ТРДД с вентилятором на входе.
В сегодняшней небольшой статье продолжаем более конкретное знакомство с типами авиационных двигателей. Двухконтурный турбореактивный двигатель (ТРДД) уже не раз упоминался по сайту и осталось только познакомиться с ним поближе.
Главная идея статьи в том, чтобы понять каково, собственно, главное отличие ТРДД от его предшественника, так сказать первого звена в двигательном семействе, обычного турбореактивного двигателя (ТРД).
Правильней, наверное, было бы сказать даже не просто отличие, а преимущество. Ведь на сегодняшний день ТРД активно сдает свои позиции (если уже не сдал совсем :-)) двухконтурному двигателю. ТРДД теперь превратился в самый распространенный воздушно-реактивный авиационный двигатель на земле.
Главная причина этому одна – высокая экономичность при столь же высокой тяговой эффективности. В наше время растущего энергодефицита такой важный фактор значит очень многое. Экономичность и, соответственно, дальность полета.Современный самолет с ТРДД имеет в этой области большие преимущества.
Первые разработки по теме двухконтурный турбореактивный двигатель начались еще в 19-м веке. Начал их (по крайней мере это официально известно :-)) русский инженер Федор Романович Гешвен (наш ! :-)). В 1939 году А.М. Люлька, ставший в последствии знаменитым конструктором авиадвигателей, разработал ТРДД такой схемы, которая используется в современных двухконтурных двигателях. Но ни тогда, ни в последующие годы проблема экономичности ТРД не стояла так остро, как сейчас. Это были скорее просто конструктивные варианты воздушно-реактивного двигателя, хотя выигрышно-положительные стороны их были известны.
Таковым положение дел оставалось вплоть до 50-х годов, когда ТРД уверенно стали завоевывать первенство среди авиационных двигателей мира. И уже тогда стал проявляться их, пожалуй, главный недостаток. На относительно небольших скоростях полета эти двигатели довольно неэкономичны. Или, говоря другими словами, имеют низкий коэффициент полезного действия.
В одной из прошлых статей я упомянул как-то прочитанный мной в одной из книг интересный факт, неплохо характеризующий этот недостаток. Там было сказано, что в течение одной летной смены полка сверхзвуковых бомбардировщиков ТУ-22 (они были оснащены ТРДФ) потреблялось количество керосина, равное месячному бюджету Белорусской ССР по топливу. За достоверность сказанного не ручаюсь, но очень похоже на правду :-).
Бомбардировщик ТУ-22.
То есть для повышения экономичности было бы конечно хорошо снизить подачу топлива в двигатель. Но ведь чем меньше топлива в камере сгорания, тем меньше температура газа. Воздушный поток, проходящий через двигатель, получит меньше энергии, и в дальнейшем, при выходе из сопла, скорость потока будет ниже. А это значит, что и тяга тоже уменьшится.
Выходит, ничего хорошего 🙂 … Однако есть возможность этого избежать. Уменьшение тяги, полученное за счет падения скорости истечения газовоздушного потока из двигателя, можно компенсировать увеличением самого этого потока, то есть, правильней говоря, увеличением его массы. Или на техническом языке: нужно увеличить расход воздуха через двигатель. Чем больше масса воздуха, тем больше импульс тяги, создаваемый двигателем. Это, я думаю, всем уже ясно. Реактивное движение : чем больше из движка «вылетело», тем сильнее его самого толкнуло в обратную сторону :-).
Что же получилось в итоге? А то, что тяга осталась той же, а расход топлива уменьшился. То есть улучшилась экономичность, иначе говоря повысился коэффициент полезного действия двигателя (кпд).
Или же немного по-другому: можно при тех же энергетических затратах пропускать через двигатель значительно большую массу воздуха, но с малой скоростью ее истечения. При этом получим большую тягу с меньшими удельными параметрами расхода топлива. То есть суть дела та же :-)…
Все вышесказанное как раз и есть основной принцип работы двухконтурного турбореактивного двигателя. Получили, так сказать, мое любимое объяснение «на пальцах» :-)…
А теперь подтвердим этот факт парочкой формул. Тяга воздушно-реактивного двигателя (коим и является, как известно, ТРД) определяется простым выражением, вытекающим из закона сохранения импульса:
P = G (c — v) , здесь Р – тяга двигателя, G – это расход воздуха через двигатель (кг/с), c— скорость истечения газовоздушной струи из двигателя (м/с), v – скорость полета (м/с). Из этой формулы хорошо видно, что чем больше скорость реактивной струи, тем выше тяга двигателя.
Итак, мы с вами выяснили, что для ТРДД должен быть организован дополнительный расход воздуха. Конструктивно это выполняется путем добавления к уже существующему ТРД так называемого второго контура, выполненного в виде кольцевого канала как бы поверх уже существующих габаритов. Этот канал проходит от компрессора до сопла, минуя камеру сгорания и турбину. Первый же контур (внутренний) представляет собой по сути обычный ТРД со всеми присущими ему атрибутами и принципом работы.
Воздух, поступая из самолетного воздухозаборника (входного устройства) на вход в двигатель, попадает в так называемый компрессор низкого давления (КНД), степень повышения давления в котором действительно невысока (в среднем от 1,5 до 3). Этот компрессор состоит из небольшого количества ступеней. Обычно от одной до пяти. Передние ступени КНД могут носить название «вентилятор».
Далее сжатый до определенного уровня воздух делится на два потока. Один поступает в первый (внутренний) контур и работает там, как в обычном турбореактивном двигателе, а другой попадает в вышеозначенный второй( или внешний) контур и, следуя по нему, истекает из реактивного сопла, создавая при этом реактивную тягу.
Схема ТРДД. Здесь: 2 - КНД, 3 - КВД, 4 - камера сгорания, 5 - ТВД, 6 - ТНД, 7 - сопло, 8 - ротор высокого давления, 9 - ротор низкого давления, 1 - часть КНД (вентилятор).
Компрессор внутреннего контура называется компрессором высокого давления КВД (степень повышения давления в среднем 10-30). Во внутренний контур могут также входить и последние ступени компрессора низкого давления. Каждый из этих компрессорных узлов вращает своя турбина (турбины низкого и высокого давления, ТНД и ТВД). Оба эти турбокомпрессора между собой обычно механически не связаны, и валы их расположены один внутри другого. Часто они и вращаются в разные стороны.
Одним из основных параметров для двухконтурного двигателя является степень двухконтурности К. Это отношение массового расхода воздуха через внешний контур к расходу воздуха через внутренний. Диапазон изменения степени двухконтурности для различных двигателей довольно большой: от 0,5 вплоть до 90.
Степень двухконтурности К от 0,5 до 2 имеют двигатели, стоящие на самолетах, предназначенных для полета на высоких дозвуковых и сверхзвуковых скоростях. Обычно это военные самолеты. А если К>2, то это уже скорей всего движок для пассажирского лайнера или транспортника, потому что большая степень двухконтурности означает большой расход воздуха, что подразумевает, в свою очередь, большие диаметральные размеры движка. А это никакой истребитель себе позволить не может :-).
ТРДДФ Eurojet EJ200. На фото ниже его рисунок с разрезом. Устанавливается на истребитель Eurofighter Typhoon.
Двухконтурный турбореактивный двигатель Eurojet EJ200 с малой степенью двухконтурности. Второй контур голубого цвета. Устанавливается на истребитель Eurofighter Typhoon.
Истребитель Eurofighter Typhoon с двигателями Eurojet EJ200.
Практически на всех современных истребителях сейчас ставятся ТРДД с малой степенью двухконтурности. Примером может служить двигатель Pratt & Whitney F100-PW-229 (степень двухконтурности 0,4), устанавливавшийся на самолеты F-15 и F-16, двигатель Eurojet EJ200 со степенью двухконтурности 0,4, устанавливающийся на самолет Eurofighter Typhoon, а также российские АЛ-31Ф (истребитель СУ-27, степень двухконтурности 0,571) и РД-33 (истребители МИГ-29 (35), степень двухконтурности 0,49).
ТРДДФ F100-PW-229. Типичный двигатель со смешением потоков. Хорошо просматривается второй контур (темный цвет). Устанавливался на истребители F-15 и F-16.
Истребитель F-15 с двигателями F100-PW-229.
Истребитель F-16 с двигателем F100-PW-229.
ТРДДФ АЛ-31Ф. Устанавливается на истребитель СУ-27.
Истребитель СУ-27УБ с двигателями АЛ-31Ф.
ТРДДФ РД-33. Устанавливается на самолеты МИГ-29, МИГ-35.
Истребитель МИГ-29 с двигателями РД-33.
Однако правильнее будет сказать, что все эти двигатели не ТРДД, а ТРДДФ, то есть двухконтурные турбореактивные двигатели с форсажем.
Дело в том, что двухконтурный двигатель достаточно эффективен (как в плане экономии, так и в тяговом отношении) именно на дозвуковых скоростях. Например, ТРДД со степенью двухконтурности М=1 имеет на взлете (максимальный режим на малой скорости) тягу на 25% выше, чем ТРД с такой же тягой на скорости 1000 км/ч.
Но с ростом скорости полета (более 1000 км/ч) и приближении ее к сверхзвуку, тяговая эффективность ТРДД ощутимо падает, потому что скорость выхода реактивного потока из движка для полета на таких скоростях уже мала. Чтобы эту скорость увеличить производится дополнительный подвод энергии к воздуху второго контура. Для этого как раз вполне подходит форсажная камера. Она к тому же служит камерой смешения.
Дело в том, что ТРДД могут быть двух видов: со смешением потоков и без него. То есть поток второго контура может с момента разделения с потоком первого самостоятельно пройти до выхода из двигателя и покинуть его через свое собственное сопло. Это будет двигатель без смешения потоков.
Но два потока могут и смешиваться. Происходит это обычно в так называемой камере смешения. И далее смешанный поток уже с общими температурой и давлением покидает двигатель через общее сопло.
Это в целом повышает эффективность двухконтурного турбореактивного двигателя. В движках, предназначенных для сверхзвуковых самолетов (ТРДДФ, степень двухконтурности меньше 1)) роль камеры смешения выполняет форсажная камера. Конструкция ее и принцип работы такие же, как и у простого ТРДФ.
Это совмещение функций очень удобно. Потому что, ведь, надо понимать, что дополнительная камера смешения – это дополнительные габариты и масса. Поэтому движки с большой степенью двухконтурности (К>4), обычно итак уже имеющие немалые габариты и массу :-), чаще всего выполняются без смешения потоков.
Но об этом уже в другой статье, потому что такие двигатели (обычно начиная со степени двухконтурности два) уже выделяются в отдельный вид, называемый турбовентиляторные двигатели (ТВРД). Кроме того существуют еще и турбовинтовентиляторные двигатели (ТВВД). У них двухконтурность переваливает далеко за 20 и может достигать 90 и более. И те и другие движки особенные и поэтому рассказывать о них тоже будем особо :-).
В заключение немного остановлюсь на моей любимой теме о правильности понятий. Дело в том, что в последнее время часто все двухконтурные турбореактивные двигатели огульно называют турбовентиляторными. При этом часть компрессора низкого давления называют вентилятором. Я, конечно, не могу считать себя истиной в первой инстанции :-), но считаю, что это некорректно.
Слово турбовентиляторный произошло от английского turbofan. Им «у них» обозначаются все двухконтурные турбореактивные двигатели. Здесь fan означает вентилятор. Такое название носит та часть компрессора низкого давления, которая гонит воздух во второй контур.
Слово английское и по-английски все, пожалуй, нормально звучит :-). Но, извините, по-русски не могу я назвать вентилятором те 3-4 ступени компрессора на входе в движок с малой степенью двухконтурности (работающие на второй контур), которые и диаметр-то имеют еле отличающийся от диаметра остальных ступеней компрессора низкого давления (да и высокого тоже).
Двухконтурный турбореактивный двигатель Д-18Т. Устанавливается на АН-124 и АН-225.
Другое дело, когда степень двухконтурности ого-го :-). Тогда обычно ступень одна и диаметр тоже соответствующий. Вот это да, это настоящий вентилятор (как, например, у двигателя Д-18Т). Поэтому (я думаю :-)) и принято было в нашей теории двигателей (русской :-)) всегда называть турбовентиляторными двигатели, у которых К>2. Если же К<2, то это просто ТРДД или же ТРДДФ. Это двигатели для сверхзвуковых самолетов (военных) и K у них обычно даже меньше еденицы. Я считаю, что это правильно.
Транспортник АН-124. На нем стоят двухконтурные двигатели Д-18Т.
Тем более, что в зарубежной авиации несмотря на общее название turbofan для двухконтурных турбореактивных двигателей существует, однако, специфическое деление на: low bypass turbofan и high bypass turbofan. Вypass – это и есть второй контур. А high bypass turbofan, соответственно, и есть турбовентиляторные движки (K>2) с высоким расходом воздуха во втором контуре (для пассажирских и транспортных самолетов). Low bypass turbofan – двигатели для военных самолетов с низкой степенью двухконтурности. То есть соответствие практически полное нашему делению :-). На приведенной схемке это показано. Не стал даже ничего переводить с английского, итак все ясно :-). Движки там, кстати, изображены без смешения потоков.
ТРДД с низкой и высокой степенью двухконтурности.
Вот, пожалуй, и все. На такой самоутверждающейся ноте и закончим сегодня. Продолжение, как говорится, следует…
Фотографии кликабельны.
Related posts:
avia-simply.ru
Турбовентиляторным двигателем в популярной литературе обычно называют турбореактивный двухконтурный двигатель (ТРДД) с высокой (выше 2) степенью двухконтурности. В данном типе двигателей используется одноступенчатый вентилятор большого диаметра, обеспечивающий высокий расход воздуха через двигатель на всех скоростях полёта, включая низкие скорости при взлёте и посадке. По причине большого диаметра вентилятора сопло внешнего контура таких ТРДД становится достаточно тяжёлым и его часто выполняют укороченным, со спрямляющими аппаратами (неподвижными лопатками, поворачивающими воздушный поток в осевом направлении). Соответственно, большинство ТРДД с высокой степенью двухконтурности — без смешения потоков. Экономичность турбовентиляторных двигателей обусловлена тем, что в отличие от обычного ТРДД энергия реактивной струи в виде давления и высокой температуры не теряется на выходе из двигателя, а преобразуется во вращение вентилятора, который создает дополнительную тягу, тем самым повышается КПД. В турбовентиляторном двигателе вентилятор может создавать до 70-80 % всей тяги двигателя. [1][2]
Устройство внутреннего контура таких двигателей подобно устройству турбореактивного двигателя (ТРД), последние ступени турбины которого являются приводом вентилятора.
Внешний контур таких ТРДД, как правило, представляет собой одноступенчатый вентилятор большого диаметра, за которым располагается спрямляющий аппарат из неподвижных лопаток, которые разгоняют поток воздуха за вентилятором и поворачивают его, приводя к осевому направлению, заканчивается внешний контур соплом.
По причине того, что вентилятор таких двигателей, как правило, имеет большой диаметр, и степень повышения давления воздуха в вентиляторе невысока — сопло внешнего контура таких двигателей достаточно короткое. Расстояние от входа в двигатель до среза сопла внешнего контура может быть значительно меньше расстояния от входа в двигатель до среза сопла внутреннего контура. По этой причине достаточно часто сопло внешнего контура ошибочно принимают за обтекатель вентилятора.
ТРДД с высокой степенью двухконтурности имеют двух- или трёхвальную конструкцию.
Главным достоинством таких двигателей является их высокая экономичность.
Недостатки — большие масса и габариты. Особенно — большой диаметр вентилятора, который приводит к значительному лобовому сопротивлению воздуха в полёте.
Область применения таких двигателей — дальне- и среднемагистральные коммерческие авиалайнеры, военно-транспортная авиация.
org-wikipediya.ru
Турбовентиляторным двигателем в популярной литературе обычно называют турбореактивный двухконтурный двигатель (ТРДД) с высокой (выше 2) степенью двухконтурности. В данном типе двигателей используется одноступенчатый вентилятор большого диаметра, обеспечивающий высокий расход воздуха через двигатель на всех скоростях полёта, включая низкие скорости при взлёте и посадке. По причине большого диаметра вентилятора сопло внешнего контура таких ТРДД становится достаточно тяжёлым и его часто выполняют укороченным, со спрямляющими аппаратами (неподвижными лопатками, поворачивающими воздушный поток в осевом направлении). Соответственно, большинство ТРДД с высокой степенью двухконтурности — без смешения потоков. Экономичность турбовентиляторных двигателей обусловлена тем, что в отличие от обычного ТРДД энергия реактивной струи в виде давления и высокой температуры не теряется на выходе из двигателя, а преобразуется во вращение вентилятора, который создает дополнительную тягу, тем самым повышается КПД. В турбовентиляторном двигателе вентилятор может создавать до 70-80 % всей тяги двигателя. [1][2]
Устройство внутреннего контура таких двигателей подобно устройству турбореактивного двигателя (ТРД), последние ступени турбины которого являются приводом вентилятора.
Внешний контур таких ТРДД, как правило, представляет собой одноступенчатый вентилятор большого диаметра, за которым располагается спрямляющий аппарат из неподвижных лопаток, которые разгоняют поток воздуха за вентилятором и поворачивают его, приводя к осевому направлению, заканчивается внешний контур соплом.
По причине того, что вентилятор таких двигателей, как правило, имеет большой диаметр, и степень повышения давления воздуха в вентиляторе невысока — сопло внешнего контура таких двигателей достаточно короткое. Расстояние от входа в двигатель до среза сопла внешнего контура может быть значительно меньше расстояния от входа в двигатель до среза сопла внутреннего контура. По этой причине достаточно часто сопло внешнего контура ошибочно принимают за обтекатель вентилятора.
ТРДД с высокой степенью двухконтурности имеют двух- или трёхвальную конструкцию.
Главным достоинством таких двигателей является их высокая экономичность.
Недостатки — большие масса и габариты. Особенно — большой диаметр вентилятора, который приводит к значительному лобовому сопротивлению воздуха в полёте.
Область применения таких двигателей — дальне- и среднемагистральные коммерческие авиалайнеры, военно-транспортная авиация.
www-wikipediya.ru
Материал из Википедии — свободной энциклопедии
Анимация двухвального турбовентилятора с высокой степенью двухконтурности. A. Ротор низкого давления B. Ротор высокого давления C. Компоненты статора 1. Гондола 2. Вентилятор 3. Компрессор низкого давления 4. Компрессор высокого давления 5. Камера сгорания 6. Турбина высокого давления 7. Турбина низкого давления 8. Сопло газогенератора 9. Сопло вентилятора Турбовентиляторный двигатель CFM56-3 Вентилятор двигателя ПС-90А. Вид спереди. Схема турбовентиляторного двигателяТурбовентиляторным двигателем в популярной литературе обычно называют турбореактивный двухконтурный двигатель (ТРДД) с высокой (выше 2) степенью двухконтурности. В данном типе двигателей используется одноступенчатый вентилятор большого диаметра, обеспечивающий высокий расход воздуха через двигатель на всех скоростях полёта, включая низкие скорости при взлёте и посадке. По причине большого диаметра вентилятора сопло внешнего контура таких ТРДД становится достаточно тяжёлым и его часто выполняют укороченным, со спрямляющими аппаратами (неподвижными лопатками, поворачивающими воздушный поток в осевом направлении). Соответственно, большинство ТРДД с высокой степенью двухконтурности — без смешения потоков. Экономичность турбовентиляторных двигателей обусловлена тем, что в отличие от обычного ТРДД энергия реактивной струи в виде давления и высокой температуры не теряется на выходе из двигателя, а преобразуется во вращение вентилятора, который создает дополнительную тягу, тем самым повышается КПД. В турбовентиляторном двигателе вентилятор может создавать до 70-80 % всей тяги двигателя. [1][2]
Устройство внутреннего контура таких двигателей подобно устройству турбореактивного двигателя (ТРД), последние ступени турбины которого являются приводом вентилятора.
Внешний контур таких ТРДД, как правило, представляет собой одноступенчатый вентилятор большого диаметра, за которым располагается спрямляющий аппарат из неподвижных лопаток, которые разгоняют поток воздуха за вентилятором и поворачивают его, приводя к осевому направлению, заканчивается внешний контур соплом.
По причине того, что вентилятор таких двигателей, как правило, имеет большой диаметр, и степень повышения давления воздуха в вентиляторе невысока — сопло внешнего контура таких двигателей достаточно короткое. Расстояние от входа в двигатель до среза сопла внешнего контура может быть значительно меньше расстояния от входа в двигатель до среза сопла внутреннего контура. По этой причине достаточно часто сопло внешнего контура ошибочно принимают за обтекатель вентилятора.
ТРДД с высокой степенью двухконтурности имеют двух- или трёхвальную конструкцию.
Главным достоинством таких двигателей является их высокая экономичность.
Недостатки — большие масса и габариты. Особенно — большой диаметр вентилятора, который приводит к значительному лобовому сопротивлению воздуха в полёте.
Область применения таких двигателей — дальне- и среднемагистральные коммерческие авиалайнеры, военно-транспортная авиация.
encyclopaedia.bid
При всей своей мощи и кажущейся невероятной сложности - ракетные и турбореактивные двигатели на самом деле имеют довольно простой принцип работы.
Самым простым является ракетный двигатель. Начнем с него.
Для того, чтобы работать в условиях космоса, ракетные двигатели должны иметь собственный запас кислорода для обеспечения сжигания топлива. Топливо-воздушная смесь впрыскивается в камеру сгорания, где происходит ее постоянное сжигание. Образующийся во время сгорания газ под очень большим давлением высвобождается наружу через сопло, создавая реактивную силу и заставляя ракетный двигатель, а вместе с ним и ракету двигаться в противоположном направлении. Наглдный пример реактивной силы в повседневной жизни это обычный воздушный шарик. Если его надуть и отпустить, не завязывая, то шарик будет двигаться за счет реактивной силы, создаваемой вылетающим из него воздухом.
Турбореактивный двигатель (ТРД)
Турбореактивный двигатель (ТРД) работает по тому же принципу, что и ракетный, за исключением того, что в нем сжигается атмосферный кислород.
Сходства:Топливо постоянно сжигается внутри камеры сгорания турбины. Освобождающийся через сопло газ создает реактивную силу.
Различия:На выходе из сопла установлены несколко ступеней турбины, закрепленные на общем валу. проходя через лопатки турбин газ приводит их во вращение. Между колесами турбин установлены неподвижные направляющие лопатки, которые придаю определенное направление потоку газа на пути ко следующей ступени (колесу) турбины, что создает более эффективое вращение.
Вместе с турбиной на едином валу в передней части двигателя установлен компрессор, который служит для сжатия и подачи воздуха в камеру сгорания.
Турбовинтовой двигатель (ТВД).
Принцип работы точно такой же как и у ТРД, за исключением того, что на валу перед компрессором установлен редуктор, приводящий во вращение воздушный винт с более низкими оборотами, чем турбина.Получение мощности, необходимой для вращения ротора компрессора и воздушного винта, обеспечивается турбиной с увеличенным числом ступеней, поэтому расширение газа в турбине происходит почти полностью и реактивная тяга, получаемая за счет реакции газовой струи, вытекающей из двигателя, составляет только 10–15% суммарной тяги, в то время как воздушный винт создает основное тяговое усилие (85–90%).
ТВД сочетают в себе преимущества ТРД на больших скоростях полета (способность создавать большую тягу при относительно небольшой массе и габаритах двигателя) и ПД на малых скоростях (низкие расходы топлива) и, обладая высокой топливной эффективностью, широко применяются в силовых установках имеющих большую грузоподъемность и дальность полета самолетов (летающих на скоростях 600–800 км/ч) и вертолетов.
Турбовентиляторный двигатель (ТВлД)
Этот двигатель является неким копромиссом между турбореактивным и турбовинтовым двигателем. У турбовентиляторного двигателя (ТВлД) на валу перед компрессором установлен вентилятор, имеющий большее количество лопаток, чем воздушный винт и обеспечивающий высокий расход воздуха через двигатель на всех скоростях полета, включая низкие скорости при взлете.
ingenerov.net
Турбовентиляторный двигатель - это турбореактивный двух-контурный двигатель со степенью двух-контурности более 2-х. Используется одноступенчатый вентилятор большого диаметра, благодаря чему обеспечивается захват большого количества воздуха на всех скоростях, также на скоростях при посадке и взлете.
Поскольку вентилятор имеет большой диаметр, в результате чего сопло внешнего контура достаточно тяжелое, то его часто выполняют несколько укороченным, с направляющими аппаратами (неподвижными лопатками, которые возвращают поток воздуха в осевом направлении). Поэтому, большинство ТВРД выполняются без смешанных потоков.
www.ufoshop.net.ua - вентиляторы UFO за лучшими ценами.
Конструкция внутреннего контура ТВРД схожа с конструкцией ТРД, последние ступени турбины которого является поводом вентилятора.
Внешний контур ТВРД преимущественно представляет собой одноступенчатый вентилятор большого диаметра, за ним располагается направляющий аппарат, который состоит из неподвижных лопаток. Они разгоняют поток воздуха за вентилятором и возвращают его, приводя к осевому направлению. Внешний контур заканчивается соплом.
Двигатели такого типа имеют двух-или трех-вальную конструкции.
Большим преимуществом турбовентиляторных двигателей является их высокая экономичность. Недостатками таких двигателей является большая масса и диаметр вентилятора, из-за чего во время полета возникает очень высокое лобовое сопротивление.
ТВРД используются в дальне- и средне-магистральных самолетах, также на военно-транспортных самолетах.
Схема турбовентиляторного двигателя: 1 - вентилятор, 2 - защитный обтекатель, 3 - турбокомпрессор, 4 - выходной поток внутреннего контура, 5 - выходной поток внешнего контура.
С конструкцией ТРД можно ознакомиться в статье "Турбо-реактивный двигатель. Общий принцип работы".
Предлагаем Вам видео, где можно увидеть работу турбовентиляторного двигателя.
Dim lights Embed Embed this video on your site
Цитировать эту статью на Вашем сайтеЧтобы процитировать эту статью на Вашем сайте, скопируйте и вставьте код из окошка на странице в формате HTMLТурбовентиляторный двигатель13.05.2013Турбовентиляторный двигатель - это турбореактивный двух-контурный двигатель со степенью двух-контурности более 2-х. Используется...
Просмотр :
Турбовентиляторный двигатель13.05.2013Турбовентиляторный двигатель - это турбореактивный двух-контурный двигатель со степенью двух-контурности более 2-х. Используется...Тематические публикации:
aviastory.com.ua
Турбовентиляторным двигателем в популярной литературе обычно называют ТРДД с высокой (выше 2) степенью двухконтурности. В данном типе двигателей используется одноступенчатый вентилятор большого диаметра, обеспечивающий высокий расход воздуха через двигатель на всех скоростях полета, включая низкие скорости при взлёте и посадке. По причине большого диаметра вентилятора сопло внешнего контура таких ТРДД становится достаточно тяжёлым и его часто выполняют укороченным, со спрямляющими аппаратами (неподвижными лопатками, поворачивающими воздушный поток в осевом направлении). Соответственно, большинство ТРДД с высокой степенью двухконтурности — без смешения потоков.
Устройство внутреннего контура таких двигателей подобно устройству ТРД, последние ступени турбины которого являются приводом вентилятора.
Внешний контур таких ТРДД, как правило, представляет собой одноступенчатый вентилятор большого диаметра, за которым располагается спрямляющий аппарат из неподвижных лопаток, которые разгоняют поток воздуха за вентилятором и поворачивают его, приводя к осевому направлению, заканчивается внешний контур соплом.
По причине того, что вентилятор таких двигателей, как правило, имеет большой диаметр, и степень повышения давления воздуха в вентиляторе невысока — сопло внешнего контура таких двигателей достаточно короткое. Расстояние от входа в двигатель до среза сопла внешнего контура может быть значительно меньше расстояния от входа в двигатель до среза сопла внутреннего контура. По этой причине достаточно часто сопло внешнего контура ошибочно принимают за обтекатель вентилятора.
ТРДД с высокой степенью двухконтурности имеют двух- или трёхвальную конструкцию.
Главным достоинством таких двигателей является их высокая экономичность.
Недостатки — большие масса и габариты. Особенно — большой диаметр вентилятора, который приводит к значительному лобовому сопротивлению воздуха в полете.
Область применения таких двигателей — дальне- и среднемагистральные коммерческие авиалайнеры, военно-транспортная авиация.
dis.academic.ru