнитного поля (фиг. 2), секторовидные области 7 7 7 сильного магнитного поля, коллектор 8, пластины 9 коллектора, контактные графитовые щетки 10, ось 11 ротора (вал двигателя). Хорошо известно, что в соответствии с законом Ампера, сила, действующая на проводник с током в магнитном поле предлагаемого двигателя описывается уравнением (система СИ) f IBl, (1) где I сила тока; l длина проводника, магнитная индукция. Действие предлагаемого двигателя (генератора) основано на зависимости от . Конструкция статора двигателя представлена на фиг. 1. Статор имеет общепринятый для униполярных двигателей [1 и 2] вид. Это соленоид 2 в виде тороидальной катушки, на оси которой расположена ось двигателя 11. Внутри соленоида расположены два ферромагнитных сердечника 3. Как указано выше, принципиальная особенность конструкции статора состоит в том, что обмотка возбуждения должна создавать неоднородное магнитное поле, состоящее из секторовидных участков, где магнитная индукция имеет большую величину, и подобных же участков, где она в несколько раз меньше. Форма и расположение этих областей показаны на фиг.2а. Области с малым значением заштрихованы. Конструкция ротора приведена на фиг. 1 и 2а. Радиально расположенные проводники с током 5 соединены последовательно, так как показано на фиг. 2а. Две группы проводников, в которых ток течет в противоположных направлениях (к оси ротора или от нее), располагаются в участках с сильно отличающимися значениями индукции . Сила, действующая на проводники, расположенные в участках с большим , окажется значительно больше и возникает крутящий момент. При вращении проводники второй группы с противоположным направлением тока начнут входить в участки с большим значением . Чтобы вращение двигателя продолжалось, необходимо направление тока в обмотке ротора изменить на противоположное, что достигается с помощью простого коллектора 6, устройство которого показано на фиг. 2б. Коллектор состоит из двух групп пластин, расположенных по кругу и соединенных друг с другом. Каждая из групп соединена с концом обмотки 5 ротора. Число пластин коллектора невелико и равно удвоенному числу n участков с высоким значением . Минимальное значение n= 2. Для работы коллектора достаточно двух щеток 12 (фиг. 1). Расстояние между пластинами на 5 -10% больше поперечного размера каждой из двух токопроводящих щеток 10. Расположение участков с большим и малым значением В (фиг. 2а) можно создать несколькими путями. Самый простой вариант можно реализовать при использовании тороидальной обмотки 2 возбуждения (фиг. 1), когда для создания значительного магнитного поля применяют ферромагнитные сердечники. Конструкция таких сердечников показана на фиг.3: по окружности расположены секторовидные выступы 13, 15, 17 и 19 и впадины 14, 16, 18 и 20. Ротор 4 (фиг. 1) находится между двумя сердечниками 3, расположенными выступ к выступу. Благодаря малому зазору между выступами магнитное поле в этих областях имеет высокое значение . Между впадинами значение значительно меньше. В качестве выступов на ферромагнитных сердечниках 3 можно также использовать постоянные магниты с секторовидными полюсами. При этом отпадает необходимость в тороидальной обмотке 2 возбуждения (фиг. 1). Вместо постоянных магнитов можно использовать также секторовидные соленоиды. Как видно из фиг. 2, при одновременном изменении направления тока в обмотке возбуждения (т.е. изменения направления магнитного поля на противоположное) и в роторе двигателя направление крутящего момента не изменится. Поэтому принципиально, предлагаемый двигатель может работать и на переменном токе. Если рабочее напряжение традиционного униполярного двигателя [1] Vo, то при той же скорости вращения и индукции магнитного поля напряжение будет V VonN, (2) где n число областей с высоким значением , т.е. число участков с токами одного направления, N число проводников в одном таком участке. Число проводников в обмотке ротора (фиг. 2а) является минимально необходимым для работы двигателя элементарная обмотка. Это число может быть увеличено во много раз путем многократной укладки элементарных обмоток и их последовательного соединения. В частности, это можно осуществить путем последовательного соединения секторовидных катушек. При этом величина N окажется очень значительной. Так как N может быть значительным, рабочие напряжения двигателя (генератора) будут большими и, в частности, более высокими, чем в двигателе-прототипе [2] В результате удельная мощность двигателя существенно повысится. При вращении ротора внешним двигателем предлагаемое устройство, как и другие двигатели постоянного тока, будет работать как генератор постоянного тока. Для повышения мощности несколько описанных двигателей можно соединить общим валом с таким расчетом, чтобы переключения на коллекторах двигателей происходили в разные моменты времени, что обеспечит более равномерное вращение. Предлагаемый двигатель имеет два основных преимущества по сравнению с ранее известными двигателями постоянного тока. По сравнению со всеми ранее известными униполярными двигателями [1 и 2] предлагаемый двигатель может работать при значительно более высоких напряжениях, и при этом двигатель будет иметь больший коэффициент полезного действия вследствие меньших потерь мощности на щетках, вследствие их меньшего количества. Двиатель будет иметь также очень широкий диапазон скоростей вращения. Изменение скорости вращения осуществляется так же, как в традиционных двигателях постоянного тока, а именно изменением величины в области с сильным магнитным полем посредством вариации тока в обмотке 2 возбуждения (фиг. 1). За счет большого значения N двигатель может быть низкооборотным, что дает возможность использовать двигатель без механического редуктора. По сравнению с ранее известными коллекторными двигателями постоянного тока большим достоинством предлагаемого двигателя является простота обмоток возбуждения и ротора. Обмотка возбуждения состоит всего из одной тороидальной катушки. Обмотка ротора может состоять из 4 8 одинаковых секторовидных катушек. Проволока на эти катушки может наматываться на очень простых устройствах (например, на токарном станке), поэтому изготовление наиболее трудоемкой части двигателя постоянного тока ( обмотки, которую часто делают вручную) значительно упрощается. Очень важным дополнительным достоинством предлагаемого двигателя является очень простая конструкция коллектора. Предлагаемый двигатель большой мощности может быть использован для привода на электрическом транспорте (трамваях, троллейбусах, электровозах, электромобилях, дизель-электроходах). Двигатель может быть применен для привода разнообразных маломощных устройств: магнитофонов, холодильников, стиральных машин и т. п. Экономический эффект от использования предлагаемого двигателя будет значительным, но количественного его в настоящее время оценить трудно.

Формула изобретения

1. Униполярный двигатель (генератор) высокого напряжения, содержащий систему возбуждения статора с одинаковыми секторовидными участками сильного и слабого магнитных полей, установленный на валу дисковый ротор с обмоткой из радиальных проводников, соединенных последовательно, начало и конец обмотки соединены с коллектором и токоподводящими к нему щетками, отличающийся тем, что обмотка выполнена таким образом, что проводники с противоположным направлением тока расположены соответственно в сильном и слабом магнитных полях системы возбуждения статора, а коллектор выполнен в виде двух групп пластин, расположенных по кругу, причем число пластин в каждой группе равно удвоенному числу участков с сильным магнитным полем, пластины в каждой группе электрически соединены друг с другом и с одним из концов обмотки ротора, а расстояние между пластинами на 5 10% больше поперечного размера каждой из двух токоподводящих щеток. 2. Двигатель по п. 1, отличающийся тем, что система возбуждения статора выполнена в виде тороидальной обмотки и цилиндрических ферромагнитных сердечников с секторовидными выступами, установленных с двух сторон ротора выступ к выступу.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3

www.findpatent.ru

Униполярный двигатель - Большая Энциклопедия Нефти и Газа, статья, страница 2

Униполярный двигатель

Cтраница 2

Промышленность, и в особенности электроэнергетическая, тоже, естественно, не могла упустить широких возможностей использования сверхпроводящих материалов. Как на пример можно указать на уже построенные в различных странах униполярные двигатели со сверхпроводящей обмоткой возбуждения, мощностью до 10000 киловатт. По всем показателям - весу, габаритам, стоимости, эксплуатационным расходам и надежности работы - эти электродвигатели превосходят аналогичные машины с медной обмоткой возбуждения.  [16]

Отличие двигателя планеты от сферических гиродинов космических летательных аппаратов состоит в том, что униполярный двигатель Земли имеет жидкий ротор, внутренний статор и внешнюю оболочку. Обычно технические гиродины питаются переменным током высокой частоты, а гиродин планеты - униполярный двигатель.  [17]

Систему Г - Д, заменяющую электромеханическую систему планеты, удобно рассматривать приближенно - для анализа динамической устойчивости и колебаний мгновенной скорости вращения Земли вокруг своей оси. Однако достоверность результатов зависит от более глубокого исследования электромеханического преобразования энергии в МГД-гене-раторе и униполярном двигателе планеты.  [18]

Идея униполярного генератора постоянного тока, выполненного в виде вращающегося в магнитном поле диска, возникла у Фарадея в 1831 г., на 10 лет позднее осуществления им модели униполярного двигателя. Первая модель переменнополюсного генератора постоянного тока, в которой применено коммутирующее устройство для выпрямления, была построена в 1832 г. братьями Пикси. В ней коммутатор был приспособлен для выпрямления переменного тока, индуктированного в неподвижных катушках, установленных на П - образном стальном магнитопроводе, изменение направления поля в котором достигалось путем вращения расположенного напротив него П - образного магнита.  [19]

С середины 60 - х годов, когда начались исследования по прикладной: верхпроводимости, в развитых странах разрабатываются сверхпроводни-совые варианты практически всех основных электротехнических уст-эойств, которые генерируют, передают, преобразуют и потребляют элек-фоэнергию в промышленном масштабе. В России в течение последних 20 лет созданы и испытаны представительные модели и опытно-промышленные образцы сверхпроводниковых турбогенераторов мощностью от 1 до 20 MB А, изготовлены турбогенератор мощностью 300 MB А, коллекторные и униполярные двигатели мощностью до 10 МВт, системы движения для морского и железнодорожного транспорта, трансформаторы, токоограничители, гибкие и жесткие линии электропередач, индуктивные накопители энергии.  [20]

Довольно точно можно сказать, что наибольшее применение в настоящее время сверхпроводящие магниты нашли в области физических исследований. В промышленности они применяются в униполярных двигателях и генераторах. Униполярный двигатель представляет очень простое устройство, в котором проводящий диск вращается между полюсами магнита.  [21]

Униполярный двигатель - очень удачное применение сверхпроводящих магнитов, поскольку здесь требуется более высокая напряженность поля в большом объеме и отсутствует механическая реакция поля и ротора. Самая сложная криогенная проблема при сооружении больших сверхпроводящих магнитов связана с наличием сил взаимодействия между магнитом, находящимся при низкой температуре, и его окружением, находящимся при комнатной температуре. В случае униполярного двигателя эти силы отсутствуют.  [22]

Естественно далее предположить, что, как и во всех машинах постоянного тока, ток нагрузки МГД-генератора создает поток поперечной реакции якоря, который искажает магнитное поле Земли, смещая ось поля с геометрической нейтрали - географической оси вращения на физическую нейтраль, совпадающую с осью магнитного поля Земли. Естественно предположить, что круговые токи радиационных поясов связаны с МГД-генератором планеты и являются токами поперечной реакции якоря генератора. МГД-генератор отдает энергию униполярному двигателю ( МГД-насосу), который создает момент, вращающий Землю.  [23]

Довольно точно можно сказать, что наибольшее применение в настоящее время сверхпроводящие магниты нашли в области физических исследований. В промышленности они применяются в униполярных двигателях и генераторах. Униполярный двигатель представляет очень простое устройство, в котором проводящий диск вращается между полюсами магнита. В отличие от двигателя с индукторной системой из разноименных полюсов, съем тока производится с помощью контактных колец, и конструкция является простой и жесткой. Если двигатель правильно смонтирован, то не существует механической реакции между ротором и полем. Однако униполярный двигатель имеет и недостаток - он работает при низком напряжении и больших токах.  [24]

Страницы:      1    2

www.ngpedia.ru

Биполярные и униполярные шаговые двигатели:

Биполярный двигатель имеет одну обмотку в каждой фазе, которая для изменения направления магнитного поля должна переполюсовывается драйвером. Для такого типа двигателя требуется мостовой драйвер, или полумостовой с двухполярным питанием. Всего биполярный двигатель имеет две обмотки и, соответственно, четыре вывода (рис. а).

Технические характеристики шаговых двигателей (крутящий момент, номинальный ток, габаритные и присоединительные размеры) приведены здесь. цены на биполярные и униполярные шаговые двигатели опубликованя в разделе "Price".

Биполярный двигатель (а), униполярный (б) и четырехобмоточный (в).

Униполярный двигатель также имеет одну обмотку в каждой фазе, но от середины обмотки сделан отвод. Это позволяет изменять направление магнитного поля, создаваемого обмоткой, простым переключением половинок обмотки. При этом существенно упрощается схема драйвера. Драйвер должен иметь только 4 простых ключа. Таким образом, в униполярном двигателе используется другой способ изменения направления магнитного поля. Средние выводы обмоток могут быть объединены внутри двигателя, поэтому такой двигатель может иметь 5 или 6 выводов (рис. б). Иногда униполярные двигатели имеют раздельные 4 обмотки, по этой причине их ошибочно называют 4-х фазными двигателями. Каждая обмотка имеет отдельные выводы, поэтому всего выводов 8 (рис. в). При соответствующем соединении обмоток такой двигатель можно использовать как униполярный или как биполярный. Униполярный двигатель с двумя обмоткими и отводами тоже можно использовать в биполярном режиме, если отводы оставить неподключенными. В любом случае ток обмоток следует выбирать так, чтобы не превысить максимальной рассеиваемой мощности.

Если сравнивать между собой биполярный и униполярный двигатели, то биполярный имеет более высокую удельную мощность. При одних и тех же размерах биполярные двигатели обеспечивают больший момент.

Момент, создаваемый шаговым двигателем, пропорционален величине магнитного поля, создаваемого обмотками статора. Путь для повышения магнитного поля – это увеличение тока или числа витков обмоток. Естественным ограничением при повышении тока обмоток является опасность насыщения железного сердечника. Однако на практике это ограничение действует редко. Гораздо более существенным является ограничение по нагреву двигателя вследствии омических потерь в обмотках. Как раз этот факт и демонстрирует одно из преимуществ биполярных двигателей. В униполярном двигателе в каждый момент времени используется лишь половина обмоток. Другая половина просто занимает место в окне сердечника, что вынуждает делать обмотки проводом меньшего диаметра. В то же время в биполярном двигателе всегда работают все обмотки, т.е. их использование оптимально. В таком двигателе сечение отдельных обмоток вдвое больше, а омическое сопротивление – соответственно вдвое меньше. Это позволяет увеличить ток в корень из двух раз при тех же потерях, что дает выигрыш в моменте примерно 40%. Если же повышенного момента не требуется, униполярный двигатель позволяет уменьшить габариты или просто работать с меньшими потерями. На практике все же часто применяют униполярные двигатели, так как они требуют значительно более простых схем управления обмотками.

studfiles.net


Смотрите также