Турбонаддув – устройство, призванное увеличить мощность двигателя внутреннего сгорания. Оно стало настоящим прорывом в моторостроении ХХ века, но широкое распространение приобрело значительно позже. Автором данного изобретения является Альфред Бьюхи.
Принцип работы турбонаддува при всей его значимости в приросте мощности двигателя весьма прост: на одном валу закреплены крыльчатки двух улиток-турбин, задача одной части посредством потока отработанных газов раскручиваться и приводить в действие вторую часть, которая работает нагнетателем воздуха в двигатель. Именно в увеличении объема воздуха, посылаемого в камеру сгорания, и кроется секрет увеличения мощности движка.
Но, как уже отмечалось выше, при всей своей логической простоте устройство набирало значимость довольно долго – более полувека. Причины:
Последнее к слову ограничивало применение турбонаддува только на бензиновых двигателях.
Благо, наука не стоит на месте и с годами появлялись более качественные материалы, позволившие турбонаддуву начать проникать сперва в мир автогонок, где он позволял без увеличения веса двигателя увеличивать его мощность и достигать командам высоких позиций в финальных таблицах, а после и на потребительский рынок.
Теперь немного подробнее о том, как работает турбонаддув на бензиновых и дизельных двигателях, а точнее – об особенностях его работы, ведь принцип действия у них практически идентичен.
Дизель с турбонаддувом сегодня можно встретить гораздо чаще, чем его собрата – бензиновый агрегат. Так происходит потому, что применение турбины в дизеле позволяет решить его главную проблему – низкую эффективность на высоких оборотах – раз и навсегда.
Также аргументом в пользу использования турбины в дизельных ДВС можно назвать невысокую стоимость подобного внедрения за счет меньшей температуры выхлопных газов и более низких оборотов, которые, в сравнении все с тем же бензиновым мотором, требуют применения менее качественных материалов. Отсюда такая популярность турбонаддува у производителей дизельных авто и владельцев последних. В то же время массовость применения данного устройства в дизелях позволяет развиваться самому надуву в принципе, делая его все доступнее для бензиновых транспортных средств.
Если речь идет об использовании турбонаддува на бензиновых двигателях, то она в первую очередь касается высоконагруженных моторов, комплектующих спорткары и некоторые люксовые автомобили.
Такое классовое различие кроется в том, что прирост мощности в бензиновом двигателе требует больших капиталовложений, как в саму турбину двигателя, так и в обслуживание авто: на дорогое высокооктановое топливо и его количество (турбонаддув всегда ведет к увеличенному расходу), которые не всегда оправданы.
Дело в том, что в турбированном бензиновом ДВС прирост мощности достигается при высоких оборотах, при этом, таков принцип работы турбонаддува, сама мощность возрастает весьма стремительно, что для обычного среднестатистического водителя бензинового автомобиля не всегда необходимо, скорее, даже наоборот… а переплачивать за то, что вся эта мощность никогда не будет использоваться, не имеет смысла.
autoepoch.ru
В нашей статье "Принцип работы турбонаддува дизельного двигателя" мы расскажем вам, что такое турбонаддув, вы узнаете, как происходит его работа. Многие водители очень часто применяют термин «турбина», когда хотят обозначить турбонаддув, хотя это не совсем соответствует истине, потому что турбина это всего лишь одна из составных частей турбонаддува.
Вам следует знать, что турбонаддув дизельного двигателя представляет собой корпус, вал с крыльчатками, два опорных и один упорный подшипник скольжения, система уплотнений, две улитки, в которых происходит вращение крыльчаток. На всю данную конструкцию навешен пневмопривод, который приводит в работу байпасный (т.е. перепускной) клапан (хотя есть некоторые модели, на которых он отсутствует). Принцип его работы заключается в регулировании оборотов турбины и, соответственно, производительности компрессора. Как только выходящее давление воздуха из компрессора превышает оптимальное, происходит срабатывание пневмопривода, который затем открывает клапан. В результате некоторая часть выхлопных газов выходит в выхлопную систему напрямую, и соответственно происходит снижение оборотов турбины.
Что собой представляет турбина — это крыльчатка, которая неразъёмно насажена на вал, приводит во вращение другую такую же крыльчатку — т.е. компрессор. Турбина специально сделана из жаростойкого сплава, компрессор — из алюминия, а вал сделан из обычной среднелегированной стали. Отремонтировать такие детали практически невозможно, единственное, что можно сделать, это только заменить их. Правда есть одно исключение, это изношенный вал, иногда его можно заново перешлифовать, а затем под получившийся размер можете изготовить новые подшипники.
Корпус турбонаддува дизельного двигателя выполнен в виде сплошной отливки из чугуна, в которой происходит вращение вала на подшипниках. Вам следует знать, что зачастую изнашиваются постель под подшипники, а также гнездо под уплотнительное кольцо. И, конечно же, исправить данную проблему, можно будет только с помощью расточки под новый размер. Улитка турбины выполнена из чугуна, данная деталь представляет собой довольно-таки сложную форму. Именно за счёт её, формируется газовый поток, который в дальнейшем вращает турбину. А вот улитка компрессора выглядит в виде алюминиевой отливки с механически обработанным под компрессор местом. Вращаясь, компрессор засасывает через центральное отверстие воздух, затем его сжимает и только потом по кольцевому каналу, сразу же подает в двигатель. Вообще на первый взгляд, данная конструкция достаточно проста. Но сложные поверхности, точное литьё, высокая точность изготовления всех деталей могут вам создать много проблем даже при условии, что у вас будет хорошо оборудованная мастерская. Так как далеко не каждый конкретный турбонаддув поддаётся ремонту, иногда лучше взять все имеющиеся детали и создать новый.
Так как же всё-таки происходит работа турбины? Говорят, например: «Турбина включилась, и я поехал…» Это неверно, так как турбонаддув дизельного двигателя начинает свою работу уже с первых оборотов двигателя и завершает её уже после остановки двигателя. Как только в цилиндрах двигателя появляются первые вспышки, то выхлопные газы сразу же попадают из коллектора в улитку турбины, за счёт их, начинается вращение вала с крыльчатками. До тех пор пока обороты двигателя не слишком большие, скорость и давление выхлопных газов недостаточны, в результате компрессор, чтобы не создавать во время всасывании излишнего сопротивления, вращается на холостом ходу, таким образом, просто перемешивает воздух. Нажмите на педаль газа. Обороты двигателя начнут расти, на панели загорится зелёная лампочка, на ней будет написано «TURBO» (при условии, что она есть), и вы почувствуете в спину ощутимый толчок.
Запомните, если турбина включилась, значит, она просто вышла на рабочие обороты, и заметьте, очень высокие: около 110-115 тысяч оборотов в минуту. На этот раз компрессор не просто месит воздух, а наоборот, сжимая его эффективно, посылает в двигатель. При этом сразу же происходит срабатывание соответствующей сервисной системы в карбюраторе (ТНВД или EFI, неважно), в двигательные цилиндры подаётся больший весовой заряд топливной смеси, затем резко где-то на 50-70% возрастает его мощность, соответственно, увеличивается расход топлива. Турбонаддув вынужден работать далеко не в самых лёгких условиях: высокие окружные скорости (на концах лопаток, скорость, в зависимости от того, какая у вас модель турбонаддува, почти такая же, как у пистолетной пули - 300 м/сек), высокая температура. Подшипники вращаются с предельно допустимой скоростью, для того чтобы её снизить, вам придётся прибегнуть к различным ухищрениям. Как же тогда турбонаддуву удаётся долго и надежно работать в таких условиях?
Когда вы заводите двигатель, в дело вступает масляный насос. Масло, находясь под давлением, поступает по системе каналов на подшипники турбонаддува, после чего на масляном клине начинает вращаться вал. Упорный подшипник также получает свою порцию масла. Чем больше будут обороты двигателя, тем больше масла будет поступать на его подшипники и вал турбины. Данные подшипники изготавливают из специальных подобранных материалов. Для них выбираются оптимальные зазоры: если зазоры будут меньшими, то может возникнуть опасность, во время теплового расширения подшипники начинают подклинивать. А если зазоры будут слишком большими - то может произойти срыв масляного клина, в результате вся работа будет происходить в условиях полужидкостного трения, к тому же произойдёт перекос вала, начнётся процесс износа уплотнительного кольца. Так как зазоры в парах подшипник — корпус, вал — подшипник слишком малы, а также соизмеримы с размерами ячеек масляного фильтра, мы вам советуем постоянно держать масло в чистоте, всегда проверяйте состояние масляного фильтра.
Знайте, что долговечность подшипников скольжения не зависит от частоты вращения, в отличие от подшипников качения. У правильно работающих и рассчитанных подшипников скольжения коэффициент трения в условиях жидкостной смазки равен 0,001-0,005. Но в случае если имеются неблагоприятные условия работы (высокие окружные скорости, высокая вязкость масла, а также малые зазоры), то коэффициент трения равен 0,1-0,2, что может привести к снижению оборотов турбонаддува дизельного двигателя, а значит, и к снижению его эффективности, в результате повышения теплоотвода произойдёт повышение нагарообразования.
Подшипники скольжения надежно работают при температуре не более 150 градусов Цельсия. При более высоких температурах возникает опасность разрыва масляного слоя в результате разжижения масла. Кроме того, при высоких температурах обычные минеральные масла окисляются намного быстрее, тем самым теряют свои смазочные свойства. При полужидкостной смазке непрерывность масляного слоя нарушена, и поверхности вала и подшипника на участках большей или меньшей протяженности соприкасаются своими микронеровностями. При граничной системе смазки поверхности вала и подшипников соприкасаются полностью или на участках большой протяженности, разделительный масляный слой здесь вообще отсутствует.
Пока двигатель вращается, и масляный насос создает давление, исправный турбонаддув работает нормально. Но рано или поздно вы решите заглушить двигатель, он остановится, также остановится и масляный насос, давление масла в системе сразу, же упадет до нуля, а вал с крыльчатками, который имеет приличный вес и вращается с достаточно большой скоростью, не сможет мгновенно остановиться. Но масляного клина уже нет. Возникает полужидкостная смазка, переходящая в граничную. К вашему сведению в тяжело нагруженных подшипниках может возникнуть перегрев, расплавление, схватывание, а также заедание подшипника. Плюс грязное масло, и в результате произойдёт интенсивное изнашивание.
А допустимый износ подшипников составляет всего лишь 0,03-0,06 мм в зависимости от того, какая у вас модель турбонаддува. Поэтому делайте выводы сами. Потому что это одна из самых больших проблем, которые могут возникать во время работы турбонаддува. Для того, чтобы она не стала основной, во-первых, вовремя меняйте масло и масляный фильтр. Во-вторых, используйте только масло, предназначенное для двигателей, оборудованных турбонаддувом, которое несложно выбрать среди большого числа существующих хороших масел. Но в дороге всякое может случиться, и если вам пришлось залить неизвестное масло, то не гоните, двигайтесь потихоньку. Двигатель это масло переживет, а вот турбонаддув — не обязательно. Приехав домой, сразу же смените масло и масляный фильтр.
И, наконец, третье, самое главное условие нормальной работы турбонаддува. Как мы уже отмечали, в жизни турбонаддува есть два самых ответственных момента: запуск двигателя и его остановка. При запуске холодного двигателя масло в нем имеет высокую вязкость, оно с трудом прокачивается по зазорам; еще не установились тепловые зазоры; нагрев разных деталей турбонаддува, а, следовательно, и тепловое расширение, идут с разной скоростью. Поэтому не спешите, дайте двигателю и турбонаддуву прогреться. Если вам надо остановиться, никогда не глушите двигатель сразу. В зависимости от режима езды дайте ему поработать на холостом ходу 2-5 минут (зимой можно дольше). За это время вал турбины снизит обороты до минимальных, а детали, непосредственно соприкасающиеся с выхлопными газами, плавно остынут.
В процессе работы крыльчатка турбины и вал сильно нагреваются. Масло, поступающее для смазки подшипников, нагнетается с большой интенсивностью и успевает снять нагрев с вала, не успев перегреться само. При резкой остановке двигателя прокачка масла прекращается, раскаленная крыльчатка турбины отдает большую часть тепла валу, и масляная пленка, покрывающая детали, разогревается до температуры горения. Идет интенсивное нагарообразование в районе уплотнительного кольца и несколько меньшее — в районе подшипников и на внутренних поверхностях корпуса турбонаддува. Спасает только то, что масло, предназначенное для таких двигателей, изначально рассчитано на более высокие температуры, чем обычное. Но и оно имеет свои пределы. Владельцам автомобилей Nissan следует помнить, что в этих автомобилях турбонаддув работает в более напряжённом тепловом режиме, чем, например, у автомобилей Toyota. Значительно облегчает жизнь и продлевает срок службы турбонаддува турботаймер. Он установлен не на всех автомобилях, но эта функция есть во многих охранных сигнализациях.
gt-turbo.ru
Как уже отмечалось в начале статьи, для лучшего наполнения цилиндра следует поднять давление перед впускным клапаном. Между тем повышенное давление необходимо вовсе не постоянно - достаточно, чтобы оно поднялось в момент закрытия клапана и «догрузило» цилиндр дополнительной порцией воздуха. Для кратковременного повышения давления вполне подойдет волна сжатия, «гуляющая» по впускному трубопроводу при работе мотора. Достаточно лишь рассчитать длину самого трубопровода, чтобы волна, несколько раз отразившись от его концов, пришла к клапану в нужный момент. Теория проста, а вот воплощение ее требует немалой изобретательности: клапан при разных оборотах коленчатого вала открыт неодинаковое время, а потому для использования эффекта резонансного наддува требуются впускные трубопроводы переменной длины. При коротком впускном коллекторе мотор лучше работает на высоких оборотах , при низких оборотах более эффективен длинный впускной тракт. Переменные длины впускных трубопроводов можно создать двумя способами: или путем подключения резонансной камеры, или через переключение на нужный впускной канал или его подключение. Последний вариант называют еще динамическим наддувом. Как резонансный, так и динамический наддув могут ускорить течение впускного столба воздуха. Эффекты наддува, создаваемые за счет колебаний напора воздушного потока, находится в диапазоне от 5 до 20 миллибар. Для сравнения: с помощью турбонаддува или механического наддува можно получить значения в диапазоне между 750 и 1200 миллибар. Для полноты картины отметим, что существует еще инерционный наддув, при котором основным фактором создания избыточного давления перед клапаном является скоростной напор потока во впускном трубопроводе. Дает незначительную прибавку мощности при высоких (больше 140 км/ч) скоростях движения. Используется в основном на мотоциклах.Механический наддувМеханические нагнетатели (по англ. supercharger) позволяют довольно простым способом существенно поднять мощность мотора. Имея привод непосредственно от коленчатого вала двигателя, компрессор способен закачивать воздух в цилиндры при минимальных оборотах и без задержки увеличивать давление наддува строго пропорционально оборотам мотора. Но у них есть и недостатки. Они снижают КПД ДВС, так как на их привод расходуется часть мощности, вырабатываемой силовым агрегатом. Системы механического наддува занимают больше места, требуют специального привода (зубчатый ремень или шестеренчатый привод) и издают повышенный шум. Существует два вида механических нагнетателей: объемные и центробежные.Типичными представителемя объемных нагнетателей являются нагнетатель Roots и компрессор Lysholm. Конструкция Roots напоминает масляный шестеренчатый насос. Два ротора вращаются в противоположные стороны внутри овального корпуса. Оси роторов связаны между собой шестернями. Особенность такой конструкции в том, что воздух сжимается не в нагнетателе, а снаружи – в трубопроводе, попадая в пространство между корпусом и роторами. Основной недостаток – в ограниченном значении наддува. Как бы безупречно ни были подогнаны детали нагнетателя, при достижении определенного давления воздух начинает просачиваться назад, снижая КПД системы. Способов борьбы немного: увеличить скорость вращения роторов либо сделать нагнетатель двух- и даже трехступенчатым. Таким образом можно повысить итоговые значения до приемлемого уровня, однако многоступенчатые конструкции лишены своего главного достоинства – компактности. Еще одним минусом является неравномерное нагнетание на выходе, ведь воздух подается порциями. В современных конструкциях применяются трехзубчатые роторы спиральной формы, а впускное и выпускное окна имеют треугольную форму. Благодаря этим ухищрениям нагнетатели объемного типа практически избавились от пульсирующего эффекта. Невысокие скорости вращения роторов, а следовательно, долговечность конструкции вкупе с низким шумом привели к тому, что ими щедро оснащают свою продукцию такие именитые бренды, как DaimlerChrysler, Ford и General Motors. Объемные нагнетатели поднимают кривые мощности и крутящего момента, не изменяя их формы. Они эффективны уже на малых и средних оборотах, а это наилучшим образом сказывается на динамике разгона. Проблема лишь в том, что подобные системы очень прихотливы в изготовлении и установке, а значит, довольно дороги. Еще один способ нагнетать во впускной коллектор воздух под избыточным давлением в свое время предложил инженер Лисхольм (Lysholm). Его детище окрестили винтовым нагнетателем, или «double screw» (двойной винт). Конструкция наддува Лисхольма чем-то напоминает обычную мясорубку. Внутри корпуса установлены два взаимодополняющих винтовых насоса (шнека). Вращаясь в разные стороны, они захватывают порцию воздуха, сжимают и загоняют ее в цилиндры. Характерна такая система внутренним сжатием и минимальными потерями, благодаря точно выверенным зазорам. Кроме того, винтовые наддувы эффективны практически во всем диапазоне оборотов двигателя, бесшумны, очень компактны, но чрезвычайно дороги из-за сложности в изготовлении. Однако ими не брезгуют такие именитые тюнинг-ателье, как AMG или Kleemann. Центробежные нагнетатели по конструкции напоминают турбонаддув. Избыточное давление во впускном коллекторе также создает компрессорное колесо (крыльчатка). Его радиальные лопасти захватывают и отбрасывают воздух в окружной тоннель при помощи центробежной силы. Отличие от турбонаддува лишь в приводе. Центробежные нагнетатели страдают аналогичным, хотя и менее заметным инерционным пороком, но есть и еще одна важная особенность. Фактически величина производимого давления пропорциональна квадрату скорости компрессорного колеса. Проще говоря, вращаться оно должно очень быстро, чтобы надуть в цилиндры необходимый воздушный заряд, порой в десятки раз превышая обороты двигателя. Эффективен центробежный нагнетатель на высоких оборотах. Механические «центробежники» не так капризны в обслуживании и долговечнее газодинамических собратьев, поскольку работают при менее экстремальных температурах. Неприхотливость, а следовательно, и дешевизна конструкции снискали им популярность в сфере любительского тюнинга. Схема управления механическим нагнетателем довольно проста. При полной нагрузке заслонка перепускного трубопровода закрыта, а дроссельная открыта — весь поток воздуха поступает в двигатель. При работе с частичной нагрузкой дроссельная заслонка закрывается, а заслонка трубопровода открывается — избыток воздуха возвращается на вход нагнетателя. Входящий в схему охладитель наддувочного воздуха (Intercooler) является почти непременной составной частью не только механических, но и газотурбинных систем наддува. При сжатии в компрессоре (либо в нагнетателе) воздух нагревается, в результате чего его плотность уменьшается. Это приводит к тому, что в рабочем объеме цилиндра воздуха, а, следовательно, и кислорода, по массе помещается меньше, чем могло бы поместиться при отсутствии нагревания. Поэтому сжатый воздух перед подачей его в цилиндры двигателя предварительно охлаждается в интеркулере. По своей конструкции это обычный радиатор, который охлаждается либо потоком набегающего воздуха, либо охлаждающей жидкостью. Понижение температуры наддувочного воздуха на 10 градусов позволяет увеличить его плотность примерно на 3%. Это, в свою очередь, позволяет увеличить мощность двигателя примерно на такой же процент. Газотурбинный наддувБолее широко на современных автомобильных двигателях применяются турбокомпрессоры. По сути, это тот же центробежный компрессор, но с другой схемой привода. Это самое важное, можно сказать, принципиальное отличие механических нагнетателей от "турбо". Именно схема привода в значительной мере определяет характеристики и области применения тех или иных конструкций. У турбокомпрессора крыльчатка-нагнетатель сидит на одном валу с крыльчаткой-турбиной, которая встроена в выпускной коллектор двигателя и приводится во вращение отработавшими газами. Частота вращения может превышать 200.000 об./мин. Прямой связи с коленвалом двигателя нет, и управление подачей воздуха осуществляется за счёт давления отработавших газов.К достоинствам турбонаддува относят: повышение КПД и экономичности мотора (механический привод отбирает мощность у двигателя, этот же использует энергию отработавших газов, следовательно, КПД увеличивает). Не следует путать удельную и общую экономичность мотора. Естественно, для работы двигателя, мощность которого возросла за счет применения турбонаддува, требуется больше топлива, чем для аналогичного безнаддувного мотора меньшей мощности. Ведь наполнение цилиндров воздухом улучшают, как мы помним, для того, чтобы сжечь в них большее количество топлива. Но массовая доля топлива, приходящаяся на единицу мощности в час у двигателя, оснащенного ТК, всегда ниже, чем у схожего по конструкции силового агрегата, лишенного наддува. Турбонаддув дает возможность достичь заданных характеристик силового агрегата при меньших габаритах и массе, чем в случае применения "атмосферного" двигателя. Кроме того, у турбодвигателя лучше экологические показатели. Наддув камеры сгорания приводит к снижению температуры и, следовательно, уменьшению образования оксидов азота. В бензиновых двигателях наддувом добиваются более полного сгорания топлива, особенно на переходных режимах работы. В дизелях дополнительная подача воздуха позволяет отодвинуть границу возникновения дымности, т. е. бороться с выбросами частиц сажи. Дизели существенно лучше приспособлены к наддуву вообще, и к турбонаддуву в частности. В отличие от бензиновых моторов, в которых давление наддува ограничивается опасностью возникновения детонации, им такое явление неведомо. Дизель можно наддувать вплоть до достижения предельных механических нагрузок в его механизмах. К тому же отсутствие дросселирования воздуха на впуске и высокая степень сжатия обеспечивают большее давление отработавших газов и их меньшую температуру в сравнении с бензиновыми моторами. В общем, как раз то, что нужно для применения турбокомпрессора. Турбокомпрессоры более просты в изготовлении, что окупает ряд присущих им недостатков. При низкой частоте вращения двигателя количество отработавших газов невелико, соответственно, эффективность работы компрессора невысока. Кроме того, турбонаддувный двигатель, как правило, имеет т. н. «турбояму» (по-английски "turbo-lag") — замедленный отклик на увеличение подачи топлива. Вам нужно резко ускориться — вдавливаете педаль газа в пол, а двигатель некоторое время «думает» и лишь потом подхватывает. Объяснение простое — требуется время, пока мотор наберет обороты, увеличится давление выхлопных газов, раскрутится турбина, с ней крыльчатка нагнетателя - и наконец, "пойдет" воздух. Избавиться от указанных недостатков конструкторы пытаются разными способами. В первую очередь, снижением массы вращающихся деталей турбины и компрессора. Ротор современного турбокомпрессора настолько мал, что легко умещается на ладони. Снижение массы достигается не только конструкцией ротора, но и выбором для него соответствующих материалов. Основная сложность при этом- высокая температура отработавших газов. Металлокерамический ротор турбины примерно на 20% легче изготовленного из жаростойких сплавов, да к тому же обладает меньшим моментом инерции. До последнего времени срок службы всего агрегата ограничивала долговечность подшипников. По сути, это были вкладыши, подобные вкладышам коленчатого вала, которые смазывались маслом под давлением. Износ таких подшипников скольжения был, конечно, велик, однако шариковые не выдерживали огромной частоты вращения и высоких температур. Выход нашли когда удалось разработать подшипники с керамическими шариками. Однако достойно удивления не применение керамики - подшипники заполнены постоянным запасом пластичной смазки, то есть канал от штатной масляной системы двигателя уже не нужен! Избавиться от недостатков турбокомпрессора позволяет не только уменьшение инерционности ротора, но и применение дополнительных, иногда довольно сложных схем управления давлением наддува. Основные задачи при этом — уменьшение давления при высоких оборотах двигателя и повышение его при низких. Полностью решить все проблемы можно использованием турбины с изменяемой геометрией (Variable Nozzle Turbine), например, с подвижными (поворотными) лопатками, параметры которой можно менять в широких пределах. Принцип действия VNT турбокомпрессора заключается в оптимизации потока выхлопных газов, направляемых на крыльчатку турбины. На низких оборотах двигателя и малом количестве выхлопных газов VNT турбокомпрессор направляет весь поток выхлопных газов на колесо турбины, тем самым увеличивая ее мощность и давление наддува. При высоких оборотах и высоком уровне газового потока турбокомпрессор VNT располагает подвижные лопатки в открытом положении, увеличивая площадь сечения и отводя часть выхлопных газов от крыльчатки, защищая себя от превышения оборотов и поддерживая давление наддува на необходимом двигателю уровне, исключая перенаддув. Комбинированные системыПомимо одиночных систем наддува сейчас часто встречается и двухступенчатый наддув. Первая ступень — приводной компрессор — обеспечивает эффективный наддув на малых оборотах ДВС, а вторая — турбонагнетатель — утилизирует энергию выхлопных газов. После достижения силовым агрегатом достаточных для нормальной работы турбины оборотов, компрессор автоматически выключается, а при их падении вновь вступает в 1.3. Устройство и принцип работы турбонаддува дизельного двигателя.На двигателях КамАЗ 740.11-240 устанавливается турбокомпрессор ТКР 7С-9 (см. рис.2,3).Рис. 2 Внешний вид турбокомпрессора ТКР 7С-9.Турбокомпрессор ТКР7С-9 состоит из центростремительной турбины и центробежного компрессора, соединенных между собой подшипниковым узлом. Турбина с двухзаходным корпусом 7 из высокопрочного чугуна ВЧ40 преобразовывает энергию выхлопных газов в кинетическую энергию вращения ротора турбокомпрессора, которая затем в компрессорной ступени превращается в работу сжатия воздуха.Рис. 3 Турбокомпрессор ТКР 7С-9: 1 — корпус компрессора, 2 — крышка, 3 — корпус подшипников, 4 — подшипник упорный, 5 — подшипник, 6 — кольцо стопорное, 7 — корпус турбины, 8 — кольцо уплотнительное, 9 — колесо турбины, 10 — вал ротора, 11 — экран турбины, 12 — планка, 13 — болт, 14 — маслосбрасывающий экран, 15 — втулка, 16 — маслоотражатель, 17 — планка, 18 — болт, 19 — гайка, 20 — колесо компрессора, 21 — кольцо уплотнительное; 22 — диффузор.Ротор турбокомпрессора ТКР7С состоит из колеса турбины 9 с валом 10, колеса компрессора 20, маслоотражателя 16 и втулки 15, закрепленных на валу гайкой 19. Колесо турбины отливается из жаропрочного сплава по выплавляемым моделям и сваривается с валом из стали трением. Колесо компрессора с загнутыми по направлению вращения назад лопатками выполняется из алюминиевого сплава и после механической обработки динамически балансируется до величины 0,4 г.мм. Подшипниковые цапфы вала ротора закаливаются ТВЧ на глубину 1-1,5 мм до твердости 52-57 HRCэ. После механической обработки ротор динамически балансируется до величины 0,5 г.мм. Втулка, маслоотражатель, колесо компрессора устанавливаются на вал ротора и затягиваются гайкой крутящим моментом 7,8-9,8 Н.м (0,8-1 кгс.м). После сборки ротор дополнительно не балансируется, лишь проверяется радиальное биение цапф вала. При значении радиального биения не более 0,03 мм. на детали ротора наносятся метки в одной плоскости и ротор допускается на сборку турбокомпрессора. При установке ротора на корпус подшипников необходимо совместить метки на деталях ротора. Ротор вращается в подшипниках 5, представляющих собой плавающие вращающиеся втулки. Осевые перемещения ротора ограничиваются упорным подшипником 4, защемленным между корпусом подшипников 3 и крышкой 2. Подшипники выполняются из бронзы БрO10C10. Корпус подшипников турбокомпрессора с целью уменьшения теплопередачи от турбины к компрессору выполнен составным из чугунного корпуса ВЧ50 и крышки из алюминиевого сплава. Для уменьшения теплопередачи между корпусом турбины и корпусом подшипников устанавливается экран 11 из жаростойкой стали. В корпусе подшипников устанавливается маслосбрасывающий экран 14, который вместе с упругими разрезными кольцами 8 предотвращает утечку масла из полости корпуса. Для устранения утечек воздуха в соединении "корпус компрессора — корпус подшипников" устанавливается резиновое уплотнительное кольцо 21. Корпусы турбины и компрессора крепятся к корпусу подшипников с помощью болтов 12, 17 и планок 13, 18. Такая конструкция позволяет устанавливать их под любым углом друг к другу, что в свою очередь облегчает установку ТКР на двигатель.Таблица 2. Технические характеристики турбокомпрессора TKP7C-9.
|
www.coolreferat.com
Введение.
В последнее время дизельные двигатели все чаще стали устанавливать на легковые автомобили в силу их определенных преимуществ, в частности бензиновый двигатель, является довольно неэффективным и способен преобразовывать всего лишь около 26% энергии топлива в полезную работу. Дизельный двигатель обычно имеет коэффициент полезного действия в 36%.Однако дизельные силовые агрегаты имеют ряд особенностей, которые нужно знать автолюбителю.
Конструктивно дизельные двигатели, как и бензиновые, относятся к двигателям внутреннего сгорания. Главным их отличием является устройство системы питания и процесс сгорания топлива. В цилиндры дизеля всасывается чистый воздух. Затем он сжимается до степени сжатия в среднем 21-22 и при этом нагревается до высоких температур, порядка 600 град.С. После этого в камеру сгорания впрыскивается топливо, которое самовозгорается, и происходит рабочий цикл. Таким образом, свечей зажигания, в отличие от бензиновых силовых агрегатов, для дизелей не требуется.
Процесс сгорания топлива в дизелях происходит при большом давлении, поэтому силы, воздействующие на цилиндропоршневую группу, выше, чем в бензиновых двигателях. Шумность дизеля выше, чем у бензиновых моторов, что тоже объясняется особенностями сгорания топлива.
В то же время имеется целый ряд преимуществ дизельного двигателя, обеспечивающих последнему широкое распространение. Во-первых, это высокая надежность и моторесурс. Во-вторых, двигатели подобного типа более экономичны, в том числе и на холостом ходу. Дизели обеспечивают высокий крутящий момент, с вытекающим отсюда улучшением тяговых характеристик автомобиля. При одинаковой мощности с бензиновым двигателем, крутящий момент дизеля существенно выше. И, наконец, пожаробезопасность: дизельное топливо с трудом воспламеняется от огня на воздухе.
Необходимо также отметить тот факт, что содержание в отработавших газах - СО (оксида углерода) у дизельного двигателя по сравнению с бензиновым двигателем ниже, что в свою очередь уменьшает выброс токсичных веществ в атмосферу. Это актуально, поскольку на современном этапе развития общества огромное значение уделяется вопросам экологии, и наряду с требованиями по безопасности автомобиля не менее важным считается его экологичность.
Всемирно известные производители дизельных двигателей к 90-м годам провели многочисленные испытания и тестирования дизельных двигателей. Следствием данных исследований явилось то, что теперь при разработке большей части моделей дизельных двигателей применяется технология наддува, и это в свою очередь стало залогом экологической безопасности.
При проектировке бензиновых двигателей внутреннего сгорания все чаще и чаще используют технологию турбонаддува несмотря на некоторые возникающие проблемы. В частности в момент максимального сжатия и резкого повышения давления смеси от нормы появляется детонация, ограничивающая максимальную величину степени сжатия объема смеси, что требует использования качественного высокооктанового бензина.
Работа бензинового двигателя в режиме турбонаддува приводит к значительному повышению рабочей температуры, что обуславливает использование высокотехнологичных материалов, из которых должны быть выполнены все части и агрегаты турбокомпрессора. При этом возникает необходимость дополнительного охлаждения подшипникового узла ТКР, и использование моторного масла высокого качества. Принцип турбонаддува двигателя внутреннего сгорания (ДВС) заключается в повышении мощности двигателя за счет улучшения наполнения цилиндров двигателя топливовоздушной смесью для повышения среднего эффективного давления цикла, который сопровождается существенным увеличением объема воздуха. Данная методика наддува считается атмосферной. Разновидностью атмосферного надува является резонансный, при его проведении кинетическая энергия от сжатия воздушных масс изменяется. Для этого используются воздушные коллекторы переменной длины. Другие виды наддува предполагают задействование всевозможных устройств, работающие на основе различных принципов и выполняющие задачи по увеличению давления воздуха, поступающего в цилиндры, выше атмосферного. В некоторых случаях используется отработавший газ, выполняющий роль привода. При этом выхлопные газы подаются в турбину и раскручивают ротор турбокомпрессора с лопаточным колесом турбины, после чего выбрасываются через глушитель. При этом воздух засасывается через воздушный фильтр и его давление повышается до 80%, после чего подается во впускной коллектор двигателя. При сохранении рабочего объема двигателя используется больше количество рабочей смеси, что обеспечивает увеличение мощности на 20-50%. При этом благодаря кинетической энергии отработанных газов КПД двигателя растет, а экономия топлива достигает 20%.1.Ремонтно-технологическая часть.
1.1 Характеристика дизельного двигателя.
Характеристика дизельного двигателя отвечающего требованиям стандарта ЕВРО 2 на примере автомобиля КАМАЗ 740.51 |
Области применения: · автомобили КАМАЗ; Самосвал КамАЗ-6522; · на базе данной модели: o автобусы; o трактора промышленного и с/хозяйственного назначения; o силовые установки судов и тяжелых кранов; o стационарные и передвижные энергоустановки. |
www.coolreferat.com