ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Энциклопедия по машиностроению XXL. Механический двигатель


Вечный двигатель. Механический вечный двигатель. Анализ. Принцип работы. Что его тормозит Как е

Министерство образования Российской Федерации

Реферат на тему

«Вечный двигатель. Механический вечный двигатель. Анализ. Принцип работы. Что его тормозит? Как его заставить работать?»Выполнил:

ПроверилОмск-2011

Введение

Давно известно, что идея вечного двигателя неосуществима, однако она очень интересна и познавательна с точки зрения истории развития науки и технологий. Ведь в поисках вечного двигателя ученые смогли лучше понять основные физические принципы. Более того, изобретатели вечного двигателя являются яркими примерами для изучения некоторых аспектов человеческой психологии: изобретательности, настойчивости, оптимизма и фанатизма.

Вечный двигатель (perpetuum mobile, perpetual motion machine) – устройство, основанное на механических, химических, электрических или иных физических процессах. Будучи запущенным единожды, он сможет работать вечно и остановится только при воздействии на него извне.

Вечные двигатели делятся на две большие группы.

Вечные двигатели первого рода не извлекают энергию из окружающей среды (например, тепло), при этом физическое и химическое состояние его частей также остается неизменным. Машины такого рода не могут существовать исходя из первого закона термодинамики.

Вечные двигатели второго рода извлекают тепло из окружающей среды и превращают его в энергию механического движения. Такие устройства не могут существовать исходя из второго закона термодинамики.

Сегодня мы уже не можем ограничиваться лишь механикой (ведь есть электричество, магнетизм и т.д.), поэтому появились две категории вечных двигателей. Первые из них являются естественными (perpetuum mobile naturae), а вторые физическими, или искусственными (perpetuum mobile physicae).

Планеты миллиардами лет вращаются вокруг Солнца, являясь примером вечного движения. Это было подмечено еще очень давно. Естественно, ученые хотели повторить эту картину Божьего творения в уменьшенном масштабе, за что часто считались еретиками и становились жертвами инквизиции. В то же время, иезуиты придавали вечному двигателю огромное значение и тайно работали над его созданием.

Механический вечный двигатель.

Археологические изыскания выявили, что в Древней Греции идея бесконечного движения не вызывала особого интереса. Знания греческих инженеров и ученых о механике были довольно обширны, об этом свидетельствуют некоторые находки (например, механизм Герона). Естественных источников силы, как, например, водяных колес и труда рабов, было достаточно для нужд Греции. Конструкторская изобретательность была, в основном, направлена на создание механических игрушек и храмовых автоматов, создающих иллюзию самостоятельного движения. Было найдено всего несколько текстов 2000-летней давности с упоминанием вечного двигателя.

На Востоке же идея вечного двигателя была распространена широко. Первое упоминание о вечном двигателе, сконструированным индийским математиком и астрономом Брахмагупта (Brahmagupta) относится к 624 году н.э. В своем труде «Brahmasphutasiddhanta» он описал вечный двигатель так: «Сконструировать из светлых пород дерева колесо с полыми равномерно распределенными спицами, заполнить спицы до половины ртутью и запечатать, поместить колесо на горизонтальную ось. В части спиц ртуть будет подниматься вверх, а в остальных спускаться, обеспечивая непрерывное движение».

Лалла (Lаlla), другой индийский астроном, в 748 году написал трактат «Sisyadhivrddhida Tantra», описывающий схожий механизм, отличающийся только формой полых спиц.

Около 1150 года очередной индийский математик и астроном Баскара (Bhaskara) в труде «Siddhanta Siromani» описал механизм с полыми трубками, расположенными по окружности колеса. Он писал: «Эта машина вращается с большой силой. Потому что ртуть с одной стороны ближе к оси, чем с другой». Очевидно, он думал, что такая конструкция постоянно выводит систему из равновесия, поддерживая вечное движение. Считается, что он так и не испытал свое устройство (как, впрочем, и многие другие изобретатели вечных двигателей).

Начиная с 12 века основные принципы конструкции вечного двигателя модифицировались и объединялись, чтобы в конечном итоге стать частью истории технологий. Даже сегодня некоторые изобретатели обращаются к этим «несбалансированным колесам». Описанные конструкции несли в себе не только технический, но и религиозный, и философский смысл, как бы олицетворяя бесконечную смену времен года и реинкарнацию, поэтому многие храмы использовали эти символы. А сами вечные двигатели такой конструкции получили название индийских (в другой трактовке персидских или арабских).

В Средние века около 1235 года архитектор Виллар де Оннекур (Villard de Honnecourt) заинтересовался идеей вечного двигателя и был озадачен неудачами своих современников. Чтобы показать их невежество, он нарисовал простую, но весьма оригинальную машину. Ее непрерывное движение обеспечивалось за счет нечетного количества подвижных увесистых молотков, прикрепленных к ободу колеса.

Рассуждения Виллара довольно просты. Он ошибочно полагал, что всегда с одной стороны оси будут находится четыре молотка, а с другой три, создавая постоянный дисбаланс. Он не осознавал, что система в целом будет стремиться к статическому равновесию, когда с каждой стороны будут находиться по три молотка и один внизу. Поучительно, что и сегодня некоторые попадаются в эту ловушку.

В эпоху Возрождения интерес к вечному двигателю был поистине огромен. Например, большое количество чертежей с описанием конструкции вечного двигателя было сделано архитектором Франческо ди Джорджио (Francisco di Georgio). Один из довольно неплохих вариантов мы видим на рисунке. Это гидроприводная мельница с дополнительной помпой.

Машина использует непрерывную циркуляцию воды (рециркуляционная мельница). Поскольку извне вода не поступает, то такие механизмы иногда называют aqua morta, то есть «мертвая вода». Падающая вода запускает большое вертикальное колесо, которое посредством зубчатой передачи приводит в движение мельницу. Чтобы поднять воду вверх используются коленчатый вал и два рычага, скрепленных с осью колеса, приводящих в движение две помпы с цилиндрическими поршнями.

Джорджио описал несколько таких конструкций, часть из которых непрактичны, хотя и при воздействии извне могут работать.

В 1618 году английский физик и мистик Роберт Фладд (Robert Fludd) описал рециркуляционную мельницу, которая поднимает воду с помощью цепного насоса. Правда позже, видно поняв свою ошибку, он отказался от своего вечного двигателя, приписав его итальянским изобретателям.

Машины Джорджио, несомненно, были известны Леонардо да Винчи, интересовавшимся всеми механизмами, в том числе и движущимися бесконечно. До наших дней дошли часть его чертежей с изображением рециркуляционных мельниц с архимедовыми винтами. Он также описал сложные механизмы с заполненными ртутью полостями. В Немецком музее (Deutsches Museum) в Мюнхене имеется реконструкция его машины. Не смотря на то, что во времена да Винчи закон сохранения еще не был известен, гениальный изобретатель очень близко подошел к его идее. Он писал: «Падающая вода может поднять такое же количество воды… но мы должны учесть и потери силы на трение». Известны и наброски чисто механических вечных двигателей да Винчи, приводимых в движение катящимися шариками.

Несмотря на больной интерес да Винчи к самой идее вечного двигателя, он весьма скептически относился к мысли о практическом применении существующих конструкций. В одной из тетрадей великого изобретателя мы видим подтверждения невозможности вечного движения несбалансированного колеса.

Чертеж показывает, что ученый прекрасно понимал раскладку сил и вращающих моментов. Он считал, что попытка реализации вечного двигателя сродни поиску философского камня.

Стоит сказать об инженере Агостино Рамелли (Agostino Ramelli)( 1531-1608), идеи которого актуальны и по сей день. В своем труде «Le diverse et artificiose machine» он описал механизмы, которые использовались уже после смерти их создателя, например, вентилятор. Рамелли был практиком, а потому не увлекся идеей вечного двигателя, поэтому он почти не упоминал о нем в своих трудах.

В конструкции придуманной им мельницы есть устройство, оптимизирующее ее работу. И этим устройством является несбалансированное колесо. Однако ниже написано: «Стоит упомянуть, что внутренняя часть колеса сделана мной лишь по просьбе джентльменов, решивших, что водяной поток не слишком быстрый, и это колесо должно помочь».

Известный механик середины XVII века Эдуард Сомерсет, маркиз Вустерширский, в свои пятьдесят лет решил на удивление всем заняться постройкой перпетуум мобиле доселе невиданных размеров. Честолюбивые намерения этого достопочтенного и преданного короне дворянина нашли полную поддержку у его государя Карла I. Старый лондонский Тауэр стал свидетелем грандиозных приготовлений. Вместе со своими помощниками маркиз соорудил огромное колесо диаметром более 4 метра с размещенными по его периметру 14 грузами весом по 50 фунтов каждый. К сожалению, в сообщениях об этом широко разрекламированном опыте, при котором присутствовал сам король со своим двором, о результатах экспериментов подробно не говорится. Известно лишь, что к этому своему опыту Сомерсет никогда более не возвращался; позднее он занимался строительством парусного экипажа и другими смелыми по тому времени проектами.

Некоторое видоизменение машины Сомерсета представляет собой перпетуум мобиле; откидывающиеся грузы заменены в нем шарами, свободно перекатывающимися в клиновидных камерах, прикрепленных к ступице колеса. Автор проекта исходил из предположения, что шары, подкатившиеся к внешнему краю колеса, будут обладать большим силовым моментом, чем шары, находящиеся в суженной части камер вблизи его оси.

Примерно в то же самое время, в первой половине XVII в., известный астроном и член ордена иезуитов Христофор Шейнер сделал важное открытие — он обнаружил пятна на поверхности Солнца. Однако для нас более интересным представляется его сочинение «Комментарий к основаниям гномоники», изданное в Ингольштадте в 1616 г. В нем автор описывает оригинальную идею еще одного перпетуум мобиле, которому он дал громкое название «шейнеров гномон в центре мира».

Постоянное движение гномона Шейнер обосновывал следующим образом. Произвольная точка, выбранная в качестве центра мира, одновременно будет являться и центром гравитации. Если раскрутить рычаг с перпендикулярно установленным на одном его конце гномоном так, чтобы свободный конец рычага проходил через этот центр гравитации, вся система придет в непрерывное вращение, потому что сила, притягивающая гномон с рычагом к центру гравитации, будет одинаковой во всех точках траектории.

Идея Шейнера сразу ж вызвала многочисленные возражения современников. Так, собрат Шейнера по ордену иезуитов астроном Джиованни Баптиста Риччиоли утверждал, что гномон моментально упадет в центр гравитации по наикратчайшему пути. Другой математик того времени Марио Беттино не без иронии заявил:

«Да, это будет перпетуум, но не мобиле, а покоя!»

Хотя Галилей и не был приверженцем идеи перпетуум мобиле, один из его учеников — Клеменс Септимус попытался построить вечный двигатель.

У этого устройства вместо обычных грузов в плотно закрытом с концов цилиндрическом барабане вращалась плоская непроницаемая лопатка, разделявшая два вещества различной плотности. Одна половина цилиндра, FAG, наполнялась ртутью или водой, другая, FBG, - маслом или воздухом (т.е. более легким веществом). Работа этого устройства предполагалась следующей. Поскольку на CA действует больший вес ртути, то плечо рычага перейдет в положение DE, а центр тяжести окажется в некоторой точке D, лежащей между A и C. Так как ртуть несжимаема и вместе с тем она не может проникнуть в другую половину цилиндра, то весь барабан начнет вращаться в направлении C. Но вследствие этого движения центр тяжести системы опять переместится в исходное положение, и все повторится сначала. На основе построенной таким образом функциональной схемы Клеменс пришел к выводу, что данный перпетуум мобиле сразу же после его изготовления должен прийти во вращательное движение и оставаться в этом состоянии вечно без какого-либо подвода энергии извне.

Против ошибочных взглядов Клеменса Септимуса выступил его друг итальянский физик Альфонсо Борелли. В опубликованном в 1670 г трактате «О естественном движении и подвешенных грузах» он подробно описывает машину Клеменса, категорически отрицая возможность ее работы с циклическим движением шаров по замкнутому пути.

В следующем примере, заимствованном из того же источника, движущим элементом перпетуум мобиле вновь является сила тяжести.

Правда, при первом взгляде вам не может не показаться, что этот вечный двигатель несколько великоват: ведь главная его часть — это вся наша Земля с просверленным насквозь от полюса к полюсу прямым каналом, герметически закрытым с обоих концов. По представлению изобретателя, массивный шар, изготовленный из достаточно плотного материала, должен колебаться от одного конца канала к другому сколь угодно долго.

В заключение этого краткого обзора наиболее часто встречающихся типов механических вечных двигателей приведем еще два интересных примера. Принцип действия первой из этих машин схема 34 по внешнему виду необычайно прост разница в весе между более длинной частью ремня, проходящей между промежуточными роликами, и его прямой, вертикальной частью, обеспечивает неравенство сил, служащее причиной постоянного движения всей системы. Подобный тип перпетуум мобиле был, по-видимому, прежде необычайно популярен, поскольку он часто встречается в литературе во многих вариантах: с ремнями, цепями и т.п.

Многочисленные попытки создания вечного двигателя, приводимого в действие силой тяжести различных масс в виде откидных рычагов, неуравновешенных шаров и т.п., с самого начала исходили из неверного предположения о том, что для приведения такой машины в непрерывное движение достаточно сместить центр тяжести ее вращающейся части (колеса, рычагов и т.д.) из положения равновесия, т.е. сдвинуть его с оси вращения. Это ошибочное понимание закона тяготения, по всей видимости, имело своими главными причинами несколько консервативный взгляд на статику тел, а также почти полное отсутствие опыта практического применения новых законов динамики, установленных Галилеем.

Член английского Королевского общества механик и астроном Джеймс Фергюсон в качестве протеста против всё умножавшихся проектов новых вечных двигателей, в бессмысленности которых он нисколько не сомневался, построил модель перпетуум мобиле, показанную на рисунке.

По внешнему виду эта модель мало чем отличалась от описанных выше устройств. Правда, в дополнение к откидывающимся грузам на концах звездообразно расположенных рычагов Фергюсон использовал еще набор грузов, передвигавшихся в особых каретках в направлении касательной к окружности вращения и перпендикулярно соответствующему рычагу. Одновременно перемещение грузов с помощью совокупности специальных блоков и тросов связывалось с движением откидывающихся рычажков; при этом каждый рычажок соединялся тросом с тем грузом, который отстоял от него по окружности на 90° в направлении движения часовой стрелки. С помощью подобной взаимной комбинации исходных элементов Фергюсон намеренно хотел усилить действие исследуемой машины, чтобы, если все попытки привести ее в движение окажутся безуспешными, наглядно показать, что идея перпетуум мобиле целиком принадлежит царству фантазии. Весьма вероятно, что модель Фергюсона была не единственным выступлением против самой сущности идеи вечного двигателя, поскольку с критикой разных типов этих машин мы встречаемся и в целом ряде других сочинений того времени.

Отметим, что, пожалуй, никто из изобретателей вечного двигателя не задавался более легкой задачей, чем Фергюсон: ведь для своего эксперимента он мог выбрать любую машину своих противников, будучи заранее уверенным, что его попытка доказать невозможность вечного двигателя непременно окажется успешной.

Невозможность создания вечного двигателя

Попытаемся рассказать о законах природы, исключающих возможность создания перпетуум-мобиле.

Постройте машину, которая совершала бы работу большую, чем сообщенная ей энергия, и вы решите проблему вечного движения.

Чтобы вечный двигатель мог работать, он должен сам себя обеспечивать энергией. Иначе говоря, он должен вырабатывать ее в достаточном количестве, не имея ни какого внешнего источника. Представьте, что нужно рассчитать баланс энергии, затрачиваемой на совершение того или иного вида работы, будь то движение океанского лайнера, или забивание гвоздей, или полет со сверхзвуковой скоростью. В любом случае количество затраченной энергии всегда должно быть равно количеству энергии произведенной или выделившейся в результате совершения работы. Энергия, которую мы не совсем точно называем потерянной, на самом деле не изчезает. Просто она переходит в иную форму, при этом исключается возможность ее дальнейшего превращения в механическую или электрическую энергию. Так получается оттого, что в результате трения происходит нагревание и часть энергии выделяется в виде тепла. И это вообще говоря справедливо для потерь любого вида энергии , ибо они в конечном счете всегда превращаются в тепло.

Эту же мысль можно выразить и иными словами: во всех случаях общая конечная сумма энергии равна ее общей начальной сумме. Энергия не возникает и не исчезает, но переходит в другую форму, иногда малополезную или совсем бесполезную. Например, тепло, выделяемое в двигателе внутреннего сгорания, - ненужный и, тем не менее, неизбежный продукт превращения энергии. Его можно использовать, скажем, для обогрева салона автомобиля, но сделаем мы это или не сделаем - все равно часть работы, совершаемой двигателем, будет тратиться на тепловые потери.

Все, о чем говорилось выше, и представляет собой суть важнейшего закона природы - закона сохранения энергии, или первого начала термодинамики.

Мы уже говорили, что вечный двигатель должен совершать полезную работу, не имея никаких внешних источников энергии. Проще сказать, в нем не должно сжигаться топливо и к нему не должны прикладываться механические усилия. Существует ряд свидетельств, что именно поиски такой нереализуемой машины заложили фундамент механики как науки. Великие ученные прошлого приняли как аксиому невозможность создания перпетуум-мобиле и тем помогли пробиться росткам новой науки.

Порой легко доказать негодность того или иного проекта вечного двигателя и тем самым показать, что данный конкретный способ его реализации не приведет к желаемому результату. Но это вовсе не означает, что автоматически исключается возможность построения перпетуум-мобиле другими средствами. Поэтому, до тех пор, пока не был четко сформулирован закон сохранения энергиги, невозможность создания механического вечного двигателя, установленная многовековым опытом, вовсе не означала невозможность создания, скажем двигателя химического. Конечно, бесплодность поисков вечного движения признавалась еще до того, как этот закон стал достоянием науки. Однако это мнение основывалось не на некоторых общих положениях, а на анализе принципа действия отдельных "машин вечного движения". Тщательное рассмотрение очередного проекта всегда обнаруживало какие-нибудь теоретические ошибки, из-за которых двигатель не мог работать, а претензии изобретателя оказывались несостоятельными.

В разработку общепринятого ныне критерия неосуществимости вечного движения, провозглашающего невозможность создания энергии из ничего, внесли свой вклад философы, математики, инженеры. Закон сохранения энергии стал неизбежным препятствием для изобретателей перпетуум-мобиле. И все попытки преодолеть это препятствие кончались крахом.

www.coolreferat.com

Механические двигателя - Энциклопедия по машиностроению XXL

Характеристика механическая двигателя 57  [c.483]

В этом направлении проведены исследования [194] по разработке солнечного механического двигателя мощностью 15 кВт для космических исследований и возможности использования полученных результатов при создании подобных двигателей в наземных условиях. На рис. 8-34 представлена блок-схема цикла. Приемником солнечной радиации является котел-аккумулятор (рис. 8-35).  [c.220]

А в сегодняшнем энергетическом балансе человечества на долю людей и животных приходится менее одного процента. А более 99 процентов составляет энергия, вырабатываемая механическими двигателями.  [c.9]

Наибольший вес поезда, перемещаемого механическим двигателем по рельсовому пути, определяется в тоннах по формуле  [c.424]

Жидкостные механические двигатели (с жидкими грузами) принципиально ничем не отличаются от опи-  [c.24]

Фирма Филипс завершила, по крайней мере в своих европейских лабораториях, разработку механических двигателей Стирлинга, но в продажу они до сих пор не поступили.  [c.376]

Великобритании в разработках механического двигателя Стирлинга  [c.409]

После 40 лет работ над механическим двигателем Стирлинга фирма Филипс прекратила дальнейшие разработки. Но исследования отдельных компонентов продолжаются, в частности уплотнений. Разработанная технология продается. Даже и сегодня многие из имеющихся патентов принадлежат фирме Филипс . Американский филиал фирмы в шт. Нью-Йорк активно участвует в правительственных программах, а один из самых выдающихся инженеров фирмы д-р Р. Мейер пока еще продолжает работы на базе разработанной технологии. История разработки фирмой Филипс двигателя Стирлинга и достигнутые при этом замечательные успехи требуют особого описания, Эти работы были пионерскими, и без них невозможно было бы проводить сегодняшние работы по двигателю- Стирлинга и даже написать данную книгу.  [c.411]

Для приведения в действие подъемного механизма используется или мускульная энергия человека или энергия механического двигателя.  [c.16]

В качестве механических двигателей используются паровые машины, двигатели внутреннего сгорания и электрические.  [c.16]

Для приведения в движение подъемного механизма может быть использована либо мускульная сила человека, либо энергия какого-нибудь механического двигателя. Ручные механизмы применяются в настоящее время в исключительных случаях — при редких подъемах небольших грузов на небольшую высоту и при особых условиях, исключающих или затрудняющих применение механического двигателя. Это положение находится в соответствии с основным принципом развития нашего народного хозяйства — максимальной механизацией всех производственных процессов.  [c.113]

Магнитогидродинамический способ получения электроэнергии преследует цель перевода тепла в электрическую энергию без промежуточного механического двигателя. Для этого было предложено применить в качестве электрических проводников генератора ионизированные продукты сгорания или другие теплоносители. Такая установка работает следующим образом.  [c.278]

Будем различать два разных типа такого двигателя. В первом случае идеальный механический двигатель можно представить как предельный случай турбокомпрессорного двигателя при отсутствии подвода тепла к газу и отвода от газа механической энергии в турбине. Вращение компрессора должно производиться при этом независимым источником энергии с мощностью =  [c.128]

Для моделей идеальных механических двигателей (винтов) важными характеристиками являются коэффициенты расхода и нагрузки.  [c.131]

Привод с растормаживанием основан на том, что под действием системы управления вспомогательное устройство в течение определенного времени пропускает движение от основного электрического, гидравлического или механического двигателя (рис. 210). Дискретное управление растормаживанием от шаговых двигателей дает возможность применять подобные приводы в станках с программным управлением. Тормозящие устройства нередко называют механическими усилителями мощности, имея в виду, что управлять приходится мощностью двигателя во много раз меньшей, чем мощность основного двигателя. Коэффициент усиления мощности  [c.245]

Устройство режущей части. Режущие инструменты имеют различную форму в зависимости от способа снятия металла с поверхности заготовки. Но каким бы ни был процесс резания, каким бы инструментом он не осуществлялся, резание металлов всегда представляет собой процесс образования и удаления стружки, подчиненный общим законам. Знание их позволяет установить целесообразную форму режущей части инструмента независимо от того, что приводит его в движение механический двигатель или мускульная сила человека.  [c.163]

По способу преобразования тепловой энергии в механическую двигатели классифицируют на двигатели  [c.7]

Реальная необходимость в создании механического двигателя в качестве рабочей машины возникла значительно позже, в период развития промышленного производства.  [c.395]

Двигателями внутреннего сгорания (ДВС) называются поршневые тепловые машины, предназначенные для преобразования тепловой энергии топлива, сгорающего внутри рабочего цилиндра, в механическую. Двигатели внутреннего сгорания нашли широкое применение на судах речного и морского флота, в авиации, на железнодорожном транспорте, в сельском хозяйстве и др. Под теоретическим циклом ДВС понимают замкнутый процесс изменения состояния рабочего тела, в результате которого происходит превращение тепловой энергии в механическую. Для термодинамического анализа циклов ДВС в качестве рабочего тела принимают идеальный газ, количество которого в любой момент остается постоянным, а все процессы цикла обратимыми. Циклы ДВС различают по характерному признаку процесса, в течение которого к рабочему телу подводится тепло цикл с подводом тепла при  [c.175]

Согласно переписи промышленных предприятий в 1934 г., охватившей все действующие промышленные предприятия как крупные с механическим двигателем, так и мелкие предприятия с числом рабочих от трех и более, общая валовая продукция всей пром-сти Союза ССР в 1933 г. выразилась в сумме 45 955 млн. руб. в ценах 1926/27 г. при 7 900 тыс. рабочих, причем на долю всех отраслей Л. п. приходилось 7,4% всей валовой продукции нашей пром-сти и 17,4% общего числа занятых в пром-сти рабочих. В разнообразных деревообрабатывающих производствах значительную роль играет мелкая пром-сть, на долю к-рой в 1933 г. приходилось 8,2% общего числа рабочих и 4% валовой продукции всей лесной промышленности.  [c.6]

К., в к-рых баба поднимается бесконечной цепью (фиг. 8 и 9). В К. второго рода в качестве источника движущей силы применяют паровой или иной механический двигатель.  [c.8]

Тепловозы серий ТЭ имеют одинаковое силовое механическое (двигатель, компрессор, вспомогательные насосы, вентиляторы охлаждения тяговых электродвигателей) и электрическое оборудование (главные генераторы, двухмашинные агрегаты — возбудитель и вспомогательный генератор, тяговые электродвигатели, аппаратура). Тепловозы с разными числовыми индексами отличаются друг от друга или приспособлением тепловоза к специальным условиям работы (например ТЭ 5 — для условий суровой зимы) или иным сочетанием указанных выше агрегатов при новой экипажной части, что создаёт новые параметры локомотива и иные его тяговые свойства (тепловоз ТЭ 2).  [c.433]

Рис. 57. Зачерненная часть контура лошади наглядно показывает, на какую долю веса приходится 1 паровая лошадь в разных механических двигателях. Рис. 57. Зачерненная часть контура лошади наглядно показывает, на какую долю веса приходится 1 паровая лошадь в разных механических двигателях.
Электроводокачка с автопоилками по сравнению с ручной доставкой воды на фермы с механическими двигателями В 200-В 20- 250 раз 30 раз  [c.42]

Там его встретили уже далеко не с прежним радушием англичане не любят непостоянства, но из уважения к его заслугам все-таки приняли Папена на службу в Королевское общество, правда со значительно меньшим, чем прежде, лводяным колесом, по системе длинных труб к тому месту, где была потребность в силе . Неудача проекта разочаровала Папена. Нищенское жалованье, определенное ему в Англии, не устраивало изобретателя, и он вновь стремится в дорогу.  [c.64]

И он снова, конечно, за работой над механическим двигателем. Здесь его друг и советчик — немецкий уче-ный, философ и математик Готфрид Лейбниц. Папен Суверен, что принцип действия его машины правилен, адо только брать более подходящее чем порох горю- чее. Пороховой взрыв, как показали первые опыты, про-зеденные еще во Франции, далеко не безопасен. Значительно более подходит для этой цели... вода. Он )ассуждает в своей книге Новое искусство  [c.17]

В последнем счете это было связано с характером производства в XVII в. В это время горное дело включало гораздо более разнообразные, чем раньше, конструкции для откачки воды из шахт и подъема руды, в металлургических районах появились большие предприятия с механическими двигателями воздуходувок, с двигателями для дробления руды и обработки металла.  [c.115]

Одной из особенностей двигателя Стирлинга, отличающей его от других тепловых машин с возвратно-поступательным движением, является его способность работать на любом источнике энергии, обеспечивающем подвод тепла при соответствующей температуре. К сожалению, лишь немногие из существующих и экономически оправданных источников тепловой энергии сравнимы по величине производимого ими теплового потока с природными ископаемыми топливами, и поэтому основное внимание уделялось использованию именно этих топлив. Однако в тех случаях, когда нужно использовать двигатели, работающие не в воздушной окружающей среде (например, на морских глубинах или в космосе) и когда выгодно иметь тепловой механический двигатель, становится целесообразно использовать двигатель Стирлинга с нетрадиционным источником энергии. Фирмы Джемерал моторе [1] и Филипс [2] проводили исследования работы таких установок в 60-е годы и начале 70-х годов. Необходимость снижения загрязняющих выбросов в атмосферу наземными транспортными средствами является еще одной причиной рассмотрения нетрадиционных топлив. Однако основной причиной проведения таких исследований в настоящее время являются насущные проблемы транспортировки углеводородных топлив, цены на них и ограниченные запасы таких топлив.  [c.380]

Совершенно очевидно, что, если двигатель имплантируется в тело человека, источник энергии должен обеспечить подвод энергии на требуемом уровне в течение многих лет без подзарядки. Единственно приемлемыми источниками энергии являются радиоактивные изотопы, и в течение многих лет из-за достаточно долгого периода полураспада применяли изотоп Использование механического двигателя с тепловым приводом в качестве аппарата для циркуляции крови может показаться, как отмечалось ранее, чем-то необычным. Но следует иметь в виду, что только в США в 70-е годы ежегодно от болезней сердца умирало около миллиона человек (т. е. в три раза больше, чем от рака). Кроме того, более 25% взрослого населения США страдает коронарной недостаточностью, и расходы на их медицинское обслуживание превышают 300 млн. долл. С учетом приведенных цифр указанное применение двигателей Стирлинга в медицине представляется более реалистичным [24]. В начале 60-х годов в качестве механического двигателя предполагалось использовать двигатель Ренкина. Мощность, требуемая для перекачки крови, составляет 3—5 Вт. Наилучший двигатель, разработанный фирмой Макдоннел — Дуглас , вырабатывающий такую мощность, требует максимального подвода тепловой энергии 20 Вт. При посещении лабораторий этой фирмы одним из авторов этой книги в 1977 г. ему показали двигатель Стирлинга, который может заменить сердце и работать непрерывно в течение трех лет. Заменяющий сердце двигатель Стирлинга такого же размера фирмы Аэроджет был имплантирован в корову и нормально функционировал в течение всего времени испытаний [21]. Его непрерывная работа продолжалась более 67 000 ч. Естественно, такие системы малы по размеру и имеют сложную систему клапанов насосной  [c.395]

В Римском университете под руководством проф. В. Назо начиная с 1972 г. работает группа, занимающаяся исследованием двигателя Стирлинга и опубликовавшая с тех пор 15 статей по этому вопросу. В них рассмотрены все особенности создания механического двигателя, его расчет (основанный на подходе Финкельштейна и Киркли), расчет и испытание регенератора, разработка двигателя. В одной из последних публикаций [17] рассматривается двигатель двойного действия квадратной формы, названный двигателем Капуто — Назо и имеющий новый механизм привода. Последний напоминает модификацию кривошипно-кулисного механизма. Более подробная информация содержится в работах [17, 18].  [c.410]

ТО-ЗА (Д-451А) (рис. 14) смонтирован на пневмоколесном шасси с ведущими колесами с двигателем мощностью 55 л. с. Трансмиссия погрузчика механическая. Двигатель соединен с трансмиссией муфтой сцепления фрикционного типа.  [c.88]

Подъемные механизмы, приводимые в действие энергией механического двигателя, называются механизмами с м а ш и н к ы м . приводом. Подъемные механизмы с ручным приводом в на-% стоящее время применяются для подъема нетяжелых грузов на не-бо.яьшую высоту при кратковременной работе механизма и при условиях, затрудняющих или исключающих применение механических двигателей.  [c.16]

Применение парусных судов уменьшается и сохраняется гл. обр. в каботажн. рейсах, так как срочность перевозок требует увеличения скоростей грузовых пароходов выше стандартных (до недавнего времени 8—10 узлов). Парусные суда закончили свое развитие и сохраняют значение лишь спортивных и учебных поэтому даже коренное изменение их -принципа (роторные суда) не может остановить их вытеснения более быстроходными судами с механическим двигателем.  [c.460]

КИЛОВАТТ, единица мощности, равная одной тысяче ватт. Обозначение kW или КВТ. В абсолютной системе MTS киловатт равняется мощности в 1 стэн-метр в ск. В технике К. постепенно вытесняет другие единицы измерения мощности, напр, лошадиную силу , и притом не только для электрических машин, но и для механических двигателей.  [c.77]

Сопоставляя живые и механические двигатели, необходимо, однако, иметь В виду и другое важное обстоятельство. Усилия нескольких лошадей не соединяются вместе по правилам арифметического сложения. Две лошади тянут с силой, которая меньше двойной си. ы одной лошади, три лошади—с оилой, меньшей тройной силы одной лошади, и т. д. Происходит это оттого, что несколько лошадей, запряженных вместе, не согласуют своих усилий я отчасти мешают одна другой. Практика показала, что мощность лошадей при различном числе их в упряжке такова  [c.137]

Окруженные со всех сторон механическими двигателями, мы не всегда отдаем себе ясный отчет в могуществе этих наших машинных рабов , как метко назвал их В. И. Лен ин. Что всего более отличает механический двигатель от живого — это сосредоточенность огромной мощности в небольшом объеме. Самая мощная машина , какую знал древний М1Ир,— сильная лошадь или слон. Увеличение мощности достигалось  [c.138]

Огромный прогресс в этом отношении представляют авиационные двигатели. Д вигатель в 550 сил весит всего 500 кг здесь одна паровая лошадь приходится, круглым счетом, на 1 кг веса На рис. 57 эти соотношения дред-ставлены наглядным образом зачерненная часть контура лошади показывает, на какой вес приходится 1 паровая лошадь в соответствующем механическом двигателе.  [c.139]

mash-xxl.info

Торцевой двигатель

 

Использование: в одно- и трехфазных торцовых двигателях. Сущность изобретения: лопасти вентилятора расположены между двумя роторами и жестко соединены с ними. Кроме функций лопастей вентилятора лопасти выполняют функции оребрения и выравнивателей температурных потенциалов роторов. 1 ил.

Изобретение относится к электромашиностроению и может быть использовано при изготовлении одно- и трехфазных двигателей, в том числе для бытовых многопрофильных систем.

Известны двигатели, например, серий АО 4А, АИР (Асинхронные двигатели серии 4А. Справочник. М. Энергоатомиздат, 1982, с.502), охлаждение которых осуществляется по принципу машины с внутренней самовентиляцией. В такой конструкции машины вентилятор закреплен на валу вместе с ротором и вращение последнего приводит во вращение вентилятор. Воздух, нагнетаемый вентилятором, обдувает статор и ротор, охлаждая их поверхности. Подобная конструкция охлаждения машины обеспечивает снижение средней температуры машины, но в связи с тем, что вентилятор установлен только с одного торца машины, в основных частях машины (магнитопровод и обмотка статора, ротор) возникают градиенты температуры, что приводит к перегреву основных частей машины в отдельных точках. Кроме того, при использовании двигателей общепромышленного исполнения самой нагретой областью являются лобовые части обмоток. Охлаждение этих нагретых областей происходит за счет конвективного теплообмена между обмотками двигателя и движущимся относительно их в аксиальном направлении и по образующей окружности воздухом, нагнетаемым вентилятором. В случае использования асинхронного двигателя с массивным ротором, когда самой нагретой областью (ротором) и воздухом незначителен, так как вентилятор, насаженный на вал ротора, и ротор вращаются с одинаковой угловой скоростью. Из-за разной температуры основных узлов машины (ротор обмотка и магнитопровод статора) в аксиальном направлении возникают градиенты температуры, что отрицательно сказывается на электромагнитных нагрузках и, как следствие, ухудшаются рабочие и энергетические характеристики машины. Часто в практике с учетом условий компановки встречаются одно- и двухстаторные торцовые (плоские) двигатели ( к примеру, двигатели серии АДПО, (Игнатов В.А. Вильданов К.Я. Торцовые асинхронные электродвигатели интегрального изготовления, М.Энергоатомиздат, 1988, с,301), принятые за прототип. В таких двигателях на валу со стороны нерабочих торцовых поверхностей статоров расположены два вентилятора охлаждения. Вращаясь, они нагнетают с двух сторон воздух. При такой конструкции двигателя хладагент проходит в полом пространстве статора (между внутренним диаметром статора и валом), в котором и вращается вал двигателя, и через вентиляционные отверстия в роторе. Применение такой конструкции охлаждения, в том числе и в двигателе с массивным ротором-диском, позволяет снизить среднюю температуру основных частей машины. В то же время подобная конструкция имеет ряд недостатков. При выполнении двигателя в двухстаторном варианте, когда вращение на общий вал передается от двух роторов, необходимо, чтобы эти роторы вращались синхронно. В связи с тем, что из-за некоторых конструктивных или технологических допусков роторы могут иметь разные температуры, оказывающие влияние на их теплотехнические параметры и, как следствие, на их электромагнитные параметры и, как следствие, на режим работы каждой пары статор-ротор, угловые скорости вращения роторов могут отличаться, что крайне недопустимо, т.е. кроме обеспечения чисто механической инвариантности двух пар статор-ротор указанная конструкция не обеспечивает равенство температур роторов-дисков. Кроме того, не предусмотрены конструктивные решения, позволяющие снизить среднюю температуру роторов и обеспечить равномерность их нагрева, что, в конечном итоге, должно привести к увеличению жесткости механической характеристики из-за понижения активного сопротивления ротора-диска. Расположение в одном двигателе двух вентиляторов приводит к повышению массогабаритных и стоимостных показателей машины и к увеличению механических потерь (потери на вентиляцию). Указанных недостатков лишен двигатель, у которого вентиляторы, как таковые, отсутствуют, а два ротора-диска со стороны нерабочих торцовых поверхностей соединены лопастями, которые одновременно выполняют функции лопастей вентилятора, охлаждающих ребер (за счет развития поверхностей ротора), стержней, обеспечивающих выравнивание температур роторов-дисков и их дополнительную механическую связь. На чертеже изображен двухстаторный двигатель. Он содержит корпус 1 с входными 2 и выходными 3 вентиляционными каналами. На корпусе 1 укреплены два статора 4 торцового типа с обмотками 5. На валу 6, закрепленном в подшипниковых узлах 7, установлены роторы-диски 8, скрепленные вентиляционными лопатками-лопастями 9. Между роторами-дисками 8 и статорами 4 находятся рабочие воздушные зазоры 10. Стрелками показано движение охлаждающего воздуха в двигателе. Толщина роторов-дисков больше глубины проникновения электромагнитной волны. Такая особенность конструкции обеспечивает невлияние лопастей-стержней на картину поля в роторе, оставаясь тем не менее дополнительной и весьма развитой поверхностью охлаждения роторов, обеспечивая выравнивание теплового потенциала между двумя роторами-дисками. Предложенная конструкция работает следующим образом. На обмотки 5 статоров 4 подается трехфазное или однофазное (с применением конденсатора) напряжение, что создает вращающиеся магнитные поля. Причем обмотки 5 статоров 4 подключены так, чтобы магнитные поля вращались встречно, что при зеркальном расположении статоров фактически обеспечивает их вращение в одну сторону. Вращающиеся поля в статорах наводят (каждый в своем) в роторах-дисках 8 вихревые токи. Взаимодействие вихревых токов роторов 8 с вращающимися магнитными полями своих статоров 4 создает вращающиеся моменты, которые передаются на общий вал 6, закрепленный в подшипниковых узлах 7. Вращающаяся конструкция, включающая в себя такие основные детали, как два диска-ротора и лопасти-стержни, расположенные со стороны торцовых нерабочих поверхностей дисков, фактически представляет собой центробежный вентилятор. Вращаясь, такой вентилятор обеспечивает движение воздуха, как показано стрелками, охлаждая конструкции двигателя, что исключает необходимость установки дополнительных вентиляторов на валу. Кроме того, лопасти-ребра 9 увеличивают дополнительную поверхность охлаждения дисков-роторов, обеспечивают механический контакт во многих точках между двумя дисками, что обеспечивает выравнивание тепловых потенциалов роторов и, как следствие, в конечном итоге, инвариантность электромагнитных нагрузок и механических характеристик двух частей двигателя. Ребристая торцовая поверхность роторов-дисков, не обращенная к своему статору, (нерабочая поверхность) не участвует в формировании магнитного поля, так как ребра-лопасти находятся за зоной проникновения электромагнитной волны. Вышеописанная конструкция двигателя может применяться и в одностаторном исполнении, что позволяет обходиться без дополнительного вентилятора на валу. Вышеописанная конструкция двигателя позволяет уменьшить массогабаритные и стоимостные показатели, снизить установленную мощность двигателя, так как уменьшаются механические потери в двигателе, обеспечивает равномерное вращение двигателя, выравнивает условия работы каждого из двух частей двухстаторного двигателя. Отличительные признаки предложенной конструкции. Лопасти вентилятора расположены между двумя роторами-дисками, заменяя два насаженных на вал двигателя вентилятора. Лопасти вентилятора выполняют одновременно функции лопастей вентилятора как такового и функции дополнительного оребрения дисков, увеличивая тем самым поверхность охлаждения, т.е. используются лопасти по новому назначению. Лопасти вентилятора выполняют также функции выравнивателей тепловых потенциалов роторов-дисков (новое назначение), что обеспечивает инвариантность электромагнитных и электромеханических параметров двух частей машины.

Формула изобретения

ТОРЦЕВОЙ ДВИГАТЕЛЬ, содержащий корпус, вал, два обращенных друг к другу сердечника, между которыми образованы вентиляционные каналы, и ребра, расположенные на обращенных друг к другу поверхностях указанных сердечников, отличающийся тем, что указанные сердечники закреплены на валу и ребра выполнены в форме лопастей и с соединением поверхностей сердечников.

РИСУНКИ

Рисунок 1

www.findpatent.ru

Механические вечные двигатели

Механические вечные двигатели

Подготовили ученицы 10 «Б» класса

Боровикова Ирина

Ивашкина Татьяна

Тем временем, из-за большого числа заявок изобретателей на выдачу патентов на придуманные ими вечные двигатели, ряд национальных патентных ведомств и академий наук зарубежных стран (в частности, Парижская академия наук приняла запрет еще в 17-м веке) приняли решение вообще не принимать к рассмотрению заявки на изобретения абсолютного двигателя, поскольку это противоречит закону сохранения энергии.

Тем временем, из-за большого числа заявок изобретателей на выдачу патентов на придуманные ими вечные двигатели, ряд национальных патентных ведомств и академий наук зарубежных стран (в частности, Парижская академия наук приняла запрет еще в 17-м веке) приняли решение вообще не принимать к рассмотрению заявки на изобретения абсолютного двигателя, поскольку это противоречит закону сохранения энергии.

Давно известно, что идея вечного двигателя неосуществима, однако она очень интересна и познавательна с точки зрения истории развития науки и технологий. Ведь в поисках вечного двигателя ученые смогли лучше понять основные физические принципы. Более того, изобретатели вечного двигателя являются яркими примерами для изучения некоторых аспектов человеческой психологии: изобретательности, настойчивости, оптимизма и фанатизма.

Давно известно, что идея вечного двигателя неосуществима, однако она очень интересна и познавательна с точки зрения истории развития науки и технологий. Ведь в поисках вечного двигателя ученые смогли лучше понять основные физические принципы. Более того, изобретатели вечного двигателя являются яркими примерами для изучения некоторых аспектов человеческой психологии: изобретательности, настойчивости, оптимизма и фанатизма.

Вечный двигатель (perpetuum mobile, perpetual motion machine) – устройство, основанное на механических, химических, электрических или иных физических процессах. Будучи запущенным единожды, он сможет работать вечно и остановится только при воздействии на него извне.

Археологические изыскания выявили, что в Древней Греции идея бесконечного движения не вызывала особого интереса.

Археологические изыскания выявили, что в Древней Греции идея бесконечного движения не вызывала особого интереса.

На Востоке же идея вечного двигателя была распространена широко. Первое упоминание о вечном двигателе, сконструированным индийским математиком и астрономом Брахмагупта (Brahmagupta) относится к 624 году н.э. В своем труде «Brahmasphutasiddhanta» он описал вечный двигатель так: «Сконструировать из светлых пород дерева колесо с полыми равномерно распределенными спицами, заполнить спицы до половины ртутью и запечатать, поместить колесо на горизонтальную ось. В части спиц ртуть будет подниматься вверх, а в остальных спускаться, обеспечивая непрерывное движение».

Лалла (Lаlla), другой индийский астроном, в 748 году написал трактат «Sisyadhivrddhida Tantra», описывающий схожий механизм, отличающийся только формой полых спиц.

В Средние века около 1235 года архитектор Виллар де Оннекур (Villard de Honnecourt) заинтересовался идеей вечного двигателя и был озадачен неудачами своих современников. Чтобы показать их невежество, он нарисовал простую, но весьма оригинальную машину. Ее непрерывное движение обеспечивалось за счет нечетного количества подвижных увесистых молотков, прикрепленных к ободу колеса.

В Средние века около 1235 года архитектор Виллар де Оннекур (Villard de Honnecourt) заинтересовался идеей вечного двигателя и был озадачен неудачами своих современников. Чтобы показать их невежество, он нарисовал простую, но весьма оригинальную машину. Ее непрерывное движение обеспечивалось за счет нечетного количества подвижных увесистых молотков, прикрепленных к ободу колеса.

Рассуждения Виллара довольно просты. Он ошибочно полагал, что всегда с одной стороны оси будут находится четыре молотка, а с другой три, создавая постоянный дисбаланс. Он не осознавал, что система в целом будет стремиться к статическому равновесию, когда с каждой стороны будут находиться по три молотка и один внизу. Поучительно, что и сегодня некоторые попадаются в эту ловушку.

В эпоху Возрождения интерес к вечному двигателю был поистине огромен. Например, большое количество чертежей с описанием конструкции вечного двигателя было сделано архитектором Франческо ди Джорджио (Francisco di Georgio). Один из довольно неплохих вариантов мы видим на рисунке. Это гидроприводная мельница с дополнительной помпой.

В эпоху Возрождения интерес к вечному двигателю был поистине огромен. Например, большое количество чертежей с описанием конструкции вечного двигателя было сделано архитектором Франческо ди Джорджио (Francisco di Georgio). Один из довольно неплохих вариантов мы видим на рисунке. Это гидроприводная мельница с дополнительной помпой.

Машина использует непрерывную циркуляцию воды (рециркуляционная мельница). Поскольку извне вода не поступает, то такие механизмы иногда называют aqua morta, то есть «мертвая вода». Падающая вода запускает большое вертикальное колесо, которое посредством зубчатой передачи приводит в движение мельницу. Чтобы поднять воду вверх используются коленчатый вал и два рычага, скрепленных с осью колеса, приводящих в движение две помпы с цилиндрическими поршнями.

Джорджио описал несколько таких конструкций, часть из которых непрактичны, хотя и при воздействии извне могут работать.

В 1618 году английский физик и мистик Роберт Фладд (Robert Fludd) описал рециркуляционную мельницу, которая поднимает воду с помощью цепного насоса. Правда позже, видно поняв свою ошибку, он отказался от своего вечного двигателя, приписав его итальянским изобретателям.

В 1618 году английский физик и мистик Роберт Фладд (Robert Fludd) описал рециркуляционную мельницу, которая поднимает воду с помощью цепного насоса. Правда позже, видно поняв свою ошибку, он отказался от своего вечного двигателя, приписав его итальянским изобретателям.

Машины Джорджио, несомненно, были известны Леонардо да Винчи, интересовавшимся всеми механизмами, в том числе и движущимися бесконечно. До наших дней дошли часть его чертежей с изображением рециркуляционных мельниц с архимедовыми винтами. Он также описал сложные механизмы с заполненными ртутью полостями. В Немецком музее (Deutsches Museum) в Мюнхене имеется реконструкция его машины. Не смотря на то, что во времена да Винчи закон сохранения еще не был известен, гениальный изобретатель очень близко подошел к его идее. Он писал: «Падающая вода может поднять такое же количество воды… но мы должны учесть и потери силы на трение». Известны и наброски чисто механических вечных двигателей да Винчи, приводимых в движение катящимися шариками.

Машины Джорджио, несомненно, были известны Леонардо да Винчи, интересовавшимся всеми механизмами, в том числе и движущимися бесконечно. До наших дней дошли часть его чертежей с изображением рециркуляционных мельниц с архимедовыми винтами. Он также описал сложные механизмы с заполненными ртутью полостями. В Немецком музее (Deutsches Museum) в Мюнхене имеется реконструкция его машины. Не смотря на то, что во времена да Винчи закон сохранения еще не был известен, гениальный изобретатель очень близко подошел к его идее. Он писал: «Падающая вода может поднять такое же количество воды… но мы должны учесть и потери силы на трение». Известны и наброски чисто механических вечных двигателей да Винчи, приводимых в движение катящимися шариками.

Несмотря на больной интерес да Винчи к самой идее вечного двигателя, он весьма скептически относился к мысли о практическом применении существующих конструкций. В одной из тетрадей великого изобретателя мы видим подтверждения невозможности вечного движения несбалансированного колеса.

Несмотря на больной интерес да Винчи к самой идее вечного двигателя, он весьма скептически относился к мысли о практическом применении существующих конструкций. В одной из тетрадей великого изобретателя мы видим подтверждения невозможности вечного движения несбалансированного колеса.

Чертеж показывает, что ученый прекрасно понимал раскладку сил и вращающих моментов. Он считал, что попытка реализации вечного двигателя сродни поиску философского камня.

Ну и, наконец, стоит сказать об инженере Агостино Рамелли (Agostino Ramelli)( 1531-1608), идеи которого актуальны и по сей день. В своем труде «Le diverse et artificiose machine» он описал механизмы, которые использовались уже после смерти их создателя, например, вентилятор. Рамелли был практиком, а потому не увлекся идеей вечного двигателя, поэтому он почти не упоминал о нем в своих трудах.

Ну и, наконец, стоит сказать об инженере Агостино Рамелли (Agostino Ramelli)( 1531-1608), идеи которого актуальны и по сей день. В своем труде «Le diverse et artificiose machine» он описал механизмы, которые использовались уже после смерти их создателя, например, вентилятор. Рамелли был практиком, а потому не увлекся идеей вечного двигателя, поэтому он почти не упоминал о нем в своих трудах.

В конструкции придуманной им мельницы есть устройство, оптимизирующее ее работу. И этим устройством является несбалансированное колесо. Однако ниже написано: «Стоит упомянуть, что внутренняя часть колеса сделана мной лишь по просьбе джентльменов, решивших, что водяной поток не слишком быстрый, и это колесо должно помочь».

В середине 18 века наконец-то начались полноценные исследования рециркуляционных мельниц. Спустя 250 лет после Леонардо да Винчи официально была доказана их недееспособность. Однако в 1950 году Виктор Шаубергер (Viktor Schauberger) оживил идеи гидроприводного вечного двигателя в своих вихревых турбинах.

А вдруг….

Живет в Самаре интереснейший человек - изобретатель Александр Степанович Фабристов, которому ныне перевалило за 80 лет. Еще в молодости он увлекся идеей вечного двигателя, много сочинил его конструкций, создал много образцов, но все неудачно. И только лет 10 назад создал наконец устройство, которое он называет «вечный двигатель» и которое, как он убежден, способно вырабатывать «бесплатную» энергию только за счет сил гравитации. Его устройство не так уж хитро по конструкции и состоит из 8 металлических «стаканов», укрепленных на крестовине, из свинцовых уголков, храповиков и двух шестеренчатых дуг. «Стакан», прикрепленный к крестовине, движется по кругу, проходит через одну дугу - угольник внутри перемещается, и силовое плечо становится больше. Проходит через другую - угольник встает на прежнее место. Так что получается, что у четырех «стаканов» с одной стороны масса значительно больше, чем у стаканов с другой, из-за действия сил гравитации. К сожалению, его «вечный двигатель» не запатентован, и не апробирован, так как и наш российский институт патентной экспертизы не принимает к рассмотрению проекты таких двигателей.

Создать же опытный образец изобретателю - одиночке не под силу, а промышленным предприятиям вроде бы и неприлично заниматься разными выдумками. А ведь, по идее, это экологически чистый двигатель, не портящий ландшафт и природу, не загрязняющий атмосферу. Кстати, будет занимательно узнать, что недавно автор непризнанного изобретения сочинил стихи о вечном двигателе, а его товарищ по хору (где он поет в клубе ветеранов Пушкинского дома) положил эти стихи на музыку.

Создать же опытный образец изобретателю - одиночке не под силу, а промышленным предприятиям вроде бы и неприлично заниматься разными выдумками. А ведь, по идее, это экологически чистый двигатель, не портящий ландшафт и природу, не загрязняющий атмосферу. Кстати, будет занимательно узнать, что недавно автор непризнанного изобретения сочинил стихи о вечном двигателе, а его товарищ по хору (где он поет в клубе ветеранов Пушкинского дома) положил эти стихи на музыку.

dok.opredelim.com

Искусственная механическая характеристика - двигатель

Искусственная механическая характеристика - двигатель

Cтраница 1

Искусственная механическая характеристика двигателя показана на рис. 14.8 пунктирной линией.  [1]

Различают естественные и искусственные механические характеристики двигателя. Под естественной понимают характеристику, которую имеет двигатель, подключенный без дополнительных сопротивлений к сети с напряжением, равным номинальному напряжению двигателя. При переменном токе, кроме того, частота сети должна быть равна номинальной частоте двигателя. Все другие механические характеристики ( при включении в схему добавочных сопротивлений, при напряжении или частоте, отличающихся от номинальных) называют искусственными.  [3]

Жесткость искусственных механических характеристик двигателей постоянного и переменного токов отличается от жесткости естественных характеристик и зависит от способа регулирования скорости. Это существенно влияет на стабильность скорости при работе привода с переменной нагрузкой.  [4]

Естественная или искусственная механическая характеристика двигателя может быть построена по двум точкам.  [5]

Точный расчет искусственных механических характеристик двигателя в установившемся режиме является сложной и по существу невыполнимой задачей.  [6]

Эта зависимость дает возможность построить искусственные механические характеристики двигателя. По естественной характеристике строится пограничная ngf ( t), а по формуле ( 13) и пограничной характеристике - любая искусственная.  [7]

Полагаем, что естественная и искусственные механические характеристики двигателя прямолинейны.  [8]

Продолжая рассмотренный выше пример, построим искусственную механическую характеристику двигателя АК82 - 4 с магнитными усилителями УСО-20, проходящую через точку с координатами Мс.  [9]

Схема управления должна прежде всего обеспечивать требуемую жесткость искусственных механических характеристик двигателя на всем диапазоне регулирования скорости и ограничение тока якоря в переходных режимах.  [10]

По результатам расчета на рис. 10.37, а изображена искусственная механическая характеристика двигателя.  [12]

Хотя полной компенсации изменения скорости вращения двигателя 8Д, вызванного изменением нагрузки на валу, при таком способе стабилизации не происходит, все же жесткость искусственной механической характеристики двигателя 8Д существенно возрастает, а отклонения скорости относительно установившегося значения соответственно значительно снижается.  [13]

Тот же эффект может быть получен, если использовать две обмотки управления и, снимая напряжение с шунта в цепи якоря двигателя, создать дополнительную положительную обратную связь по току якоря, увеличивающую жесткость искусственных механических характеристик двигателя.  [15]

Страницы:      1    2

www.ngpedia.ru


Смотрите также