Твердото́пливный раке́тный дви́гатель (РДТТ — ракетный двигатель твёрдого топлива; иногда неправильно пишется как «твёрдотопливный») использует в качестве топлива твёрдое горючее и окислитель.
Самые ранние сведения об использовании твердотопливных ракет (китайских пороховых ракет) относятся к XIII веку. Вплоть до XX века все ракеты использовали ту или иную форму твёрдого топлива, как правило на основе дымного пороха. В период между первой и второй мировыми войнами начинается принятие на вооружение легких твердотопливных ракет на основе нитроцеллюлозных топлив. После Второй Мировой войны началось бурное развитие ракетной техники как военного так и космического назначения.
Достоинствами твердотопливных ракет являются: относительная простота, отсутствие проблемы возможных утечек токсичного топлива, низкая пожароопасность, возможность долговременного хранения, надёжность.
Недостатками таких двигателей являются невысокий удельный импульс и относительные сложности с управлением тягой двигателя (дросселированием), его остановкой (отсечка тяги) и повторным запуском, по сравнению с ЖРД; как правило, больший уровень вибраций при работе, большое количество агрессивных веществ в выхлопе наиболее распространённых видов топлива с перхлоратом аммония.
Твердотопливные ступени никогда не использовались в советской и российской космонавтике, однако широко применялись и применяются в ракетной технике других стран. В основном это элементы первой ступени (боковые ускорители):
В ракетомоделировании используется 2 типа двигателей на твёрдом топливе. Первые — на основе дымного пороха (в Америке такие двигатели имеются в свободной продаже). Но обычно используют расплав или смесь калийной селитры (или реже натриевой селитры) и углеводов (сахар, сорбит и декстроза) — это т. н. «карамель», она изготовляется самостоятельно. Ракетные двигатели обычно имеют сопло, но иногда делают и бессопловые двигатели. Их обычно изготовляют из картонных гильз для охотничьих ружей, в качестве сопла используется отверстие для капсюля.
В настоящее время существуют программы для расчёта характеристик таких двигателей. Наиболее популярная — «SRM» авторства Ричарда Накки (существует и русскоязычная версия).
Топливо РДТТ американских межконтинентальных ракет состояло из смеси на основе перхлората аммония в качестве окислителя и горючего полиуретана с алюминием (первая ступень), с присадками (связующего НТРВ (англ. Hydroxyl Terminated Poly Butadien — полибутадиена с концевой гидроксильной группой), улучшающими стабильность скорости горения, формование и хранения заряда и смесью на основе перхлората аммония в качестве окислителя и горючего полиуретана в смеси с сополимером полибутадиена и акриловой кислоты (вторая ступень).
wikiredia.ru
Твердото́пливный раке́тный дви́гатель (РДТТ — ракетный двигатель твёрдого топлива; иногда неправильно пишется как «твёрдотопливный») использует в качестве топлива твёрдое горючее и окислитель.
Самые ранние сведения об использовании твердотопливных ракет (китайских пороховых ракет) относятся к XIII веку. Вплоть до XX века все ракеты использовали ту или иную форму твёрдого топлива, как правило на основе дымного пороха. В период между первой и второй мировыми войнами начинается принятие на вооружение легких твердотопливных ракет на основе нитроцеллюлозных топлив. После Второй Мировой войны началось бурное развитие ракетной техники как военного так и космического назначения.
Достоинствами твердотопливных ракет являются: относительная простота, отсутствие проблемы возможных утечек токсичного топлива, низкая пожароопасность, возможность долговременного хранения, надёжность.
Недостатками таких двигателей являются невысокий удельный импульс и относительные сложности с управлением тягой двигателя (дросселированием), его остановкой (отсечка тяги) и повторным запуском, по сравнению с ЖРД; как правило, больший уровень вибраций при работе, большое количество агрессивных веществ в выхлопе наиболее распространённых видов топлива с перхлоратом аммония.
Твердотопливные ступени никогда не использовались в советской и российской космонавтике, однако широко применялись и применяются в ракетной технике других стран. В основном это элементы первой ступени (боковые ускорители):
ru-wiki.ru
Материал из Википедии — свободной энциклопедии
(перенаправлено с «»)Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 24 июля 2015; проверки требуют 14 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 24 июля 2015; проверки требуют 14 правок.Твердото́пливный раке́тный дви́гатель (РДТТ — ракетный двигатель твёрдого топлива; иногда неправильно пишется как «твёрдотопливный») использует в качестве топлива твёрдое горючее и окислитель.
Самые ранние сведения об использовании твердотопливных ракет (китайских пороховых ракет) относятся к XIII веку. Вплоть до XX века все ракеты использовали ту или иную форму твёрдого топлива, как правило на основе дымного пороха. В период между первой и второй мировыми войнами начинается принятие на вооружение легких твердотопливных ракет на основе нитроцеллюлозных топлив. После Второй Мировой войны началось бурное развитие ракетной техники как военного так и космического назначения.
Достоинствами твердотопливных ракет являются: относительная простота, отсутствие проблемы возможных утечек токсичного топлива, низкая пожароопасность, возможность долговременного хранения, надёжность.
Недостатками таких двигателей являются невысокий удельный импульс и относительные сложности с управлением тягой двигателя (дросселированием), его остановкой (отсечка тяги) и повторным запуском, по сравнению с ЖРД; как правило, больший уровень вибраций при работе, по сравнению с ЖРД, большое количество агрессивных веществ в выхлопе наиболее распространённых топлив с перхлоратом аммония.
Твердотопливные ступени никогда не использовались в советской и российской космонавтике, однако широко применялись и применяются в ракетной технике других стран. В основном это элементы первой ступени (боковые ускорители):
В ракетомоделировании используется 2 типа двигателей на твёрдом топливе. Первые — на основе дымного пороха (в Америке такие двигатели имеются в свободной продаже). Но обычно используют расплав или смесь калийной селитры ( или реже натриевой селитры) и углеводов (сахар, сорбит и декстроза) — это т. н. «карамель», она изготовляется самостоятельно. Ракетные двигатели обычно имеют сопло, но иногда делают и бессопловые двигатели. Их обычно изготовляют из картонных гильз для охотничьих ружей, в качестве сопла используется отверстие для капсюля.
В настоящее время существуют программы для расчёта характеристик таких двигателей. Наиболее популярная — «SRM» авторства Ричарда Накки (существует и русскоязычная версия).
Топливо РДТТ американских межконтинентальных ракет состояло из смеси на основе перхлората аммония в качестве окислителя и горючего полиуретана с алюминием (первая ступень), с присадками (связующего НТРВ (англ. Hydroxyl Terminated Poly Butadien — полибутадиена с концевой гидроксильной группой), улучшающими стабильность скорости горения, формование и хранения заряда и смесью на основе перхлората аммония в качестве окислителя и горючего полиуретана в смеси с сополимером полибутадиена и акриловой кислоты (вторая ступень).
encyclopaedia.bid
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 24 июля 2015; проверки требуют 22 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 24 июля 2015; проверки требуют 22 правки.Твердото́пливный раке́тный дви́гатель (РДТТ — ракетный двигатель твёрдого топлива; иногда неправильно пишется как «твёрдотопливный») использует в качестве топлива твёрдое горючее и окислитель.
Самые ранние сведения об использовании твердотопливных ракет (китайских пороховых ракет) относятся к XIII веку. Вплоть до XX века все ракеты использовали ту или иную форму твёрдого топлива, как правило на основе дымного пороха. В период между первой и второй мировыми войнами начинается принятие на вооружение легких твердотопливных ракет на основе нитроцеллюлозных топлив. После Второй Мировой войны началось бурное развитие ракетной техники как военного так и космического назначения.
Достоинствами твердотопливных ракет являются: относительная простота, отсутствие проблемы возможных утечек токсичного топлива, низкая пожароопасность, возможность долговременного хранения, надёжность.
Недостатками таких двигателей являются невысокий удельный импульс и относительные сложности с управлением тягой двигателя (дросселированием), его остановкой (отсечка тяги) и повторным запуском, по сравнению с ЖРД; как правило, больший уровень вибраций при работе, большое количество агрессивных веществ в выхлопе наиболее распространённых видов топлива с перхлоратом аммония.
Твердотопливные ступени никогда не использовались в советской и российской космонавтике, однако широко применялись и применяются в ракетной технике других стран. В основном это элементы первой ступени (боковые ускорители):
В ракетомоделировании используется 2 типа двигателей на твёрдом топливе. Первые — на основе дымного пороха (в Америке такие двигатели имеются в свободной продаже). Но обычно используют расплав или смесь калийной селитры (или реже натриевой селитры) и углеводов (сахар, сорбит и декстроза) — это т. н. «карамель», она изготовляется самостоятельно. Ракетные двигатели обычно имеют сопло, но иногда делают и бессопловые двигатели. Их обычно изготовляют из картонных гильз для охотничьих ружей, в качестве сопла используется отверстие для капсюля.
В настоящее время существуют программы для расчёта характеристик таких двигателей. Наиболее популярная — «SRM» авторства Ричарда Накки (существует и русскоязычная версия).
Топливо РДТТ американских межконтинентальных ракет состояло из смеси на основе перхлората аммония в качестве окислителя и горючего полиуретана с алюминием (первая ступень), с присадками (связующего НТРВ (англ. Hydroxyl Terminated Poly Butadien — полибутадиена с концевой гидроксильной группой), улучшающими стабильность скорости горения, формование и хранения заряда и смесью на основе перхлората аммония в качестве окислителя и горючего полиуретана в смеси с сополимером полибутадиена и акриловой кислоты (вторая ступень).
ru.wikiyy.com
Изобретение относится к области ракетной техники и может быть использовано при проектировании и изготовлении ракетных двигателей твердого топлива. Твердотопливный ракетный двигатель содержит корпус с размещенным в нем с зазором зарядом всестороннего горения и воспламенитель, расположенный со стороны переднего торца заряда. Заряд выполнен с кольцевым выступом, расположенным в оконечности заднего торца заряда и контактирующим с внутренней поверхностью корпуса. Кольцевой выступ имеет сквозные прорези вдоль образующей заряда или под углом к ней. Изобретение позволяет повысить эффективность твердотопливного ракетного двигателя за счет упрощения его конструкции, улучшения воспламеняемости заряда, а также снижения дымообразования. 3 ил.
Патентуемое изобретение относится к области ракетной техники и может быть использовано при проектировании, отработке и изготовлении ракетных двигателей твердого топлива (РДТТ).
Одним из актуальных вопросов отработки РДТТ является создание благоприятных условий для воспламенения зарядов твердого ракетного топлива (ТРТ), обеспечивающих устойчивый выход двигателя на рабочий режим при наличии высоких тепловых потерь, например, из-за отсутствия по объективным причинам теплозащитного покрытия камеры сгорания (КС) корпуса двигателя.
Решению этого вопроса в той или иной степени посвящены технические решения по патентам RU 2247254, RU 2286475, RU 2282743 - аналоги патентуемой конструкции.
В конструкциях-аналогах по указанным патентам в основном реализуется максимальное использование тепловой энергии воспламенителя по прямому назначению - для зажжения заряда и сведения к минимуму бесполезного рассеивания энергии воспламенителя.
Недостатком технических решений-аналогов является определенное усложнение конструкции двигателя (введение по указанным патентам мембран-перегородок) и снижение в связи с этим весового совершенства двигателя и надежности его функционирования.
Наиболее эффективной из рассматриваемого класса конструкций является твердотопливный ракетный двигатель по патенту RU 2286475 с приоритетом от 11.01.2005 г., принятый авторами за прототип. Здесь эффективность воспламенения достигается за счет применения тонкостенной сгораемой мембраны-перегородки (4) (например, из полиэтилена), кратковременно перекрывающей проходные сечения КС корпуса (3) на заднем сопловом торце заряда (2) (фиг.1). Однако и это решение не лишено недостатков: это и усложнение конструкции двигателя, и снижение эксплуатационной надежности.
Технической задачей изобретения является разработка РДТТ с повышенной эффективностью, а именно: с улучшенной воспламеняемостью заряда, упрощенной конструкцией РДТТ и уменьшенным его дымообразованием.
Технический результат изобретения заключается в создании твердотопливного ракетного двигателя, содержащего корпус с размещенным в нем с зазором зарядом всестороннего горения и воспламенителем, расположенным со стороны переднего торца заряда, при этом заряд выполнен с кольцевым выступом у заднего торца, контактирующим с внутренней поверхностью корпуса. В кольцевом выступе могут быть выполнены сквозные прорези вдоль образующей или под углом к ней.
Сущность изобретения заключается в полном или частичном перекрытии (фиг.2) (в начальный момент работы РДТТ) зазора между боковой поверхностью заряда (2) и внутренней поверхностью КС корпуса (3) у заднего торца заряда. Это позволяет (как и конструкция прототипа) увеличить время пребывания продуктов сгорания воспламенителя (1) над воспламеняемыми поверхностями, высадить большую долю к-фазы воспламеняющего состава на поверхность заряда и тем самым улучшить воспламеняемость заряда. При этом для достижения указанного эффекта в патентуемой конструкции исключается дополнительная деталь (мембрана-перегородка), а перекрытие зазора достигается непосредственно самой конструкцией заряда. Это позволяет улучшить весовое совершенство ракетного двигателя как за счет исключения пассивного веса мембраны, так и за счет увеличения массы топлива в заряде, а увеличение начальной горящей поверхности заряда за счет выступа компенсирует повышенные начальные теплопотери в РДТТ в момент запуска, что повышает надежность его работы в целом. Исключение из конструкции РДТТ сгораемой перегородки снижает его дымообразование, что очень важно для управляемых ракетных комплексов с оптической системой управления.
В конструкции прототипа в силу существенных разбросов, в первую очередь механических характеристик полимеров (например, полиэтилена), под воздействием набегающего газового потока, происходит не только разложение, унос, пиролиз материала "мембраны-перегородки", но и возможно ее механическое разрушение. В результате реализуется повышенный разброс максимального давления в опытах, что неблагоприятно сказывается на надежности двигателя в целом. Кроме того, разложение полимеров (типа полиэтилена и бронематериалов) происходит с выделением большого количества дыма.
В заявляемой конструкции указанный недостаток устраняется как за счет закономерного процесса горения топлива заряда по эквидистантным поверхностям, так и за счет безусловного исключения разрушения выступа в результате газодинамического воздействия, так как прочность выступа обеспечивается за счет выполнения его за одно с телом заряда, необходимой, с точки зрения прочности, ширины (В) и при необходимости его профилированием.
Для сокращения промежутка времени, на котором сказывается влияние кольцевого выступа на внутрибаллистические характеристики двигателя, предлагается в кольцевом выступе выполнить сквозные прорези вдоль образующей заряда (фиг.3). Имея существенно меньшую по сравнению с длиной окружности (πД) ширину, указанные прорези практически не влияют на характер перекрытия зазора в начальный период (в момент воспламенения). После же воспламенения заряда за счет наличия прорезей существенно быстрее увеличивается проходное сечение в зазоре как за счет выгорания наружной диаметральной поверхности кольцевого выступа, так и за счет выгорания боковых поверхностей кольцевого выступа в прорезях. При этом существенно снижаются и гидравлические потери при течении газа над быстро вырождающимися секциями выступа. Варьируя количество прорезей, их ширину (Δ) и ширину (В) самого кольцевого выступа, возможно обеспечить необходимый форсажный режим работы заряда.
Перекрытие зазора непосредственно кольцевым (5) выступом топлива благоприятно сказывается на уменьшении дымообразования двигателя, так как дымность твердых топлив, например баллиститного типа, на порядок и более ниже дымности полимеров типа полиэтилена и бронематериалов.
Существенными отличительными признаками заявляемой конструкции являются:
1. Выполнение на боковой поверхности заряда у заднего торца кольцевого выступа, перекрывающего зазор между КС и наружной поверхностью заряда.
2. Выполнение в кольцевом выступе сквозных прорезей вдоль образующей заряда либо под углом к ней.
Положительный эффект достигаемый изобретением:
1. Улучшение воспламеняемости заряда
2. Упрощение конструкции двигателя.
3. Уменьшение гидравлических потерь при перекрытии зазора (во времени), достижение более высокой воспроизводимости внутрибаллистической характеристик (ВБХ) в начальный период.
4. Уменьшение дымообразования двигателя.
Изобретение иллюстрируется графическими материалами:
Фиг 1. Конструкция прототипа
1 - воспламенитель
2 - заряд
3 - корпус (КС)
4 - мембрана-перегородка
Фиг 2. Патентуемая конструкция двигателя
1 - воспламенитель
2 - заряд
3 - корпус (КС)
4 - мембрана-перегородка
5 - кольцевой выступ
Фиг 3. Вариант конструкции заряда для патентуемого двигателя
6 - сквозные прорези
7 - образующая заряда
8 - ширина кольцевого выступа
Д - диаметр заряда
Δ - ширина сквозной прорези
Твердотопливный ракетный двигатель, содержащий корпус с размещенным в нем с зазором зарядом всестороннего горения и воспламенитель, расположенный со стороны переднего торца заряда, отличающийся тем, что заряд выполнен с кольцевым выступом, расположенным в оконечности заднего торца заряда и контактирующим с внутренней поверхностью корпуса, при этом кольцевой выступ имеет сквозные прорези вдоль образующей заряда или под углом к ней.
www.findpatent.ru
Материал из Википедии — свободной энциклопедии
К:Википедия:Статьи без источников (тип: не указан)Твердото́пливный раке́тный дви́гатель (РДТТ — ракетный двигатель твёрдого топлива; иногда неправильно пишется как «твёрдотопливный») использует в качестве топлива твёрдое горючее и окислитель.
Самые ранние сведения об использовании твердотопливных ракет (китайских пороховых ракет) относятся к XIII веку. Вплоть до XX века все ракеты использовали ту или иную форму твёрдого топлива, как правило на основе дымного пороха. В период между первой и второй мировыми войнами начинается принятие на вооружение легких твердотопливных ракет на основе нитроцеллюлозных топлив. После Второй Мировой войны началось бурное развитие ракетной техники как военного так и космического назначения.
Достоинствами твердотопливных ракет являются: относительная простота, отсутствие проблемы возможных утечек токсичного топлива, низкая пожароопасность, возможность долговременного хранения, надёжность.
Недостатками таких двигателей являются невысокий удельный импульс и относительные сложности с управлением тягой двигателя (дросселированием), его остановкой (отсечка тяги) и повторным запуском, по сравнению с ЖРД; как правило, больший уровень вибраций при работе, большое количество агрессивных веществ в выхлопе наиболее распространённых видов топлива с перхлоратом аммония.
Твердотопливные ступени никогда не использовались в советской и российской космонавтике, однако широко применялись и применяются в ракетной технике других стран. В основном это элементы первой ступени (боковые ускорители):
В ракетомоделировании используется 2 типа двигателей на твёрдом топливе. Первые — на основе дымного пороха (в Америке такие двигатели имеются в свободной продаже). Но обычно используют расплав или смесь калийной селитры ( или реже натриевой селитры) и углеводов (сахар, сорбит и декстроза) — это т. н. «карамель», она изготовляется самостоятельно. Ракетные двигатели обычно имеют сопло, но иногда делают и бессопловые двигатели. Их обычно изготовляют из картонных гильз для охотничьих ружей, в качестве сопла используется отверстие для капсюля.
В настоящее время существуют программы для расчёта характеристик таких двигателей. Наиболее популярная — «SRM» авторства Ричарда Накки (существует и русскоязычная версия).
Топливо РДТТ американских межконтинентальных ракет состояло из смеси на основе перхлората аммония в качестве окислителя и горючего полиуретана с алюминием (первая ступень), с присадками (связующего НТРВ (англ. Hydroxyl Terminated Poly Butadien — полибутадиена с концевой гидроксильной группой), улучшающими стабильность скорости горения, формование и хранения заряда и смесью на основе перхлората аммония в качестве окислителя и горючего полиуретана в смеси с сополимером полибутадиена и акриловой кислоты (вторая ступень).
wikipedia.green
Материал из Википедии — свободной энциклопедии
К:Википедия:Статьи без источников (тип: не указан)Твердото́пливный раке́тный дви́гатель (РДТТ — ракетный двигатель твёрдого топлива; иногда неправильно пишется как «твёрдотопливный») использует в качестве топлива твёрдое горючее и окислитель.
Самые ранние сведения об использовании твердотопливных ракет (китайских пороховых ракет) относятся к XIII веку. Вплоть до XX века все ракеты использовали ту или иную форму твёрдого топлива, как правило на основе дымного пороха. В период между первой и второй мировыми войнами начинается принятие на вооружение легких твердотопливных ракет на основе нитроцеллюлозных топлив. После Второй Мировой войны началось бурное развитие ракетной техники как военного так и космического назначения.
Достоинствами твердотопливных ракет являются: относительная простота, отсутствие проблемы возможных утечек токсичного топлива, низкая пожароопасность, возможность долговременного хранения, надёжность.
Недостатками таких двигателей являются невысокий удельный импульс и относительные сложности с управлением тягой двигателя (дросселированием), его остановкой (отсечка тяги) и повторным запуском, по сравнению с ЖРД; как правило, больший уровень вибраций при работе, большое количество агрессивных веществ в выхлопе наиболее распространённых видов топлива с перхлоратом аммония.
Твердотопливные ступени никогда не использовались в советской и российской космонавтике, однако широко применялись и применяются в ракетной технике других стран. В основном это элементы первой ступени (боковые ускорители):
В ракетомоделировании используется 2 типа двигателей на твёрдом топливе. Первые — на основе дымного пороха (в Америке такие двигатели имеются в свободной продаже). Но обычно используют расплав или смесь калийной селитры ( или реже натриевой селитры) и углеводов (сахар, сорбит и декстроза) — это т. н. «карамель», она изготовляется самостоятельно. Ракетные двигатели обычно имеют сопло, но иногда делают и бессопловые двигатели. Их обычно изготовляют из картонных гильз для охотничьих ружей, в качестве сопла используется отверстие для капсюля.
В настоящее время существуют программы для расчёта характеристик таких двигателей. Наиболее популярная — «SRM» авторства Ричарда Накки (существует и русскоязычная версия).
Топливо РДТТ американских межконтинентальных ракет состояло из смеси на основе перхлората аммония в качестве окислителя и горючего полиуретана с алюминием (первая ступень), с присадками (связующего НТРВ (англ. Hydroxyl Terminated Poly Butadien — полибутадиена с концевой гидроксильной группой), улучшающими стабильность скорости горения, формование и хранения заряда и смесью на основе перхлората аммония в качестве окислителя и горючего полиуретана в смеси с сополимером полибутадиена и акриловой кислоты (вторая ступень).
wikipedia.green