ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Двухтактные двигатели. Двухтактные двигатели


Двухтактные двигатели - это... Что такое Двухтактные двигатели?

Двухтактный двигатель — поршневой двигатель внутреннего сгорания в котором рабочий процесс в каждом из цилиндров совершается за один оборот коленчатого вала, то есть за два хода поршня. Такты сжатия и рабочего хода в двухтактном двигателе происходят так же, как и в четырехтактном, но процессы очистки и наполнения цилиндра совмещены и осуществляются не в рамках отдельных тактов, а за короткое время, когда поршень находится вблизи нижней мертвой точки, с помощью вспомогательного агрегата — продувочного насоса.

В связи с тем, что в двухтактном двигателе при равном количестве цилиндров и числе оборотов коленчатого вала рабочие ходы происходят вдвое чаще, литровая мощность двухтактных двигателей выше чем четырехтактных — теоретически в два раза, на практике в 1,5-1,7 раза, так как часть полезного хода поршня занимают процессы газообмена, а сам газообмен менее совершенный чем у четырехтактных двигателей.

В отличии от четырехтактных двигателей, где вытеснение отработавших газов и всасывание свежей смеси осуществляется самим поршнем, в двухтактных двигателях газообмен выполняется за счет подачи в цилиндр рабочей смеси или воздуха (в дизелях) под давлением, создаваемым продувочным насосом, а сам процесс газообмена получил название — продувка. В процессе продувки свежий воздух (смесь) вытесняет продукты сгорания из цилиндра в выпускные органы, занимая их место.

По способу организации движения потоков продувочного воздуха (смеси) различают двухтактные двигатели с контурной и прямоточной продувкой.

Рабочий цикл двухтактного двигателя с контурной продувкой

Контурная продувка

При контурной продувке поток воздуха (смеси) движется вдоль внутренней поверхности цилиндра и его головки, повторяя их контур (отсюда название).

Впускные и выпускные органы — окна в стенках цилиндра — расположены в его нижней части. Открытие и закрытие впускных и выпускных окон осуществляется самим поршнем, а специальный газораспределительный механизм отсутствует. Направление потока воздуха (смеси) по контуру цилиндра может осуществляться специальными дефлекторами на днище поршня и в головке цилиндра (в этом случае продувка называется дефлекторной) или специальной формой продувочных каналов, направляющих поток воздуха (смеси) к головке цилиндра, и сферической формой головки. Так как в последнем случае воздух (смесь) в цилиндре описывает петлю, такой тип продувки называется возвратно-петлевой или просто петлевой. Дефлекторная продувка технологически реализуется проще, так как продувочные каналы и окна выполняются простым сверлением, а при петлевой продувке для выполнения каналов требуется высокоточное литье. В то же время петлевая продувка характеризуется меньшим сопротивлением движению воздуха (смеси) и лучшей очисткой цилиндра от остаточных газов, чем дефлекторная. Сложная форма камеры сгорания при дефлекторной продувке ухудшает параметры рабочего процесса и повышает склонность бензиновых двигателей к детонации, а дизельных — к дымлению, что препятствует форсированию и повышению экономичности двигателей. В связи с этим дефлекторная продувка в современных конструкциях двухтактных двигателей не применяется. По состоянию на начало 2000-х годов с дефлекторной продувкой выпускались лишь двигатели лодочных моторов «Ветерок» (Россия) и ряд недорогих моделей лодочных моторов «Selva» (Италия).

К недостаткам контурной продувки вообще следует отнести симметричность открытия и закрытия продувочных и выпускных окон относительно нижней мертвой точки. Дело в том, что выпускное окно должно открываться раньше продувочного, чтобы часть отработавших газов вытекла в выпускной коллектор, и давление в цилиндре стало меньше давления воздуха (смеси) в продувочном насосе (иначе продувка будет невозможна). Угол поворота коленчатого вала от начала открытия выпускного окна до начала открытия продувочного окна называется углом предварения выпуска. Для лучшей продувки этот угол необходимо увеличить. По окончании продувки выпускное окно желательно закрыть чуть раньше продувочного - тогда произойдет дозарядка цилиндра (предварительное сжатие воздуха или смеси, что позволит повысить мощность), а в бензиновых двигателях не будет потерь свежей смеси. Но при поршневом управлении открытием окон это сделать невозможно - моменты открытия и закрытия окон симметричны относительно нижней мертвой точки - выпускное окно закрывается позже продувочного. При начале сжатия через это окно теряется часть воздуха (смеси). Для сокращения потерь следует уменьшить угол запаздывания закрытия выпускного окна. Но он равен углу предварения выпуска, который следует увеличить. Это создает большие трудности при проектировании двигателей.

Кроме того, при контурной продувке в цилиндре всегда имеются застойные (непродуваемые) зоны, что ухудшает его технико-экономические характеристики.

Однако простота реализации контурной продувки (особенно при использовании подпоршневого пространства в качестве продувочного насоса) обеспечили очень широкую популярность таких двигателей. Их устанавливают на мотоциклах, мотодельтапланах, мотопилах, газонокосилках, моторных лодках.

Прямоточная продувка

При прямоточной продувке поток воздуха (смеси) движется, не меняя направления, вдоль оси цилиндра. Управлять открытием и закрытием продувочных и выпускных окон одним поршнем невозможно, что требует применения специальных устройств. Может использоваться клапанный механизм, установленный в головке цилиндра, через который происходит выпуск отработавших газов (продувочные окна открываются и закрываются поршнем), или два поршня, встречно движущихся в одном цилиндре (один поршень управляет впускными окнами, другой выпускными).

При прямоточной продувке качество очистки цилиндра от остаточных газов существенно лучше, чем при контурной. Кроме того, поскольку открытие (и закрытие) выпускных и продувочных органов осуществляется различными элементами двигателя, подбор оптимальных фаз газораспределения не представляет затруднейний. Как правило, в двигателях с прямоточной продувкой выпускной клапан (выпускное окно) закрывается раньше продувочного, что исключает потерю свежего заряда и позволяет осуществлять дозарядку с повышение давления (то есть наддув).

Несмотря на указанные достоинства, двигатели с прямоточной продувкой получили меньшее распространение. Дело в том, что по сложности они не уступают, а порой и превосходят четырёхтактные. Двухтактные двигатели с прямоточной продувкой выгодно применять в тех случаях, когда четырехтактный двигатель близких размеров не может быть форсирован за счет повышения числа оборотов до необходимой мощности. Такая ситуация возникает на судах дальнего плавания, где двигатель вращает гребной винт без редуктора. Как известно, скрость вращения гребного винта выгодно выбирать в пределах 200—300 об/мин и даже ниже — на крупногабаритных судах.

Двухтактный двигатель Юнкерс Jumo 205a

Ранее двухтактные оппозитные двигатели (два поршня встречного движения в одном цилиндре) использовались в поршневой авиации (например, двигатели «Юнкерс»), используются в устаревших типах тепловозах, а так же в бронетанковой технике (двигатели 5ТДФ танка Т-64 и 6ТД танков Т-80УД и Т-84).

Продувочные насосы

Для того, чтобы осуществить продувку, необходимо сжать воздух (смесь) до подачи её в цилиндр двухтактного двигателя. Эта операция осуществляется продувочным насосом.

На малогабаритных бензиновых двухтактных двигателях роль продувочного насоса выполняет подпоршневое пространство (кривошипная камера). Такая конструкция предельно проста, так как не требует отдельного продувочного агрегата, что обусловило ее преимущественное распространение. Но здесь есть ряд недостатков. Во-первых, использование картера двигателя в качестве продувочного насоса не позволяет разместить в картере маслянную ванну. Приходится для смазки двигателя подавать масло вместе с топливом, что обуславливает значительный расход масла, дымный выхлоп и образование нагара в цилиндре. Во-вторых, во многоцилиндровых двигателях приходится отделять кривошипные камеры друг от друга, что требует применения разборного коленчатого вала (как следствие, существенная потеря жесткости вала по сравнению с цельным) и сложных уплотнительных устройств. Степень сжатия воздуха (смеси) в кривошипной камере не высока, что не позволяет получить давление продувочного воздуха (приходится увеличивать длительность фазы продувки, что снижает эффективный рабочий объем).

На крупных многоцилиндровых двухтактных двигателях продувочный воздух (смесь) сжимается в отдельном компрессоре (чаще всего «восьмерочном» типа Рутс), что практически полностью устраняет указанные выше недостатки. Для тех же целей можно использовать и турбокомпрессор, но в этом случае в момент пуска в двигатель необходимо подавать сжатый воздух от внешнего источника.

Wikimedia Foundation. 2010.

dic.academic.ru

Двухтактный двигатель Википедия

Цикл работы двухтактного двигателя. Слева направо: продувка, сжатие, воспламенение, рабочий ход

Двухта́ктный дви́гатель — двигатель внутреннего сгорания, в котором рабочий процесс в каждом из цилиндров совершается за один оборот коленчатого вала, то есть за два хода поршня[1]. Такты сжатия и рабочего хода в двухтактном двигателе (за исключением двигателя Ленуара) происходят так же, как и в четырёхтактном (а значит, возможна реализация тех же термодинамических циклов, кроме цикла Аткинсона), но процессы очистки и наполнения цилиндра совмещены и осуществляются не в рамках отдельных тактов, а за короткое время, когда поршень находится вблизи нижней мёртвой точки. Процесс удаления из цилиндра отработавших газов и наполнения его свежим зарядом в двухтактном двигателе называется продувкой.

Сравнение двухтактного и четырёхтактного двигателя[ | код]

Рабочий цикл двухтактного двигателя происходит за один оборот коленчатого вала, что позволяет снимать в 1,5-1,7 раза бо́льшую мощность с того же рабочего объёма при тех же оборотах двигателя. Это особенно актуально при создании тяжелых тихоходных двигателей средних и тяжёлых судов, соединяемых непосредственно с валом гребного винта регулируемого шага, а также в поршневой авиации, где для эффективной работы воздушного винта также требуются сравнительно низкие рабочие обороты, что позволяет устранить из конструкции редуктор привода на винт.

В качестве автомобильного или, тем более, мотоциклетного такой двигатель менее выгоден, тем не менее также позволяет создать сравнительно компактные, но мощные силовые агрегаты, нашедшие применение в мототехнике и, ранее, микролитражных и малолитражных легковых автомобилях (с кривошипно-камерной продувкой, рабочим объёмом обычно до 1,5 - 1,7 литра), а также на грузовых автомобилях и автобусах (с прямоточной продувкой, рабочим объёмом обычно от 4 литров и более).

Из-за вдвое большей частоты рабочих тактов и за счет омывания деталей, обеспечивающих выхлоп, удвоенным количеством выхлопных газов, эти детали двигателя находятся в более напряжённом тепловом режиме. В двигателях большой мощности обязательно используется принудительное охлаждение поршней.

За счёт вдвое меньшего количества нерабочих ходов поршня в каждом рабочем цикле вдвое уменьшаются потери на трение.

В двухтактных двигателях необходимо искать компромисс между качеством продувки и потерями свежего заряда. В отличие от четырёхтактного двигателя, где между тактами выпуска и впуска поршень находится в верхней мёртвой точке, почти полностью вытесняя выхлопные газы, в двухтактном продувка происходит во всём объёме цилиндра сразу, причём за достаточно короткое время. При этом невозможно полностью исключить смешивание свежего заряда с выхлопными газами. Особенно проблема потерь заряда актуальна для карбюраторных двигателей, так как в них в цилиндр во время продувки поступает готовая рабочая смесь, что приводит к увеличенному расходу топлива и большому количеству несгоревших углеводородов в выхлопе. В целом, двухтактные двигатели имеют в 1,5-2 раза больший расход воздуха, из-за чего могут требовать более сложных воздушных фильтров. Также, в отличие от четырёхтактного двигателя, при использовании турбонаддува энергия поступающего из турбокомпрессора воздуха не передаётся через поршень на коленчатый вал двигателя, в то же время, выхлопные газы при выпуске не оказывают противодавления на поршень.

По конструкции двухтактный двигатель может быть как более простым (при контурной кривошипно-камерной и, отчасти, клапанно-щелевой продувке), так и более сложным, чем четырёхтактный (при прямоточной продувке).

Источники продувочного воздуха[ | код]

В то время как в четырёхтактном двигателе всасывание свежего заряда происходит за счёт движения поршня из верхней мёртвой точки вниз при открытом впускном клапане, а опорожнение — вверх при открытом выпускном, в двухтактном свежий заряд должен поступать в цилиндр под давлением, вытесняя отработавшие газы. Для создания давления требуется нагнетатель. В упрощенных двигателях для этой цели используется нижняя часть поршня и полость картера — такая схема называется кривошипно-камерной продувкой.

В двигателях более сложных в качестве источника продувочного воздуха используются воздуходувки системы Рутс, дополнительные цилиндры (двигатель Корейво), специальные поршневые компрессоры (ЮМО-203) или турбинные нагнетатели, которые могут вращаться валом двигателя или турбиной, приводимой выхлопными газами. В некоторых случаях для обеспечения более стабильного поступления наддувочного воздуха используется сочетание механических нагнетателей с турбонаддувом.

Кривошипно-камерная продувка[

ru-wiki.ru

Двухтактные двигатели

Двухтактные двигатели. Как указывалось выше, для рекордно-гоночных автомобилей «младших» классов (250, 350 и 500 см³) часто применяются двигатели, близкие по конструкции к двигателям гоночных мотоциклов, среди которых двухтактные двигатели занимают видное место.

Схема двухтактного двигателя с П-образным расположением цилиндров

Рис. 33. Схема двухтактного двигателя с П-образным расположением цилиндров

Двухтактные малолитражные двигатели гоночных автомобилей с нагнетателями имеют следующие преимущества:

  1. Простота конструкции вследствие отсутствия систем газораспределения и смазки.
  2. Возможность получения при применении наддува высокой литровой мощности.
  3. Наличие условий для создания достаточных проходных сечений продувочных и выпускных окон при малом рабочем объеме цилиндров. В четырехтактных двигателях при малом диаметре цилиндра очень трудно обеспечить устройство клапанов с достаточными проходными cечениями.
  4. Смазка двигателя значительно проще (добавление масла к топливу имеет некоторое преимущество в том отношении, что детали шатунно-кривошипного механизма все время смазываются свежим маслом).
Схема двухтактного двигателя с двумя поршнями в одном цилиндре. Канал от нагнетателя к левой кривошипной камере служит для питания смесью второго цилиндра

Рис. 34. Схема двухтактного двигателя с двумя поршнями в одном цилиндре. Канал от нагнетателя к левой кривошипной камере служит для питания смесью второго цилиндра

Для гоночных целей применяют двухтактные двигатели только с несимметричными фазами газораспределения, которые обеспечивают более совершенный процесс продувки.

Способ продувки определяет собою всю конструктивную схему двухтактного двигателя. В настоящее время.

существует три основных типа двухтактных двигателей с наддувом для гоночных автомобилей.

  1. Двигатели с П-образным расположением цилиндров, при котором два параллельно расположенных цилиндра имеют общую камеру сгорания. В одном цилиндре имеются продувочные окна, а в другом — выпускные; поршень, управляющий продувочными окнами, связан с кривошипом через прицепной шатун (рис. 33).
  2. Двигатели с двумя поршнями в одном цилиндре, противолежащими друг другу. При сближении поршней между их днищами образуется камера сгорания. Каждый поршень связан шатуном с отдельным коленчатым валом (рис.34).
  3. Двигатели с Л-образным расположением цилиндров, при котором цилиндры установлены под некоторым углом друг к другу. Так же, как и в двигателях с П-образным расположением цилиндров, два цилиндра имеют общую камеру сгорания, причем в одном из них имеются продувочные, а в другом выпускные окна. Поршни шатунами связаны с отдельными коленчатыми валами (рис. 35).

Двигатели первого типа применяются на советских рекордно-гоночных автомобилях «Звезда». Двигатели второго типа применялись на отечественных гоночных мотоциклах ГК-1 и двигатели третьего типа — на мотоциклах С1Б, С2Б и С3В (конструкции Иваницкого). Двигатель типа ГК-1 ставился также на гоночный автомобиль «Салют» класса до 350 см³.

Двигатели первого типа имеют более простую конструкцию. Отсутствие второго коленчатого вала обеспечивает им большую компактность и меньший вес. В отношении совершенства процесса продувки двигатели всех типов можно считать примерно равноценными, но по сравнению с двухтактными двигателями с кривошипнокамерной продувкой они имеют большие преимущества.

Схема двухтактного двигателя с Л-образным расположением цилиндров

Рис. 35. Схема двухтактного двигателя с Л-образным расположением цилиндров

Двигатели второго типа имеют лучшую уравновешенность сил инерции.

Преимуществом двигателей третьего типа является возможность создания лучшего охлаждения перемычки между двумя цилиндрами (наиболее напряженной в тепловом отношении).

Конструктивно двигатель с П-образным расположением цилиндров выполнен следующим образом:

четыре цилиндра двигателя имеют две камеры сгорания, объединяющие по два цилиндра (см. рис. 33).

В правом цилиндре, поршень которого связан с основным шатуном, имеются выпускные окна. Поршень левого цилиндра, имеющего продувочные окна, соединен с прицепным шатуном.

Кинематическая схема движения прицепного шатуна отлична от схемы движения основного шатуна, вследствие чего создается несимметричное движение правого и левого поршней. Несимметричность движения поршней дает возможность получить разные фазы для открытия и закрытия выпускных и продувочных окон. Продувочные окна должны открываться вслед за выпускными, но закрытие их должно происходить с большим запаздыванием по отношению к выпускным окнам. При этом наполнение цилиндра горючей смесью значительно улучшается. Прицепной шатун, нижняя головка которого при движении описывает не окружность, а эллипс, дает возможность поршню левого цилиндра закрывать продувочные окна с большим запаздыванием по отношению к закрытию выпускных окон поршнем правого цилиндра, чем обеспечивается дополнительный наддув горючей смеси в цилиндр. При этом имеет место несовпадение мертвых точек обоих поршней. Наличие прицепного шатуна несколько усложняет кинематику шатунно-кривошипного механизма.

Коленчатый вал — сборный, имеет три коренных шейки с роликовыми подшипниками. Подшипники нижней головки шатуна — игольчатые, без сепараторов. Отдельные части вала — щеки с пальцами и коренные шайки — соединены посредством напрессовки.

Картер двигателя — разъемный и состоит из двух частей, отлитых из алюминиевого сплава.

Сильный нагрев поршней в цилиндрах с выпускными окнами требует особенно интенсивного отвода тепла. С этой целью удлинена юбка поршня и с внутренней стороны днища выполнены ребра, повышающие также жесткость днища поршня.

Поршневые кольца должны обладать большой надежностью, не вызывая поломок от вибраций, возникающих при высоких оборотах коленчатого вала двигателя. Для повышения упругости и надежности поршневые кольца изготовляют с применением метода термофиксации (требуемая форма кольца обеспечивается специальной термической обработкой). В двухтактных двигателях поршневые кольца должны быть застопорены в канавках, чтобы предотвратить возможность задевания замка за кромки окон при проворачивании кольца.

Таблица 8
Основные данные по двигателям отечественных гоночных автомобилей
НаименованиеКласс до 250 см³ «Харьков -Л250»Класс до 350 см³ «Звезда М НАМИ»Класс до 1200 см³ «Шахтер»*Класс 2000 см³ «Харьков-6»Класс до 2500 см³ «Харьков-3»Класс до 3000 см³ «Дзержинец»
Тип двигателяЧетырехтактныйДвухтактный П-образныйЧетырехтактныйЧетырехтактныйЧетырехтактныйЧетырехтактный
На базе какого двигателя выполненОригинальной конструкцииОригинальной конструкции«Москвич»«Победа»«Победа»ГАЗ-51
Число цилиндров244446
Рабочий объем, см³246342,51167197024902992
Диаметр цилиндра, мм5139,5**70,77988,6576
Ход поршня, мм6069,875100100110
Степень сжатия7,07,897,28,59,58,4
Максимальная мощность, л. с.45633070150
Число оборотов, соответствующее максимальной мощности, об/мин70007000350038004500
Нагнетатель и его типКоловратныйКоловратныйНетКоловратныйНетОбъемного типа, двухроторный

Горючая смесь подается в цилиндры двигателя через кривошипную камеру, выполняющую роль ресивера. В кривошипную камеру горючая смесь поступает под действием коловратного нагнетателя, который расположен между карбюратором и двигателем. Продувочные каналы выполнены в блоке цилиндров; для уменьшения сопротивления проходу горючей смеси внутренняя поверхность их тщательно обработана.

Охлаждение двигателя — водяное, принудительное; вода циркулирует под действием центробежного насоса.

Водяная рубашка имеет большую поверхность для охлаждения цилиндров по всей длине. Устройством достаточных проходов для воды между цилиндрами обеспечивается интенсивное охлаждение перемычки между цилиндрами в камере сгорания, подвергаемой наибольшему нагреву во время работы.

В табл. 8 приведены основные данные по двигателям отечественных гоночных автомобилей.

* По старой классификации.** Соотношения между ходом поршня и диаметром цилиндра, принятые в четырехтактных двигателях, имеют для двухтактных двигателей другое значение. В двухтактных двигателях это отношение будет больше, так как необходимо учитывать перекрытие окон поршнем.

gaz20.spb.ru

Газораспределение двухтактных двигателей

Газораспределение двухтактных двигателей продувочный

Тем, кто связан с гоночной автомобильной или мотоциклетной техникой или просто интересуется конструкцией спортивных машин, хорошо знакомо имя инженера Вильгельма Вильгельмовича Бекмана — автора книг «Гоночные автомобили» и «Гоночные мотоциклы». Не раз он выступал и на страницах «За рулем».

Недавно вышло в свет третье издание книги «Гоночные мотоциклы» (второе было выпущено в 1969 году), переработанное и дополненное сведениями о новых конструктивных решениях и анализом тенденции дальнейшего развития двухколесных машин. Читатель найдет в книге очерк об истории зарождения мотоциклетного спорта и влиянии его на развитие мотоциклетной промышленности, получит сведения о классификации машин и соревнований, познакомится с особенностями конструкции двигателей, трансмиссии, шасси и системы зажигания гоночных мотоциклов, узнает о путях их совершенствования.

Многое из того, что применяется впервые на спортивных машинах, затем внедряется на серийных дорожных мотоциклах. Поэтому знакомство с ними позволяет как бы заглянуть в будущее и представить себе мотоцикл завтрашнего дня.

Подавляющее количество строящихся ныне в мире мотоциклетных двигателей работает по двухтактному циклу, поэтому к ним мотолюбители проявляют наибольший интерес. Предлагаем вниманию читателей отрывок из книги В. В. Бекмана, посвященный одному из важнейших вопросов развития двухтактных двигателей. Мы сделали только незначительные сокращения, изменили нумерацию рисунков и привели некоторые наименования в соответствие с употребляемыми в журнале.

В настоящее время двухтактные гоночные двигатели превосходят по мощности своих четырехтактных соперников в классах от 50 до 250 см3: в классах большего рабочего объема четырехтактные двигатели пока сохраняют конкурентоспособность. так как высокая форсировка двухтактных двигателей этих классов труднее, причем более заметным становится известный недостаток двухтактного процесса — повышенный расход топлива, требующий увеличения объема топливных баков и более частых остановок для заправки.

Прототипом большинства современных двухтактных двигателей гоночного типа является конструкция, разработанная фирмой МЦ (ГДР). Работы по усовершенствованию двухтактных двигателей, выполненные этой фирмой, обеспечили гоночным мотоциклам МЦ классов 125 и 250 см3 высокие динамические качества, и их конструкция в той или иной степени была скопирована многими фирмами в других странах мира.

Гоночные двигатели МЦ (рис. 1) имеют простую конструкцию и похожи как по устройству, так и по внешнему виду на обычные двухтактные двигатели.

Рис. 1. Гоночный двухтактный двигатель МЦ 125 см3: а — общий вид; б — расположение газораспределительных каналов

За 13 лет мощность гоночного двигателя МЦ 125 см3 выросла с 8 до 30 л. с.; уже в 1962 году была достигнута литровая мощность 200 л. с./л. Одним из существенных элементов двигателя является дисковый вращающийся золотник, предложенный Д. Циммерманом. Он позволяет получить несимметричные фазы впуска и выгодную форму впускного тракта: благодаря этому возрастает коэффициент наполнения картера. Дисковый золотник изготовляют из тонкой (около 0,5 мм) листовой пружинной стали. Оптимальная толщина диска найдена опытным путем. Дисковый золотник работает как мебранный клапан, прижимаясь к отверстию впускного канала, когда в картере происходит сжатие горючей смеси. При увеличенной или уменьшенной толщине золотника наблюдается ускоренный износ диска. Слишком тонкий диск прогибается в сторону впускного канала, что влечет за собой увеличение силы трения между диском и крышкой картера; увеличенная толщина диска также ведет к увеличенным потерям на трение. В результате доводки конструкции срок службы дискового золотника был увеличен с 3 до 2000 часов.

Дисковый золотник не вносит особого усложнения в устройство двигателя. Золотник устанавливается на валу посредством скользящего шпоночного или шлицевого соединения, чтобы диск мог занимать свободное положение и не защемляться в узком пространстве между стенкой картера и крышкой.

По сравнению с классической системой управления впускным окном нижней кромкой поршня золотник дает возможность раньше открыть впускное окно и долго держать его открытым, что способствует повышению мощности как на высоких, так и на средних частотах вращения. При обычном устройстве газораспределения раннее открытие впускного окна неизбежно связано с большим запаздыванием его закрытия: это полезно для получения максимальной мощности, но связано с обратным выбросом горючей смеси на средних режимах и соответствующим ухудшением характеристики крутящего момента и пусковых качеств двигателя.

На двухцилиндровых двигателях с параллельными цилиндрами дисковые золотники устанавливают по концам коленчатого вала, что при выступающих справа и слева карбюраторах дает большие габариты по ширине двигателя, увеличивает лобовую площадь мотоцикла и ухудшает его внешнюю форму. Для устранения этого недостатка иногда применяли конструкцию в виде двух спаренных под углом одноцилиндровых двигателей с общим картером и воздушным охлаждением («Дерби», Ява).

В отличие от двигателя Ява цилиндры спаренных двигателей могут занимать вертикальное положение: при этом требуется водяное охлаждение, так как задний цилиндр заслонен передним. По такой схеме был изготовлен один из гоночных двигателей МЦ 125 см3.

Трехцилиндровый двигатель Suzuki (50 см3, литровая мощность около 400 л. с./л) с дисковыми золотниками по существу состоял из объединенных в одном блоке трех одноцилиндровых двигателей с самостоятельными коленчатыми валами: два цилиндра были горизонтальными. один вертикальным.

Двигатели с золотнинами на впуске конструировались и в четырехцилиндровых вариантах. Типичным примером могут служить двигатели Yamaha, изготовленные в виде двух спаренных шестеренной передачей двухцилиндровых двигателей с параллельными цилиндрами; одна пара цилиндров расположена горизонтально, вторая — под углом вверх. Двигатель 250 см3 развивал до 75 л. с. а мощность варианта 125 см3 достигала 44 л. с. при 17 800 об/мин.

По аналогичной схеме сконструирован и четырехцилиндровый двигатель Ява (350 см3, 48x47) с золотниками на впуске, представляющий собой два спаренных двухцилиндровых двигателя с водяным охлаждением. Он развивает мощность 72 л. с. при 1300 об /мин. Еще больше мощность четырехцилиндрового двигателя «Морбиделли» класса 350 см3 такого же типа — 85 л. с.

Ввиду того, что дисковые золотники устанавливаются по концам коленчатого вала, отбор мощности в многоцилиндровых конструкциях с такой системой впуска обычно производится через шестерню на средней шейке вала между отсеками картера. При дисковых золотниках рассматриваемого типа увеличение числа цилиндров двигателя свыше четырех нецелесообразно, так как дальнейшее спаривание двухцилиндровых двигателей привело бы к очень громоздкой конструкции; даже в четырехцилиндровом исполнении двигатель получается на пределе допустимых габаритов.

В последнее время на некоторых гоночных двигателях «Ямаха» применяют автоматические мембранные клапаны во впускном канале между карбюратором и цилиндром (рис. 2, а). Клапан представляет собой тонкую эластичную пластинку, отгибающуюся под действием разрежения в картере и освобождающую проход для горючей смеси. Во избежание поломки клапанов предусмотрены ограничители их хода. При средних режимах работы клапаны достаточно быстро закрываются, чтобы предупредить обратный выброс горючей смеси, что улучшает характеристику крутящего момента двигателя. Такие клапаны на основании практических наблюдений могут нормально функционировать при скоростных режимах до 10 000 об/мин. При более высоких числах оборотов их работоспособность проблематична.

Рис. 2. Мембранные впускные клапаны двигателя «Ямаха». а — схема устройства; б —начало наполнения картера; в — подсос смеси через клапаны в цилиндр; 1 — ограничитель; 2 — мембрана; 3 — окно в поршне

В двигателях с мембранными клапанами для улучшения наполнения целесообразно поддерживать сообщение между впускным каналом и подпоршневым пространством или продувочным каналом при положении поршня вблизи Н.М.Т. Для этого в стенке поршня со стороны впуска предусматривают соответствующие окна 3 (рис. 2, б). Мембранные клапаны обеспечивают дополнительный подсос горючей смеси, когда во время продувки в цилиндрах и картере образуется разрежение (рис. 2, в).

Высокую мощность развивают также двухтактные двигатели, у которых процессом впуска горючей смеси в картер управляет поршень, как у подавляющего большинства обычных двигателей массового производства. В основном это относится к двигателям рабочим объемом 250 см3 и более. Примерами могут служить мотоциклы «Ямаха» и «Харлей-Давидсон» (250 см3 — 60 л. с.;

350 см3 — 70 л. с.), а также мотоцикл «Сузуки» с двухцилиндровым двигателем класса 500 см3 мощностью 75 л. с. занявший первое место в гонке Т.Т. ( Турист Трофи ) 1973 года. Форсирование этих двигателей осуществляется так же, как и в случае использования дисковых золотников, тщательной конструктивной проработкой органов газораспределения и на основе изучения взаимного влияния впускного и выпускного трактов.

Двухтактные двигатели независимо от системы управления впуском имеют выпрямленную форму впускного тракта, который направлен в подпоршневое пространство, куда поступает горючая смесь; по отношению к оси цилиндра впускной тракт может быть перпендикулярным или с наклоном снизу вверх или сверху вниз. Такая форма впускного тракта благоприятна для использования эффекта резонансного наддува. Поток горючей смеси во впускном тракте непрерывно пульсирует, причем в нем возникают волны разрежения и повышенного давления. Настройка впускного тракта за счет подбора его размеров (длины и проходных сечений) позволяет обеспечить в определенном интервале чисел оборотов закрытие впускного окна в момент входа в картер волны повышенного давления, что увеличивает коэффициент наполнения и повышает мощность двигателя.

При значениях коэффициента наполнения картера, превышающих единицу, двухтактный двигатель должен был бы развивать вдвое большую мощность по сравнению с четырехтактным. В действительности этого не происходит вследствие существенных потерь свежей смеси в выхлоп н перемешивания поступившего в цилиндр заряда с остаточными газами от предыдущего рабочего цикла. Несовершенство рабочего цикла двухтактного двигателя обусловлено одновременным протеканием процессов наполнения цилиндра и его очистки от продуктов сгорания, тогда как в четырехтактном двигателе эти процессы разделены во времени.

Процессы газообмена в двухтактном двигателе отличаются большой сложностью и до сих пор плохо поддаются расчету. Поэтому форсирование двигателей ведется, главным образом, путем экспериментального подбора соотношений и размеров конструктивных элементов органов газораспределения от впускного патрубка карбюратора до концевого патрубка выхлопной трубы. Со временем был накоплен большой опыт по форсированию двухтактных двигателей, описанный в различных исследованиях.

В первых конструкциях гоночных двигателей МЦ была использована возратно-петлевая продувка типа «Шнюрле» с двумя продувочными каналами. Значительное улучшение мощностных показателей было получено благодаря добавлению третьего продувочного канала (см рис. 1), расположенного спереди напротив выпускных окон. Для перепуска через этот канал на поршне предусмотрено специальное окно. Дополнительный продувочный канал устранил образование подушки горячих газов под дном поршня. Благодаря этому каналу удалось увеличить наполнение цилиндра, улучшить охлаждение и смазку свежей смесью игольчатого подшипника верхней головки шатуна, а также облегчить температурный режим работы дна поршня. В результате мощность двигателя повысилась на 10 процентов, а прогары поршней и поломки подшипника верхней головки шатуна были устранены.

Качество продувки зависит от степени сжатия горючей смеси в картере; на гоночных двигателях этот параметр выдерживается в пределах 1,45 — 1,65, что требует весьма компактной конструкции кривошипно-шатунного механизма.

Получение высоких литровых мощностей возможно за счет широких фаз распределения и большой ширины газораспределительных окон.

Ширина окон гоночных двигателей, измеренная центральным углом в поперечном сечении цилиндра, достигает 80 — 90 градусов, что создает тяжелые условия работы для поршневых колец. Зато при такой ширине окон в современных двигателях обходятся без склонных к перегреву перемычек. Увеличение высоты продувочных окон сдвигает максимальный крутящий момент в область более низкого числа оборотов, а увеличение высоты выпускных окон создает обратный эффект.

Рис. 3. Системы продувки: а — с третьим продувочным окном, б — с двумя дополнительными продувочными каналами; в — с разветвляющимися продувочными каналами.

Система продувки с третьим дополнительным продувочным каналом (см. рис. 1) удобна для двигателей с золотником, у которых впускной канал расположен сбоку, а зона цилиндра напротив выпускного окна свободна для размещения в ней продувочного окна; последнее может иметь перемычку, как показано на рис. 3, а. Дополнительное продувочное окно способствует образованию потока горючей смеси, огибающего полость цилиндра (петлевая продувка). Весьма существенное значение для эффективности процесса газообмена имеют углы входа продувочных каналов; от них зависят форма и направление потока смеси в цилиндре. Горизонтальный угол а, колеблется в пределах 50 — 60 градусов, причем большее значение соответствует более высокому форсированию двигателя. Вертикальный угол a2, равен 45 — 50 градусов. отношение сечений дополнительного и основного продувочных окон составляет около 0,4.

На двигателях без золотника карбюраторы и впускные окна, как правило, расположены на задней стороне цилиндров. В этом случае обычно применяют иную систему продувки — с двумя боковыми дополнительными продувочными каналами (рис. 3,б). Горизонтальный угол входа а, (см. рис. 3,а) дополнительных каналов — около 90 градусов. Вертикальный угол входа продувочных наналов колеблется для различных моделей в довольно широких пределах: на модели «Ямаха» ТД2 класса 250 см3 он составляет для главных продувочных каналов 15 градусов, а для дополнительных — 0 градусов; на модели «Ямаха» ТД2 класса 350 см3 соответственно 0 и 45 градусов.

Иногда применяется вариант этой системы продувки с разветвляющимися продувочными каналами (рис. 3,в). Дополнительные продувочные окна расположены напротив выпускного окна, и, следовательно, подобное устройство приближается к первой из рассмотренных систем, имеющей три окна. Вертикальный угол входа дополнительных продувочных каналов 45 — 50 градусов. Отношение сечений дополнительных и основных продувочных окон также около 0,4.

Рис. 4. Схемы движения газов в цилиндре: а — с разветвляющимися ка налами; б — с параллельными.

На рис. 4 показаны схемы движения газов в цилиндре во время процесса продувки. При остром угле входа дополнительных продувочных каналов поступающий из них поток свежей смеси удаляет клубок отработавших газов в середине цилиндра, не захватываемый потоком смеси из основных продувочных каналов. Возможны и другие варианты систем продувки по количеству продувочных окон.

Следует заметить, что на многих двигателях продолжительность открытия дополнительных продувочных окон на 2 — 3 градуса меньше, чем у основных.

Газораспределение двухтактных двигателей продувочный

На некоторых двигателях «Ямаха» дополнительные продувочные каналы были выполнены в виде желобков на внутренней поверхности цилиндра; внутренней стенкой канала является здесь стенка поршня при его положениях вблизи от Н.М.Т.

На процессе продувки сказывается и профиль продувочных каналов. Плавная форма без резких изгибов дает меньшие перепады давления и улучшает показатели работы двигателя, в особенности на промежуточных режимах.

Приведенные в этом разделе сведения показывают, что двухтактные двигатели выделяются простотой своего устройства.

Повышение удельной мощности двигателей этого типа в течение последнего десятилетия не сопровождалось какими-либо существенными изменениями базовой конструкции; оно явилось следствием тщательного экспериментального подбора соотношений и размеров ранее известных конструктивных элементов.

ГРМ газораспределительный механизм работа camshaft

Работа двухтактного двигателя.flv

note2auto.ru


Смотрите также