ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

ОСНОВЫ ФОТОННОГО РАКЕТНОГО ДВИГАТЕЛЯ. Теория фотонного двигателя


ОСНОВЫ ФОТОННОГО РАКЕТНОГО ДВИГАТЕЛЯ

Михаил Пищулин

Первое место в ряду перспективных источников энергии занимает управляемый термоядерный синтез (УТС). Перспективы, которые обещает осуществление УТС, беспрецедентны по своим масштабам, и это заставляет ученых всего мира упорно штурмовать термоядерную крепость. Этот штурм продолжается более 50 лет, но, к сожалению, несмотря и на беспрецедентные финансовые затраты по этим проектам, человечество не получило еще ни одного ватта обещанной энергии.

Если гипотетически представить, что все трудности в каждом способе УТС (магнитном удержании плазмы, инерциальном синтезе, холодном ядерном синтезе) успешно преодолены и одна из глобальных задач человечества решена, то мы не достигнем главного. Мечта о межзвездных полетах и освоении ближнего и дальнего космоса останется мечтой. Кроме того, без фотонных ракетных двигателей, как средства доставки, наша планета останется слишком уязвимой для космических "странников" типа комет, астероидов.О высокой эффективности УТС свидетельствует положительный баланс в извлечении энергии. При ядерных реакциях деления можно получить 0,1 % от всей энергии вещества, при ядерном синтезе - примерно 0,6 %. Но теорией не запрещено получение 100 % энергии, что становится возможным при аннигиляции вещества. Безусловно, получить 100 % энергии вещества на современном уровне технологий - не столь близкая перспектива, но о получении энергии в 2...3 % в земных условиях следует задуматься уже в ближайшем будущем.

С появлением квантовых генераторов возникли новые направления в физике, были открыты ранее неизвестные эффекты. На основе некоторых из них можно создать устройство, позволяющее получить мощное локальное магнитное поле с индукцией 1012…1013 Гс. Такие поля достигаются на стадиях эволюции звезд при быстром сжатии (коллапсе) их ядра с последующим образованием нейтронной звезды.

Создание магнитного поля с индукцией 1013 Гс

Начиная с 70-х годов прошлого века группа ученых в составе А. Борисова, А. Боровского, В. Коробкина, А. Прохорова и других изучала явление самоканалирования мощных ультракоротких лазерных импульсов в веществе. Этот режим волноводного распространения света в веществе предсказал Г. Аскарьян в 1962 г. Критическая мощность, необходимая для релятивистско-скрикционного самоканалирования ультракороткого импульса, составляет величину Р ~ 3·1011 Вт. Как установлено, обнаруженный нелинейный режим, приводящий к сильной самоконцентрации оптической энергии в малой области, перемещающейся в веществе, открывает интересные перспективы. Одним из возможных приложений является генерация сверхсильных магнитных полей. В ходе экспериментов с конденсированными средами был обнаружен эффект возникновения лазерной ЭДС в металлах. Лазерная ЭДС проявлялась, когда один из торцов металлического кольца (аналог биттеровского) освещали ультракоротким импульсом лазера с мощностью 1…10 МДж. Выбитые лучом лазера с торца электроны переходили на противоположный торец, отчего возникал импульс тока в 50 кА. Возникающее магнитное поле было порядка 107 Гс. Диаметр металлического кольца был на уровне нескольких миллиметров (для уменьшения реактивного сопротивления), а длительность лазерного импульса - примерно t =10-6 с. При большей длительности импульса кольцо расплавится или его разорвет магнитное поле. Но при импульсе в одну микросекунду в нем не возникали даже механические напряжения.

При экспериментальной работе была получена оценка величины магнитного поля в веществе в самоканалированном режиме: индукция составляет ~ 60 МГс.

ОСНОВЫ ФОТОННОГО РАКЕТНОГО ДВИГАТЕЛЯДля получения более высоких показателей магнитного поля необходимо увеличить плотность электронов в среде (для металлов ~ 1023 см-3) или увеличить диаметр лазерного луча, сохранив интенсивность излучения. В связи с тем, что повышение интенсивности излучения связано с отдаленной перспективой развития лазерных технологий, целесообразно попытаться увеличить плотность электронов. Для этого необходимо разместить соленоиды, подобные биттеровскому, один за другим. При такой компоновке, если лазерный луч или два луча от разных лазеров будут иметь возможность последовательно и кратковременно освещать эмиссионные торцы соленоидов, то при освещении торца первого соленоида в нем возникнет мощный импульс магнитного поля, который по закону электромагнитной индукции произведет разделение зарядов в соседнем соленоиде. Разделение зарядов означает, что электронная компонента (валентные электроны) под действием пандеромоторной силы выталкиваются из объема металла соленоида на эмиссионный торец. Следовательно, на нем произойдет возрастание электронной плотности. Если в этот момент лазерный луч осветит эмиссионный торец соленоида, то значение лазерной ЭДС возрастет. Как следствие, возрастет и возникающее магнитное поле.Численные расчеты пандеромоторной силы, действующей на свободные электроны во втором соленоиде вследствие влияния магнитного поля В = 107 Гс первого соленоида свидетельствуют о возрастании плотности электронной компоненты на эмиссионной поверхности второго соленоида на семь порядков, т.е. показатель плотности близок к значению 1030 см-3. Возросшая плотность будет наблюдаться в слое меньшем, чем глубина скин-эффекта для лазерного излучения. Повышение плотности электронной компоненты позволит подойти к значениям магнитного поля с индукцией порядка ~ 1012…1013 Гс.

Достижению таких значений магнитного поля будет способствовать и оптическое явление, связанное с перестройкой структуры конденсированной среды под воздействием мощного лазерного излучения.

Согласно теории, заряженные частицы при движении в магнитном поле могут изменять направление своего движения. Так, они могут вращаться по ларморовской окружности с определенной скоростью (поперечной скоростью), либо, в более сложном случае, центры ларморовских окружностей могут двигаться вдоль силовых линий.

В общем случае магнитные поля неоднородны, но в микромасштабах напряженность поля меняется очень мало.

Вакуумное рождение частиц

На основе фундаментальных соотношений неопределенности Гейзенберга построены современные квантово-полевые представления о физическом вакууме (ФВ), который не является пустым пространством. В квантовой электродинамике вакуум "мигает" появляющимися полями, "кипит" рождающимися на короткое время электрон-позитронными парами. Такие поля и частицы называются виртуальными. Прямым экспериментальным подтверждением существования ФВ являются такие тонкие физические эффекты, как поляризация вакуума, лэмбовский сдвиг энергетических уровней в атоме водорода, аномальный магнитный момент электрона, эффект Казимира и ускоренное космологическое расширение Вселенной. В ведущих лабораториях мира ученые пытаются вызвать вакуумное рождение частиц в сильных электромагнитных полях, основываясь на эффекте, качественно предсказанном еще в 30-х годах ХХ века.Квантовая электродинамика описывает механизм рождения из вакуума электрон-позитронных пар следующим образом. В силу соотношения неопределенностей возможно кратковременное нарушение закона сохранения энергии и из вакуума может появиться виртуальная электрон-позитронная пара. Если внешнее электрическое поле способно произвести работу, то рождение пары из вакуума становится реальным процессом. Для этого поле должно быть порядка критического: Екр ~ 3·1016 В/см. В этих условиях вакуум становится неустойчивым и из него могут рождаться электрон-позитронные пары.

Для получения электрических полей с релятивистскими напряженностями используются мощные лазеры до 1021 Вт/см2 с высокой фокусировкой лучей и длительностью импульса порядка фемтосекунд, но пока не удается достичь Екр.

В соответствии с кинетическим уравнением (КУ), описывающим нестационарное вакуумное рождение частиц, которое было теоретически обосновано в 1997 г. физиками-теоретиками из разных стран, процессы соударения частиц и их ускорение зависит как от собственного электромагнитного поля, создаваемого частицами, так и внешнего создаваемого сильными полями. В результате КУ и уравнение Максвелла образуют замкнутую нелинейную систему интегродифференциальных уравнений, описывающих совместную эволюцию поля и частиц.

Это означает, что при некоторой плотности рожденных из вакуума частиц необходимо учитывать собственное внутреннее поле. Частицы из виртуального состояния перешли в реальный спектр времени, а это значит, реальным стало их общее электрон-позитронное поле. Это поле может стать равным или больше Екр. Поэтому после короткого импульса внешнего поля, вызвавшего рождение вакуумных частиц, система начнет эволюционировать самосогласованным образом даже после снятия этого поля.Для достижения той же цели рождение из вакуума электрон-позитронных пар частиц предлагается использовать критическое магнитное поле. Оно было рассчитано А.А. Соколовым, Н.П. Клепиковым и И.М. Терновым в 1953 г., Ю. Швингером в 1954 г. которые получили следующий результат для потребной магнитной индукции так называемого Швингеровского поля ~ 4,41·1013 Гс.

Известно, что затормозить или разогнать частицу гораздо труднее, чем заставить свернуть с пути, не меняя ее скорости. Сила Лоренца не совершает работы, она направлена перпендикулярно вектору скорости частицы, в связи с чем появляется возможность использования порогового эффекта по частоте для виртуальных частиц, рождаемых в вакууме, поскольку при критическом значении магнитной индукции энергия кратковременно появляющихся вакуумных электрон-позитронных пар m·с2 перейдет в энергию вращения по ларморовской окружности.

ОСНОВЫ ФОТОННОГО РАКЕТНОГО ДВИГАТЕЛЯУстановка на основе лазерной ЭДС создает локальное магнитное поле по порядку Вкр = 1013 Гс. Следовательно, в таком поле энергия кратковременно появившихся из вакуума частиц m·c2 перейдет в кинетическую энергию вращения по ларморовской окружности. В режиме "замагничивания" движение виртуальных частиц навстречу друг другу с целью дальнейшей аннигиляции станет невозможным. Поскольку время действия магнитного поля на много порядков превышает время кратковременного появления виртуальных вакуумных пар, то режим "замагничивания" позволяет перевести частицы в реальный спектр времени, т.е. стать наблюдаемыми частицами. В свою очередь, наблюдаемые частицы вызовут эффекты поляризации вакуума, характеризуемые множественным процессом рождения из вакуума виртуальных электрон-позитронных пар, которые также подвергнутся "замагничиванию". Такой множественный и последовательный процесс рождения и "замагничивания" будет развиваться далее неудержимо и лавинообразно, что приведет к образованию плазменного сгустка.

Продолжение тут:  http://engine.aviaport.ru/issues/57/page46.html

 

 

cosmos.mirtesen.ru

Владимир Леонов – КМ: российский космический миникорабль долетит до Альфы Центавра за 8 лет

Если будет использовать квантовый двигатель

Немногим более года назад в интервью КМ физик Владимир Леонов буквально взорвал интернет своим проектом квантового двигателя (КвД), установка которого на космическом корабле нового поколения позволит долететь до Марса за 42 часа с полной компенсацией невесомости.

И вот другой российский физик и предприниматель Юрий Мильнер объявил 12 апреля 2016 года в 55 летний юбилей полета Юрия Гагарина о фантастическом космическом проекте полета к Альфе Центавра, ближайшей к Земле двойной звезде, отстоящей на расстоянии в 4 световых года.

Правда, это будет нанокорабль с массой порядка грамма, но который разовьет скорость 0,2 скорости света и достигнет звезды за 20 лет.

Мы обратились с просьбой прокомментировать проект Мильнера к Владимиру Леонову, лауреату премии Правительства России в области науки и техники, автору фундаментальной теории Суперобъединения объемом более 700 страниц, опубликованной в двух изданиях (Англия, Кембридж, 2010) и (Индия, Viva Books, 2011). 

- Владимир Семенович, каково ваше мнение как эксперта в области новейших космических технологий и разработчика квантового двигателя о проекте Мильнера?

- Несмотря на фантастичность проекта Мильнера, он не лишен здравого смысла и заслуживает внимания.

Если говорить о позитивной стороне проекта, то его можно только приветствовать, и я лично со своей стороны его всесторонне поддерживаю. Юрий Мильнер сам по специальности физик, и один из немногих предпринимателей, кто вкладывается в науку, в интересные и перспективные исследования.

Но как эксперт я вижу проблемы проекта, связанные, прежде всего, с разработкой фотонного двигателя. Об эффективности солнечного паруса с лазерной подсветкой ничего не могу сказать, это не моя область исследований. А вот над разработкой фотонного двигателя следует подумать. Но тот уровень известных классических знаний в рамках Стандартной модели (СМ) физики сегодня недостаточен для успешного создания фотонного двигателя.

- Значит все дело в двигателе. А каковы перспективы создания фотонного двигателя?

- Пока фотонный двигатель никому не удалось создать. И как я уже указывал, в рамках известных знаний это недостижимо. Нужна новая физика. И, несмотря на то, что я являюсь автором этой новой физики в виде теории Суперобъединения, я не возьмусь за разработку фотонного двигателя ни за какие деньги, поскольку, как показывает теория и предварительные испытания, квантовый двигатель намного эффективнее фотонного. 

Тем не менее, совершенно бесплатно, я могу дать несколько полезных советов будущим разработчикам фотонных двигателей и указать на проблемы, которые им придется решать. Но это в рабочем порядке. Пока отмечу, что отдельный фотон представляет собой одиночную двухроторную волновую одиночную частицу внутри четырехмерного квантованного пространства-времени, являясь ее составной частью, по типу сферического солитона. 

И важно уметь рассчитывать импульс силы на ядро атома, который оказывает фотон в виде отдачи при своем излучении. Именно этот импульс силы отдачи можно использовать в фотонном двигателе. Он намного порядков превышает импульс от давления потока фотонов, как давление света в солнечном парусе. Все эти расчеты подробно представлены в теории Суперобъединения.

Других идей, которые практически могут реализовать идею фотонного двигателя, в природе просто не существует. 

- Тогда вопрос навстречу. А каково положение дел с продвижением квантового двигателя?

- Если фотонный двигатель надо будет создавать с нуля, а я по своему опыту знаю, что это непросто, то по разработке квантового двигателя (КвД) мы имеем двадцатилетний опыт с положительным результатом, и то на уровне испытательного стендового варианта.

Если фотонный двигатель работает как реактивный, то квантовый двигатель создает тягу за счет взаимодействия с квантованным пространством-временем, исключая сам принцип реактивного движения с выбросом реактивной массы. 

Работа квантового двигателя базируется на теории Суперобъединения и в его работе используется энергия сверхсильного электромагнитного взаимодействия (СЭВ), носителем которого является само квантованное пространство-время. Именно энергия СЭВ заставляет тело двигаться по инерции без внешних энергозатрат. Теперь мы учимся использовать энергию СЭВ при движении с ускорением. 

Ведь достоверно установлено, что галактики разбегаются с ускорением в нарушение известных законов механики, а у галактик нет реактивного двигателя.

Это происходит под действием колоссальной энергии СЭВ, еще называемой как «темная энергия», природа которой впервые раскрыта в теории Суперобъединения. Сегодня уже механика Ньютона и теория относительности устарели и не объясняют феномена ускоренного разбегания галактик.

Однако, для активации энергии СЭВ в КвД требуется дополнительное питание, которое компенсирует тепловые потери в проводах и подшипниках. Эти потери составляют не более 5%, и даже меньше. Поэтому КвД обладает высокой экономичностью и известные формулы классической физики не годятся для описания его энергетики. Это принципиально новая физика. 

Материалы успешных стендовых испытаний в 2014 году опытного образца квантового двигателя с вертикальным взлетом получили положительный отзыв Министерства обороны России, которое по проблеме серийного освоения производства квантовых двигателей отмечает следующее: «Практически речь идет о создании новейшей отрасли отечественной промышленности (аналогичной ракетостроению в 40-х…50-х годах прошлого столетия)».

Итак, перед российской промышленностью и бизнесом стоит грандиозная задача первыми в мире освоить серийное производство квантовых двигателей (КвД) и транспортных средств нового поколения с КвД.

Однако, от теории и опытного образца до серийного производства КвД необходимо проделать большой путь в 5 и более лет, при значительных финансовых затратах, учитывая сложность производства КвД как принципиально нового изделия. И мы рассчитываем на нашу талантливую молодежь, которая создаст и освоит производство КвД и будет первыми бороздить межпланетные трассы на космических кораблях нового поколения.

- Если использовать квантовый двигатель в проекте Миллера, то, за какое время космический аппарат достигнет Альфы Центавра? 

- Как я уже писал, космический корабль нового поколения с квантовым двигателем достигнет Марса за 42 часа с полной компенсацией невесомости, Луны – за 3,5 часа. Но это крупные аппараты с массой 10…100 тонн и более. 

Естественно, что можно создать космический миникорабль с КвД с массой от 100 грамм до 1 килограмма с питанием от ядерной батарейки. В режиме непрерывной работы двигателя миникорабль можно разогнать до скорости 0,9 скорости света, где релятивистские эффекты проявляются слабо.

При полусветовой скорости миникорабль достигнет Альфы Центавра ориентировочно за 8 лет. Но это реальный проект, на реализацию которого уйдет не менее 5 лет. Учитывая, что миникораблю с КвД не нужен ракетоноситель, он сможет самостоятельно стартовать с земной поверхности, и даже может быть носителем мильнеровских нанокораблей.

Но такой миникорабль на полусветовой скорости ждет опасность при столкновении даже с пылинкой. Проблема его защиты выступает на первое место. И второй проблемой является связь с миникораблем и отслеживание его траектории в космосе.

Ясно, что электромагнитные волны для такой связи будут неэффективны. Речь может идти об использовании гравитационных волн, которые были недавно обнаружены экспериментально, но это не было пионерским открытием в области гравитационных волн.

- А что вам известно о гравитационных волнах?

- Если Никола Тесла 100 лет назад сделал прорыв в области практического освоения электромагнетизма, создав систему переменного тока, на которой держится вся современная энергетика, то теория Суперобъединения делает подобный прорыв в области управления гравитацией (антигравитацией) и инерцией. 

Анализ работы квантового двигателя показывает, что он сам является источником излучения продольных гравитационных волн, и по их излучению можно будет судить о траектории космического корабля в пространстве.

В теории Суперобъединения показано, что фундаментальность принципа относительности основана на колоссальной упругости квантованного пространства-времени, сохраняя сферическую форму гравитационного поля частицы (тела) во всем диапазоне скоростей в соответствии с принципом сферической инвариантности. 

Это было доказано еще в интерференционных опытах Майкельсона и Морли по постоянству скорости света в различных направлениях не зависимо от скорости движения источника света в условиях земной гравитации. Но такое возможно только в случае, когда скорость гравитационного возмущения квантованного пространства-времени при движении в нем Земли намного превосходит скорость света.

Пока же гипотетически принято, что скорость гравитации равна скорости света. Но это противоречит опытам Майкельсона и Морли. К тому же напрямую не это подтверждено экспериментально, когда есть источник и приемник гравитационных волн, как в опытах по измерению скорости света. Поэтому остается открытым проблема измерения скорости гравитационного возмущения.

Только высокая скорость гравитационных волн и их экономичность позволяет объяснить отсутствие электромагнитной связи с внеземными цивилизациями, которая энергозатратна и является малоскоростной в космических масштабах. Четыре года идет свет от Альфы Центавра. А хорошо было иметь почти мгновенную связь на таком расстоянии. Но есть надежда, что гравитационные волны дадут нам эту возможность, тем более, что в уравнения тяготения Ньютона скорость гравитации не входит, как будто тяготение действует мгновенно.

- Получается, что ваши работы перекликаются с проектами Мильнера. Видите ли вы возможность объединения усилий?

- Эти идеи уже витают в воздухе. Я же работаю в команде и один не принимаю решение по квантовому двигателю, учитывая все трудности проекта. Это дело возможных переговоров.

А вот измерение скорости гравитационного возмущения может быть совместным международным проектом, тем более, что в НАСА имеется новейший интерферометр, измерения на котором по моей методике позволят это сделать в рамках новой физики. Это решение важной фундаментальной проблемы, и пока не будет решен вопрос с измерением скорости гравитационных волн, знания о гравитации будут оставаться неполными.

- Владимир Семенович, большое спасибо за интересное интервью и успехов вам в работе. 

www.km.ru

Фотонный двигатель — Википедия РУ

Фотонный двигатель  — гипотетический ракетный двигатель, где источником энергии служит тело, которое излучает свет. Фотон имеет импульс, и, соответственно, при истекании из двигателя, свет создаёт реактивную тягу. Теоретически фотонный двигатель может развить максимально возможную для реактивного двигателя тягу в пересчёте на затраченную массу космического аппарата, позволяя достигать скоростей, близких к скорости света, однако практическая разработка таких двигателей, судя по всему, дело достаточно отдалённого будущего.

Чаще всего обсуждаются и упоминаются в научно-фантастической литературе идеи создания такого двигателя с использованием антивещества. Энтузиасты считают, что взаимодействие вещества и антивещества позволяет перевести практически всю вступающую в реакции массу в излучение.

Тем не менее, надо отметить, что распространённая в литературе формулировка «при аннигиляции выделяются гамма-кванты» в принципе физически неверна. Гамма-кванты прямо выделяются только при электрон-позитронной аннигиляции[1]. В случае аннигиляции покоящейся (не релятивистской) пары протон-антипротон происходит сложно-цепочечная реакция: образование (часто) адронного мезоатома с временем жизни порядка 10−27 секунды, затем распад этого атома (собственно аннигиляция) с образованием пионного комплекса, состоящего из 2—12 (в среднем 5—7) нейтральных (1/3) и заряженных (2/3) пи-мезонов (пионов), затем за время порядка 10−17 секунды нейтральные пионы распадаются с выделением гамма-квантов с пиком энергии в спектре около 70 МэВ, в то время, как заряженные пионы, имеющие значительно большее время жизни, до ~1,5×10−4 секунды, удаляются с околосветовыми скоростями из области реакции (в вакууме и разреженной среде — до 20—40 м, в плотном веществе, например, графите — порядка 0,1—0,2 м) и затем распадаются с образованием мюонов, в свою очередь распадающихся (в основном, 99,998 %, канале распада) на нейтрино и электроны.

Таким образом, при аннигиляции антивещества — то есть вещества, состоящего из антипротонов и позитронов, примерно 1/3 энергии выделится в виде жёсткого гамма-излучения с энергией квантов 511 кэВ (от позитронно-электронной аннигиляции) и 70 МэВ от распада нейтральных пионов, ~1/3 энергии — в виде заряженных частиц с достаточно большим пробегом, а ~1/3 — в виде нейтрино, то есть безвозвратно будет потеряна. И «реальный» ракетный двигатель на антиматерии скорее должен выглядеть, как магнитная ловушка для заряженных частиц, а не как некое «зеркало». Как, например, на кораблях типа «Хиус», описанных в романах А. и Б. Стругацких.[источник не указан 2843 дня].

При такой невысокой массовой отдаче, порядка 23 %[2], эксплуатация фотонного двигателя становится менее выгодной. Значительно повысить его эффективность позволяет использование внешних ресурсов. Прямоточный аннигиляционный фотонный двигатель и магнитные ловушки, собирающие рассеянный в межзвёздной среде водород и гелий, дают возможность существенно уменьшить запасы рабочего вещества. К сожалению, количество антивещества в межзвёздной среде очень мало — порядка одного атома антиводорода или антигелия на 5×106 атомов обычного водорода, что делает невозможным использовать этот внешний ресурс. Поэтому проблема получения большой массы антивещества и его хранения на борту остаётся актуальной и для прямоточного аннигиляционного фотонного двигателя.[3]

Технические проблемы

В сегодняшнем состоянии идея фотонного реактивного двигателя невероятно далека от технического воплощения. Она содержит ряд проблем, которые сейчас даже теоретически не могут быть решены. Это:

  1. Проблема получения большого количества антивещества.
  2. Проблема его хранения.
  3. Проблема полного использования при «сжигании» — чтобы аннигиляция происходила полностью, и в основном с выделением именно фотонов.
  4. Проблема создания «зеркала», способного очень хорошо отражать гамма-излучение и другие продукты аннигиляции.

Если справедливы некоторые варианты теорий Великого объединения, такие как модель 'т Хоофта — Полякова, то можно построить фотонный двигатель, не использующий антивещество, так как магнитный монополь гипотетически может катализировать распад протона[4][5] на позитрон и π0-мезон:

p→e++π0{\displaystyle p\rightarrow e^{+}+\pi ^{0}} 

π0 быстро распадается на 2 фотона, а позитрон аннигилирует с электроном, в итоге атом водорода превращается в 4 фотона, и нерешённой остаётся только проблема зеркала.

В то же время в большинстве современных теорий Великого объединения магнитные монополи отсутствуют, что ставит под сомнение эту привлекательную идею.

http-wikipediya.ru

Фотонный двигатель — википедия орг

Фотонный двигатель  — гипотетический ракетный двигатель, где источником энергии служит тело, которое излучает свет. Фотон имеет импульс, и, соответственно, при истекании из двигателя, свет создаёт реактивную тягу. Теоретически фотонный двигатель может развить максимально возможную для реактивного двигателя тягу в пересчёте на затраченную массу космического аппарата, позволяя достигать скоростей, близких к скорости света, однако практическая разработка таких двигателей, судя по всему, дело достаточно отдалённого будущего.

Чаще всего обсуждаются и упоминаются в научно-фантастической литературе идеи создания такого двигателя с использованием антивещества. Энтузиасты считают, что взаимодействие вещества и антивещества позволяет перевести практически всю вступающую в реакции массу в излучение.

Тем не менее, надо отметить, что распространённая в литературе формулировка «при аннигиляции выделяются гамма-кванты» в принципе физически неверна. Гамма-кванты прямо выделяются только при электрон-позитронной аннигиляции[1]. В случае аннигиляции покоящейся (не релятивистской) пары протон-антипротон происходит сложно-цепочечная реакция: образование (часто) адронного мезоатома с временем жизни порядка 10−27 секунды, затем распад этого атома (собственно аннигиляция) с образованием пионного комплекса, состоящего из 2—12 (в среднем 5—7) нейтральных (1/3) и заряженных (2/3) пи-мезонов (пионов), затем за время порядка 10−17 секунды нейтральные пионы распадаются с выделением гамма-квантов с пиком энергии в спектре около 70 МэВ, в то время, как заряженные пионы, имеющие значительно большее время жизни, до ~1,5×10−4 секунды, удаляются с околосветовыми скоростями из области реакции (в вакууме и разреженной среде — до 20—40 м, в плотном веществе, например, графите — порядка 0,1—0,2 м) и затем распадаются с образованием мюонов, в свою очередь распадающихся (в основном, 99,998 %, канале распада) на нейтрино и электроны.

Таким образом, при аннигиляции антивещества — то есть вещества, состоящего из антипротонов и позитронов, примерно 1/3 энергии выделится в виде жёсткого гамма-излучения с энергией квантов 511 кэВ (от позитронно-электронной аннигиляции) и 70 МэВ от распада нейтральных пионов, ~1/3 энергии — в виде заряженных частиц с достаточно большим пробегом, а ~1/3 — в виде нейтрино, то есть безвозвратно будет потеряна. И «реальный» ракетный двигатель на антиматерии скорее должен выглядеть, как магнитная ловушка для заряженных частиц, а не как некое «зеркало». Как, например, на кораблях типа «Хиус», описанных в романах А. и Б. Стругацких.[источник не указан 2843 дня].

При такой невысокой массовой отдаче, порядка 23 %[2], эксплуатация фотонного двигателя становится менее выгодной. Значительно повысить его эффективность позволяет использование внешних ресурсов. Прямоточный аннигиляционный фотонный двигатель и магнитные ловушки, собирающие рассеянный в межзвёздной среде водород и гелий, дают возможность существенно уменьшить запасы рабочего вещества. К сожалению, количество антивещества в межзвёздной среде очень мало — порядка одного атома антиводорода или антигелия на 5×106 атомов обычного водорода, что делает невозможным использовать этот внешний ресурс. Поэтому проблема получения большой массы антивещества и его хранения на борту остаётся актуальной и для прямоточного аннигиляционного фотонного двигателя.[3]

Технические проблемы

В сегодняшнем состоянии идея фотонного реактивного двигателя невероятно далека от технического воплощения. Она содержит ряд проблем, которые сейчас даже теоретически не могут быть решены. Это:

  1. Проблема получения большого количества антивещества.
  2. Проблема его хранения.
  3. Проблема полного использования при «сжигании» — чтобы аннигиляция происходила полностью, и в основном с выделением именно фотонов.
  4. Проблема создания «зеркала», способного очень хорошо отражать гамма-излучение и другие продукты аннигиляции.

Если справедливы некоторые варианты теорий Великого объединения, такие как модель 'т Хоофта — Полякова, то можно построить фотонный двигатель, не использующий антивещество, так как магнитный монополь гипотетически может катализировать распад протона[4][5] на позитрон и π0-мезон:

p→e++π0{\displaystyle p\rightarrow e^{+}+\pi ^{0}} 

π0 быстро распадается на 2 фотона, а позитрон аннигилирует с электроном, в итоге атом водорода превращается в 4 фотона, и нерешённой остаётся только проблема зеркала.

В то же время в большинстве современных теорий Великого объединения магнитные монополи отсутствуют, что ставит под сомнение эту привлекательную идею.

www-wikipediya.ru

Фотонный двигатель - это... Что такое Фотонный двигатель?

Фотонный двигатель (квантовый) — гипотетический реактивный двигатель, где источником энергии служит тело, которое излучает свет. Фотон имеет импульс, и, соответственно, при истекании из двигателя, свет создает реактивную тягу. Теоретически фотонный двигатель может развить максимальную тягу из расчёта на затраченную массу космического аппарата, позволяя достигать скоростей, близких к скорости света, однако практическая разработка таких двигателей, судя по всему, дело достаточно отдалённого будущего.

Аннигиляционный фотонный двигатель

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 12 мая 2011.

Чаще всего обсуждаются и упоминаются в научно-фантастической литературе идеи создания такого двигателя с использованием антивещества. Энтузиасты считают, что взаимодействие вещества и антивещества позволяет перевести практически всю вступающую в реакции массу в излучение.

Тем не менее, надо отметить, что распространенная в литературе формулировка «при аннигиляции выделяются гамма-кванты» в принципе физически неверна. Гамма-кванты прямо выделяются только при электрон-позитронной аннигиляции. В случае аннигиляции покоящейся (не релятивистской) пары протон-антипротон происходит сложно-цепочечная реакция: образование (часто) адронного мезоатома с временем жизни порядка 10−27 секунды, затем распад этого атома (собственно аннигиляция) с образованием пионного комплекса, состоящего из 2-12 (в среднем 5-7) нейтральных (1/3) и заряженных (2/3) пи-мезонов (пионов), затем за время порядка 10−17 секунды нейтральные пионы распадаются с выделением гамма-квантов с пиком энергии в спектре около 70 МэВ, в то время, как заряженные пионы, имеющие значительно много большее время жизни, до ~1,5×10−4 секунды, удаляются с околосветовыми скоростями из области реакции (в вакууме и разреженной среде — до 20-40 м, в плотном веществе, например, графите — порядка 0,1-0,2 м) и затем распадаются с образованием мюонов, в свою очередь распадающихся (в основном, 99,998 %, канале распада) на нейтрино и электроны.

Таким образом, при аннигиляции антивещества — то есть вещества, состоящего из антипротонов и позитронов, примерно 1/3 энергии выделится в виде жесткого гамма-излучения с энергией квантов 511 кэВ (от позитронно-электронной аннигиляции) и 70 МэВ от распада нейтральных пионов, ~1/3 энергии — в виде заряженных частиц с достаточно большим пробегом, а ~1/3 — в виде нейтрино, то есть безвозвратно будет потеряна. И «реальный» ракетный двигатель на антиматерии скорее должен выглядеть, как магнитная ловушка для заряженных частиц, а не как некое «зеркало»[источник не указан 827 дней].

При такой невысокой массовой отдаче, порядка 23%[1], эксплуатация фотонного двигателя становится менее выгодной. Значительно повысить его эффективность позволяет использование внешних ресурсов. Прямоточный аннигиляционный фотонный двигатель и магнитные ловушки, собирающие рассеянный в межзвездной среде водород и гелий, дают возможность существенно уменьшить запасы рабочего вещества. К сожалению количество антивещества в межзвездной среде очень мало - порядка одного атома антиводорода или антигелия на 5*106 атомов обычного водорода, что делает невозможным использовать этот внешний ресурс. Поэтому проблема получения большой массы антивещества и его хранения на борту остается актуальной и для прямоточного аннигиляционного фотонного двигателя. [2]

Технические проблемы

В сегодняшнем состоянии идея фотонного реактивного двигателя невероятно далека от технического воплощения. Она содержит ряд проблем, которые сейчас даже теоретически не могут быть решены: Это:

  1. Проблема получения большого количества антивещества
  2. Проблема его хранения
  3. Проблема полного использования при «сжигании» — чтобы аннигиляция происходила полностью, и в основном с выделением именно фотонов
  4. Проблема создания «зеркала», способного очень хорошо отражать гамма-излучение и другие продукты аннигиляции.

Фотонный двигатель на магнитных монополях

Если справедливы некоторые варианты теорий Великого объединения, такие как модель 'т Хоофта — Полякова, то можно построить фотонный двигатель, не использующий антивещество, так как магнитный монополь гипотетически может катализировать распад протона[3][4] на позитрон и π0-мезон:

π0 быстро распадается на 2 фотона, а позитрон аннигилирует с электроном, в итоге атом водорода превращается в 4 фотона, и нерешённой остаётся только проблема зеркала.

В то же время в большинстве современных теорий Великого объединения магнитные монополи отсутствуют, что ставит под сомнение эту привлекательную идею.

Упоминания в научной фантастике

Проверить информацию.

Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье.На странице обсуждения должны быть пояснения.

Патенты на фотонный двигатель

Данный раздел имеет чрезмерный объём или содержит маловажные подробности.

Если вы не согласны с этим, пожалуйста, покажите в тексте существенность излагаемого материала. В противном случае раздел может быть удалён. Подробности могут быть на странице обсуждения.

Возможно, эта часть статьи содержит оригинальное исследование.

Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление.Дополнительные сведения могут быть на странице обсуждения.

В настоящее время существуют несколько патентов России на фотонный двигатель. Однако они содержат физические ошибки, и в отсутствие эффективных рабочих образцов эти патенты могут рассматриваться лишь как курьёзы:

  1. Патент на изобретение № RU 2201527 С1 от 18.05.1999. Автор(ы): Горбачев Евгений Александрович. Патентообладатель(и): Горбачев Евгений Александрович.Данный патент основан на неверном предположении, что разбив один пучок на несколько пучков меньшей мощности, мы получим бо́льшую тягу.
  2. Патент на полезную модель № RU 64298 U1 от 05.02.2007. Автор(ы): Урмацких Анатолий Васильевич, Урмацких Светлана Анатольевна, Урмацких Юлия Анатольевна. Патентообладатель(и): Урмацких Анатолий Васильевич.Данный патент основан на неверном предположении, что тягу может увеличить пассивный резонатор.
  3. Заявка на изобретение № RU 2008142777 A от 10.05.2010. Автор(ы): Дзюба Анатолий Филиппович.Данная заявка содержит не имеющий физического смысла наукообразный бред:
Реактивный двигатель с силой тяги, вызываемой реактивной силой струи газа, истекающей из сопла, отличающийся тем, что сила тяги вызывается реактивной силой виртуальных фотонов, излучаемых совокупностью протонов, стабилизируемыми магнитным полем сфероида, при этом излучение виртуальных фотонов подавлено в направлении вектора тяги возвратно-поступательными колебательными движениями в этом направлении локального участка магнитного поля сфероида, вызываемыми источником колебаний.

Фотонный двигатель в реальности

Согласно одной из гипотез, аномальное ускорение космических аппаратов «Пионер-10» и «Пионер-11» вызвано анизотропией теплового излучения аппаратов. Если это так, то таким образом зафиксирован эффект, аналогичный фотонному двигателю. Аналогично при определении параметров гравитационного поля Земли из траекторий движения геофизических спутников LAGEOS в расчёты входит давление солнечного света (Солнечный парус) и анизотропия теплового излучения спутников.

См. также

Примечания

Ссылки

brokgauz.academic.ru

Фотонный двигатель - это... Что такое Фотонный двигатель?

Фотонный двигатель (квантовый) — гипотетический реактивный двигатель, где источником энергии служит тело, которое излучает свет. Фотон имеет импульс, и, соответственно, при истекании из двигателя, свет создает реактивную тягу. Теоретически фотонный двигатель может развить максимальную тягу из расчёта на затраченную массу космического аппарата, позволяя достигать скоростей, близких к скорости света, однако практическая разработка таких двигателей, судя по всему, дело достаточно отдалённого будущего.

Аннигиляционный фотонный двигатель

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 12 мая 2011.

Чаще всего обсуждаются и упоминаются в научно-фантастической литературе идеи создания такого двигателя с использованием антивещества. Энтузиасты считают, что взаимодействие вещества и антивещества позволяет перевести практически всю вступающую в реакции массу в излучение.

Тем не менее, надо отметить, что распространенная в литературе формулировка «при аннигиляции выделяются гамма-кванты» в принципе физически неверна. Гамма-кванты прямо выделяются только при электрон-позитронной аннигиляции. В случае аннигиляции покоящейся (не релятивистской) пары протон-антипротон происходит сложно-цепочечная реакция: образование (часто) адронного мезоатома с временем жизни порядка 10−27 секунды, затем распад этого атома (собственно аннигиляция) с образованием пионного комплекса, состоящего из 2-12 (в среднем 5-7) нейтральных (1/3) и заряженных (2/3) пи-мезонов (пионов), затем за время порядка 10−17 секунды нейтральные пионы распадаются с выделением гамма-квантов с пиком энергии в спектре около 70 МэВ, в то время, как заряженные пионы, имеющие значительно много большее время жизни, до ~1,5×10−4 секунды, удаляются с околосветовыми скоростями из области реакции (в вакууме и разреженной среде — до 20-40 м, в плотном веществе, например, графите — порядка 0,1-0,2 м) и затем распадаются с образованием мюонов, в свою очередь распадающихся (в основном, 99,998 %, канале распада) на нейтрино и электроны.

Таким образом, при аннигиляции антивещества — то есть вещества, состоящего из антипротонов и позитронов, примерно 1/3 энергии выделится в виде жесткого гамма-излучения с энергией квантов 511 кэВ (от позитронно-электронной аннигиляции) и 70 МэВ от распада нейтральных пионов, ~1/3 энергии — в виде заряженных частиц с достаточно большим пробегом, а ~1/3 — в виде нейтрино, то есть безвозвратно будет потеряна. И «реальный» ракетный двигатель на антиматерии скорее должен выглядеть, как магнитная ловушка для заряженных частиц, а не как некое «зеркало»[источник не указан 827 дней].

При такой невысокой массовой отдаче, порядка 23%[1], эксплуатация фотонного двигателя становится менее выгодной. Значительно повысить его эффективность позволяет использование внешних ресурсов. Прямоточный аннигиляционный фотонный двигатель и магнитные ловушки, собирающие рассеянный в межзвездной среде водород и гелий, дают возможность существенно уменьшить запасы рабочего вещества. К сожалению количество антивещества в межзвездной среде очень мало - порядка одного атома антиводорода или антигелия на 5*106 атомов обычного водорода, что делает невозможным использовать этот внешний ресурс. Поэтому проблема получения большой массы антивещества и его хранения на борту остается актуальной и для прямоточного аннигиляционного фотонного двигателя. [2]

Технические проблемы

В сегодняшнем состоянии идея фотонного реактивного двигателя невероятно далека от технического воплощения. Она содержит ряд проблем, которые сейчас даже теоретически не могут быть решены: Это:

  1. Проблема получения большого количества антивещества
  2. Проблема его хранения
  3. Проблема полного использования при «сжигании» — чтобы аннигиляция происходила полностью, и в основном с выделением именно фотонов
  4. Проблема создания «зеркала», способного очень хорошо отражать гамма-излучение и другие продукты аннигиляции.

Фотонный двигатель на магнитных монополях

Если справедливы некоторые варианты теорий Великого объединения, такие как модель 'т Хоофта — Полякова, то можно построить фотонный двигатель, не использующий антивещество, так как магнитный монополь гипотетически может катализировать распад протона[3][4] на позитрон и π0-мезон:

π0 быстро распадается на 2 фотона, а позитрон аннигилирует с электроном, в итоге атом водорода превращается в 4 фотона, и нерешённой остаётся только проблема зеркала.

В то же время в большинстве современных теорий Великого объединения магнитные монополи отсутствуют, что ставит под сомнение эту привлекательную идею.

Упоминания в научной фантастике

Проверить информацию.

Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье.На странице обсуждения должны быть пояснения.

Патенты на фотонный двигатель

Данный раздел имеет чрезмерный объём или содержит маловажные подробности.

Если вы не согласны с этим, пожалуйста, покажите в тексте существенность излагаемого материала. В противном случае раздел может быть удалён. Подробности могут быть на странице обсуждения.

Возможно, эта часть статьи содержит оригинальное исследование.

Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление.Дополнительные сведения могут быть на странице обсуждения.

В настоящее время существуют несколько патентов России на фотонный двигатель. Однако они содержат физические ошибки, и в отсутствие эффективных рабочих образцов эти патенты могут рассматриваться лишь как курьёзы:

  1. Патент на изобретение № RU 2201527 С1 от 18.05.1999. Автор(ы): Горбачев Евгений Александрович. Патентообладатель(и): Горбачев Евгений Александрович.Данный патент основан на неверном предположении, что разбив один пучок на несколько пучков меньшей мощности, мы получим бо́льшую тягу.
  2. Патент на полезную модель № RU 64298 U1 от 05.02.2007. Автор(ы): Урмацких Анатолий Васильевич, Урмацких Светлана Анатольевна, Урмацких Юлия Анатольевна. Патентообладатель(и): Урмацких Анатолий Васильевич.Данный патент основан на неверном предположении, что тягу может увеличить пассивный резонатор.
  3. Заявка на изобретение № RU 2008142777 A от 10.05.2010. Автор(ы): Дзюба Анатолий Филиппович.Данная заявка содержит не имеющий физического смысла наукообразный бред:
Реактивный двигатель с силой тяги, вызываемой реактивной силой струи газа, истекающей из сопла, отличающийся тем, что сила тяги вызывается реактивной силой виртуальных фотонов, излучаемых совокупностью протонов, стабилизируемыми магнитным полем сфероида, при этом излучение виртуальных фотонов подавлено в направлении вектора тяги возвратно-поступательными колебательными движениями в этом направлении локального участка магнитного поля сфероида, вызываемыми источником колебаний.

Фотонный двигатель в реальности

Согласно одной из гипотез, аномальное ускорение космических аппаратов «Пионер-10» и «Пионер-11» вызвано анизотропией теплового излучения аппаратов. Если это так, то таким образом зафиксирован эффект, аналогичный фотонному двигателю. Аналогично при определении параметров гравитационного поля Земли из траекторий движения геофизических спутников LAGEOS в расчёты входит давление солнечного света (Солнечный парус) и анизотропия теплового излучения спутников.

См. также

Примечания

Ссылки

dal.academic.ru

Фотонный двигатель - это... Что такое Фотонный двигатель?

Фотонный двигатель (квантовый) — гипотетический реактивный двигатель, где источником энергии служит тело, которое излучает свет. Фотон имеет импульс, и, соответственно, при истекании из двигателя, свет создает реактивную тягу. Теоретически фотонный двигатель может развить максимальную тягу из расчёта на затраченную массу космического аппарата, позволяя достигать скоростей, близких к скорости света, однако практическая разработка таких двигателей, судя по всему, дело достаточно отдалённого будущего.

Аннигиляционный фотонный двигатель

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 12 мая 2011.

Чаще всего обсуждаются и упоминаются в научно-фантастической литературе идеи создания такого двигателя с использованием антивещества. Энтузиасты считают, что взаимодействие вещества и антивещества позволяет перевести практически всю вступающую в реакции массу в излучение.

Тем не менее, надо отметить, что распространенная в литературе формулировка «при аннигиляции выделяются гамма-кванты» в принципе физически неверна. Гамма-кванты прямо выделяются только при электрон-позитронной аннигиляции. В случае аннигиляции покоящейся (не релятивистской) пары протон-антипротон происходит сложно-цепочечная реакция: образование (часто) адронного мезоатома с временем жизни порядка 10−27 секунды, затем распад этого атома (собственно аннигиляция) с образованием пионного комплекса, состоящего из 2-12 (в среднем 5-7) нейтральных (1/3) и заряженных (2/3) пи-мезонов (пионов), затем за время порядка 10−17 секунды нейтральные пионы распадаются с выделением гамма-квантов с пиком энергии в спектре около 70 МэВ, в то время, как заряженные пионы, имеющие значительно много большее время жизни, до ~1,5×10−4 секунды, удаляются с околосветовыми скоростями из области реакции (в вакууме и разреженной среде — до 20-40 м, в плотном веществе, например, графите — порядка 0,1-0,2 м) и затем распадаются с образованием мюонов, в свою очередь распадающихся (в основном, 99,998 %, канале распада) на нейтрино и электроны.

Таким образом, при аннигиляции антивещества — то есть вещества, состоящего из антипротонов и позитронов, примерно 1/3 энергии выделится в виде жесткого гамма-излучения с энергией квантов 511 кэВ (от позитронно-электронной аннигиляции) и 70 МэВ от распада нейтральных пионов, ~1/3 энергии — в виде заряженных частиц с достаточно большим пробегом, а ~1/3 — в виде нейтрино, то есть безвозвратно будет потеряна. И «реальный» ракетный двигатель на антиматерии скорее должен выглядеть, как магнитная ловушка для заряженных частиц, а не как некое «зеркало»[источник не указан 827 дней].

При такой невысокой массовой отдаче, порядка 23%[1], эксплуатация фотонного двигателя становится менее выгодной. Значительно повысить его эффективность позволяет использование внешних ресурсов. Прямоточный аннигиляционный фотонный двигатель и магнитные ловушки, собирающие рассеянный в межзвездной среде водород и гелий, дают возможность существенно уменьшить запасы рабочего вещества. К сожалению количество антивещества в межзвездной среде очень мало - порядка одного атома антиводорода или антигелия на 5*106 атомов обычного водорода, что делает невозможным использовать этот внешний ресурс. Поэтому проблема получения большой массы антивещества и его хранения на борту остается актуальной и для прямоточного аннигиляционного фотонного двигателя. [2]

Технические проблемы

В сегодняшнем состоянии идея фотонного реактивного двигателя невероятно далека от технического воплощения. Она содержит ряд проблем, которые сейчас даже теоретически не могут быть решены: Это:

  1. Проблема получения большого количества антивещества
  2. Проблема его хранения
  3. Проблема полного использования при «сжигании» — чтобы аннигиляция происходила полностью, и в основном с выделением именно фотонов
  4. Проблема создания «зеркала», способного очень хорошо отражать гамма-излучение и другие продукты аннигиляции.

Фотонный двигатель на магнитных монополях

Если справедливы некоторые варианты теорий Великого объединения, такие как модель 'т Хоофта — Полякова, то можно построить фотонный двигатель, не использующий антивещество, так как магнитный монополь гипотетически может катализировать распад протона[3][4] на позитрон и π0-мезон:

π0 быстро распадается на 2 фотона, а позитрон аннигилирует с электроном, в итоге атом водорода превращается в 4 фотона, и нерешённой остаётся только проблема зеркала.

В то же время в большинстве современных теорий Великого объединения магнитные монополи отсутствуют, что ставит под сомнение эту привлекательную идею.

Упоминания в научной фантастике

Проверить информацию.

Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье.На странице обсуждения должны быть пояснения.

Патенты на фотонный двигатель

Данный раздел имеет чрезмерный объём или содержит маловажные подробности.

Если вы не согласны с этим, пожалуйста, покажите в тексте существенность излагаемого материала. В противном случае раздел может быть удалён. Подробности могут быть на странице обсуждения.

Возможно, эта часть статьи содержит оригинальное исследование.

Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление.Дополнительные сведения могут быть на странице обсуждения.

В настоящее время существуют несколько патентов России на фотонный двигатель. Однако они содержат физические ошибки, и в отсутствие эффективных рабочих образцов эти патенты могут рассматриваться лишь как курьёзы:

  1. Патент на изобретение № RU 2201527 С1 от 18.05.1999. Автор(ы): Горбачев Евгений Александрович. Патентообладатель(и): Горбачев Евгений Александрович.Данный патент основан на неверном предположении, что разбив один пучок на несколько пучков меньшей мощности, мы получим бо́льшую тягу.
  2. Патент на полезную модель № RU 64298 U1 от 05.02.2007. Автор(ы): Урмацких Анатолий Васильевич, Урмацких Светлана Анатольевна, Урмацких Юлия Анатольевна. Патентообладатель(и): Урмацких Анатолий Васильевич.Данный патент основан на неверном предположении, что тягу может увеличить пассивный резонатор.
  3. Заявка на изобретение № RU 2008142777 A от 10.05.2010. Автор(ы): Дзюба Анатолий Филиппович.Данная заявка содержит не имеющий физического смысла наукообразный бред:
Реактивный двигатель с силой тяги, вызываемой реактивной силой струи газа, истекающей из сопла, отличающийся тем, что сила тяги вызывается реактивной силой виртуальных фотонов, излучаемых совокупностью протонов, стабилизируемыми магнитным полем сфероида, при этом излучение виртуальных фотонов подавлено в направлении вектора тяги возвратно-поступательными колебательными движениями в этом направлении локального участка магнитного поля сфероида, вызываемыми источником колебаний.

Фотонный двигатель в реальности

Согласно одной из гипотез, аномальное ускорение космических аппаратов «Пионер-10» и «Пионер-11» вызвано анизотропией теплового излучения аппаратов. Если это так, то таким образом зафиксирован эффект, аналогичный фотонному двигателю. Аналогично при определении параметров гравитационного поля Земли из траекторий движения геофизических спутников LAGEOS в расчёты входит давление солнечного света (Солнечный парус) и анизотропия теплового излучения спутников.

См. также

Примечания

Ссылки

biograf.academic.ru