Содержание.
1. Введение 2
2. Принцип работы и устройство 5
3. Перспективы использования 8
4. Заключение 14
5. Список литературы 15
6. Приложения 18
Введение21 сентября 1816 года в Эдинбурге, столице Шотландии Роберт Стирлинг запатентовал машину, которую он назвал "экономайзер" (economiser ). В реальной жизни Роберт Стирлинг был священником шотландской церкви и продолжал вести службы, хотя ему к этому времени исполнилось восемьдесят шесть лет. В свободное время в своей домашней мастерской он конструировал тепловые машины. Одну из его работавших моделей позднее использовал лорд Кельвин для своих университетских лекций.
В то время двигатель Стирлинга получил признание как надежная паровая машина, которая никогда не взрывается, как это довольно часто случалось с другими типами паровых двигателей в те времена.
В 1850 простая и элегантная динамика двигателя Стирлинга была впервые теоретически описана профессором Рэнкином МакКорном ( Professor McQuorne Rankine ). Приблизительно через сто лет термин "Двигатель Стирлинга" был использован Рольфом Мейером (Rolf Meijer) для обозначения всех типов регенеративных паровых машин замкнутого цикла.
Двигатель Стирлинга является уникальной тепловой машиной, поскольку его теоретическая эффективность практически равна максимальной эффективности тепловых машин ( эффективность цикла Карно ). Двигатель Стирлинга работает за счет теплового расширения газа, за которым следует сжатие газа после его охлаждения. Двигатель Стирлинга содержит некоторый постоянный объем рабочего газа, который перемещается между "холодной" частью (обычно комнатной температуры) и "горячей" частью, которя обычно разогревается за счет сжигания любого вида топлива, атомным реактором или за счет солнечного тепла. Нагрев производится снаружи, поэтому двигатель Стирлинга относят к двигателям внешнего сгорания.
С момента изобретения было разработано большое количество различных разновидностей двигателей Стирлинга с целью повышения мощности и эффективности. Тем не менее, они уступали по удельной мощности двигателям Отто и Дизеля. Двигатель Отто, изобретенный в 1877 году и двигатель Дизеля, изобретенный в 1893 имели более высокую уделбную мощность, чем двигатели Стирлинга того времени. Это привело к постепенному вытеснению двигателя Стирлинга из промышленности. Они еще широко применялись в начале нашего века на фермах и шахтах - в основном для приведение в действие различных насосов и других применений, где не требуется высокая удельная мощность, а основными критериями являются надежность и экономичность. Но к 1940 году их выпуск был прекращен.
Довольно долго двигатели Стирлинга использовались лишь как игрушки и учебные пособия в школах и университетах при изучении термодинамики. Но в последние годы интерес к двигателю Стирлинга быстро возрастает. Начат промышленный выпуск домашних электрогенераторов на двигателе Стирлинга ( см. приложение 1 ). Национальным Аэрокосмическим Агентством США (NASA) были проведены сравнительные оценки различных типов тепловых машин для использования в космической аппаратуре ( см. приложение 2 ). Двигатель Стирлинга был признан наиболее перспективным из-за своего высокого кпд и надежности. Выпускаются холодильные установки, работающие на обратном цикле Стирлинга - как промышленные, позволяющие получать температуру до -2400 С ( см. приложение 3 ), так и предназначенные для использования в бытовых холодильниках. В последнем случае их преимущества перед традиционными системами обусловлены тем, что в качестве хладогента в них может быть использован обычный воздух.
Таким образом, можно сказать, что история двигателя Стирлинга далеко не закончена. Его развитие входит в новый многообещающий этап.
Двигатель Стирлинга является тепловой машиной замкнутого цикла. Его работа основана на расширении газа, используемого как рабочее тело, при повышении температуры. На следующем рисунке приведены диаграммы для идеального цикла Стирлинга в координатах давление-обьем P-V и температура-энтропия T-S и иллюстрации соответствующих процессов.
На диаграммах цифрами обозначены точки, разделяющие этапы работы двигателя. На первом этапе (1-2) происходит изотермическое расширение газа. Далее, на следующем этапе (2-3) - охлаждение при постоянном объеме. Далее (этап 3-4) - изотермическое сжатие охлажденного газа. И наконец на этапе 4-1 разогрев при постоянном объеме. Полезная работа производится газом только на первом этапе. Все остальные происходят за счет запасенной части энергии (обычно, энергии вращающегося колеса).
Существуют два основных типа двигателей Стирлинга, отличающихся устройством цилиндров. В первом - так называемом двухцилиндровом (Two pistons type Stirling engine) используются раздельные цилиндры для нагревания и охлаждения рабочего газа.
На этом рисунке верхняя часть горячего цилиндра с поршнем (hot piston) постоянно разогревается внешним источником тепла, в то время, как верхняя часть холодного цилиндра с поршнем (cold piston) постоянно охлаждается. Следует обратить внимание, что поршни закреплены на коленчатом валу (crank shaft) так, что обеспечивают сдвиг по фазе на 90 градусов, т.е. в то время, как горячий поршень достигает верхнего положения, холодный находится в среднем положении, двигаясь вверх. Этот момент сооответствует этапу 2-3 на предыдущем рисунке - охлаждению при постоянном объеме. Затем холодный поршень поднимается вверх, сжимая охлажденный газ при постоянной температуре - этап 3-4. Когда холодный поршень вытесняет охлаженный и сжатый газ в горячий цилиндр, тот разогревается при постоянном объеме - этап 4-1. И наконец, горячий газ расширяется, толкая поршень в горячем цилиндре вниз - этап 1-2. На последнем этапе выделяется мощность, часть которой запасается вращающимся колесом (flywheel).
В другой конструкции - двигателе Стирлинга поршневого типа (Displacer type Stirling engine) - используется один цилиндр, одна сторона которого (верхняя на приведенном ниже рисунке) постоянно охлаждается, а другая - постоянно нагревается. Поршень-дисплейсер (displacer), разделяющий холодную и горячую части цилиндра, неплотно прилегает к стенкам цилиндра, что позволяет газу перемещаться между ними. В этой конструкции поршни так же закреплены на коленчатом валу со сдвигом по фазе на 90 градусов. Двигатель работаетпо тому же принципу, что и предыдущая конструкция.
Двигатель Стирлинга поршневого типаИ в той, и в другой конструкции тепловая энергия нагревателя преобразуется в механическую энергию вращения вала. Однако, возможно использование и обратного цикла Стирлинга - если за счет внешнего двигателя вращать вал в этих машинах, рабочий газ будет двигаться по тому же циклу. При этом "горячий" цилиндр будет охлаждаться, а "холодный" - разогреваться. То есть двигатель Стирлинга в этом случае будет работать как тепловой насос, т.е. холодильная машина. Рабочим телом в нем может служить любой газ, в том числе и атмосферный воздух.
Развитие науки и техники ривело к образованию новых "экологических ниш", в которых с успехом может применяться двигатель Стирлинга. Некоторые из них показаны на приведенных ниже рисунках.
Перспективные применения двигателя Стирлинга.На первом из них показан пример солнечной энергетической установки (solar power system). Высокий к.п.д., простота и надежность конструкции двигателя Стирлинга обуславливают эффективность его использования в данных системах. Солнечный свет фокусируется вогнутыми зеркалами для разогрева двигателя (в качестве источника тепла). В роли охладителя может использоваться окружающий атмосферный воздух. Роль такого экологически чистого источника энергии в современном мире легко оценить.
На втором рисунке схематически изображен тепловой насос Вуллемейера (Vuillemeier Heat Pump). Известно, что при использовании обратного цикла Срирлинга, т.е. если, например, приводить двигатель Стирлинга в движение с помощью какого-либо внешнего источника (например, еще одного двигателя Стирлинга), то "горячий" цилиндр будет охлаждаться, а "холодный" - разогреваться. Если при этом разогревать "горячий" цилиндр (например, окружающим воздухом), то "холодный" цилиндр будет разогреваться до более высокой температуры. При этом внешняя энергия расходуется не непосредственно на разогрев, а на "перекачку" тепла из холодного места в более теплое, что гораздо эффетивнее. Для идеального случая к.п.д.такой системы может быть посчитан как
где
Тс - абсолютная температура холодной части
Тh - абсолютная температура горячей части
Поскольку даже в сильные морозы Тс редко опускается ниже 250 градусов Кельвина, для поддержания Тh на уровне 300 градусов Кельвина ( 270 ) к.п.д. составляет 250/(300-250)=5. То есть, затратив 1 кВт.ч электроэнергии на работу теплового насоса, мы получим в 5 раз больше тепла, чем если бы подавали ту же мощность прямо на электронагреватель. Отсюда легко понять интерес к тепловым насосам на основе цикла Стирлинга.
На следующем рисунке представлен криокулер Стирлинга (Stirling cryocooler). Он работает по тому же принципу теплового насоса, но используется в качестве холодильной установки для получения очень низких температур. Далее будут более подробно описаны перспективы и преимущества устройств этого типа.
На последнем рисунке покан двигатель Стирлинга, установленный на атомной подводной лодке. Поскольку в этом случае вес и габариты двигателя не играют решающей роли, высокий к.п.д. и надежность делают его идеальным кандидатом для преобразования тепловой энергии, вырабатываемой атомным реактором, в механическую. Благодаря тому, что двигатель Стирлинга практически не нуждается в уходе и настройке, он может быть размещен в изолированной части корпуса, что особенно существенно в случае затрудненного доступа (как в случае подводных лодок или космических аппаратов). Так, специалистами NASA ( Национального Аэрокосмического Агентства США) были проделаны предварительные проработки проекта создания обитаемой базы на Луне ( см. приложение 2 ). Проектом предусматривается постепенное, "эволюционное" строительство базы - начиная с маленького обитаемого модуля и до большой производственой базы с полной обработкой полезных ископаемых. В качестве основного источника энергии для работы в условиях лунной поверхности был выбран атомный реактор SP-100 с тепловой мощностью 2500 кВт и 8 электрических генераторов, работающих от двигателей Стирлинга. Два из них предполагалось держать в резерве для обеспечения требуемого уровня резервирования мощности, а остальные планировалось использовать на 91.7 процентов от их номинальной электрической мощности (150 кВт). Таким образом, полная проектная электрическая мощность составляет 825 кВт. В качестве дополнительного источника на первом этапе строительства предусмотрено использование наращиваемых солнечных батарей. В проекте приводится подробное техническое описание реакторной установки, конструкции и теплового подсоединения двигателей Стирлинга, систем отвода тепла и распределения мощности.
Описанный лунный проект демонстрирует потенциальные применения двигателей Стирлинга в будующем. Если вернуться в настоящее время, можно привести, в качестве примера, начавшийся выпуск домашних электрогенераторов на двигателе Стирлинга ( см. приложение 1 ). В приведенном рекламном материале описан совмещенный нагреватель-электрогенератор WG800 мошностью 800 Вт на двигателе Стирлинга. Прибор универсальный, предназначен для использования как в домашних условиях, так и под открытым небом. Его преимущества - высокая надежность и автономность (5000 часов работы до первого технического обслуживания), низкий уровень шума - горючее сгорает непрерывно, в отличие от двигателей внутреннего сгорания, где оно поступает в цилиндр порциями и там взрывается. В качестве топлива может использоваться природный газ, все виды жидкого топлива, уголь и даже дроваВсе это делает его чрезвычайно удобным для использования в удаленных от электосетей. На рынке доступны так же более мощные, 3 кВт, модели прибора.
Другой пример современного использования приборов, основанных на цикле Стирлинга - криокулеры. В широких масштабах их начали производить около десяти лет назад - преимущественно для использования в военной технике: на танках и самолетах требовалось устанавливать высокочувствительные охлаждаемые до температур порядка -2000 С датчики и приемники. Для их охлаждения и были разработаны криокулеры на основе обратного цикла Стирлинга. Ниже приводится краткое описание одного из отечественных криокулеров, которые в связи с конверсией поступили на открытый рынок.
зПУХДБТУФЧЕООПЕ РТЕДРТЙСФЙЕ "орп пТЙПО".
нОПЗПЬМЕНЕОФОЩК ЖПФПРТЙЕНОЙЛ ОБ ПУОПЧЕ лтT У УЙУФЕНПК ПИМБЦДЕОЙС ФЙРБ уРМЙФ-уФЙТМЙОЗ
лТБФЛПЕ_ПРЙУБОЙЕ: нОПЗПЬМЕНЕОФОЩК ЖПФПРТЙЕНОЙЛ ОБ_ПУОПЧЕ УПЕДЙОЕОЙС ЛБДНЙК-ТФХФШ-ФЕММХТ У ТБЪНЕТПН ЬМЕНЕОФБ 50И50 (35И35) НЛН ДМС УРЕЛФТБМШОПЗП ДЙБРБЪПОБ 8-12 НЛН, ЙОФЕЗТЙТПЧБООЩК У ПИМБДЙФЕМЕН уФЙТМЙОЗБ. пВОБТХЦЙФЕМШОБС УРПУПВОПУФШ D* > 4*1010 чФ-1зГ1/2УН. рПФТЕВМСЕНБС НПЭОПУФШ < 10 чФ.
оБЪОБЮЕОЙЕ: фЕРМПЧЙЪЙПООБС БРРБТБФХТБ ЫЙТПЛПЗП ОБЪОБЮЕОЙС (ДЙБЗОПУФЙЛБ Ч НЕДЙГЙОЕ, БОБМЙЪ ФЕРМПЧЩИ РПФЕТШ Ч РТПЙЪЧПДУФЧЕООЩИ Й ЦЙМЩИ ЪДБОЙСИ, ЛПОФТПМШ РПФЕТШ Ч ЬОЕТЗПУЕФСИ, ФБНПЦЕООЩК ЛПОФТПМШ), ЙЪНЕТЙФЕМШОБС БРРБТБФХТБ, ОБХЮОЩЕ ЙУУМЕДПЧБОЙС Й ДТ.
Вообше говоря, современная полупроводниковая электроника подошла в своем развитии к пределу, обусловленному физическими законами. Дальнейшее повышение характаристик требует перехода к охлаждаемым до температур порядка -1000 -2000 С элементам. На последних конференциях по электронике (ISEC-97, EUCAS-97) активно обсуждаются различные способы охлаждения аппаратыры. На сегодняшний день наиболее перспективным признано использование криокулеров на цикле Стирлинга. Доступные в настоящее время, выпускаемые мелкими сериями модели маломощных криокулеров стоят порядка 10-15 тысяч долларов. При переходе к крупносерийному производству ожидается, что их цены упадут в несколько раз, что сделает коммерчески рентабельным использование охлаждаемых элементов сначала в наиболее ответственных системах - таких, как файл-серверы, и большие компьютеры, а в перспективе и в бытовых компьютерах. Таким образом, можно ожидать, что к середине следующего века, по мере распространения домашних компьютеров, двигатель Стирлинга придет практически в каждый дом
ЗаключениеПосле своего изобретения в 1816 году, двигатель Стирлинга пережил первый период своего широкого распространения - в конце прошлого - начале нашего века, после чего был практически забыт. Но в последние годы он вновь привлекает к себе повышенный интерес в самых разных областях использования. В настоящее время быстро расширяется использование криокулеров на основе цикла Стирлинга, выпускаются электрогенераторы, работающие от двигателей Стирлинга. Его преимущества - высокий к.п.д., надежность, неприхотливость, возможность использования экологически чистых источников энергии позволяют рассчитывать на широкое распространение двигателя Стирлинга в будующем.
Литература.1. El-Genk, Mohamed S.; Editor (1994) A Critical Review of SPACE NUCLEAR POWERAND PROPULSION 1984-1993, American Institute of Physics Press
2. Organ, A. J. (1992) Thermodynamics and Gas Dynamics of the Stirling Cycle Machine, Cambridge University Press
3. Reader, G. T. and Hooper, C. (1983) Stirling Engines, E. & F. N. Spon
4. Urieli, I. and Berchowitz, D. M. (1984) Stirling Cycle Engine Analysis, Adam Hilger Ltd.
5. Walker, G. (1973) Stirling-Cycle Machines, Oxford University Press
6. West, C. D. (1986) Principles and Applications or Stirling Engines, Van Nostrand Reinhold Company, Inc.
7. Roberts, M.L.: Inflatable Habitation for the Lunar Base. Presented at the Symposium on Lunar Bases and Space Activities of the 21st Century, Apr. 5-7, 1988, Houston, TX, Paper Number LBS-88-266.
8. Conceptual Design of a Lunar Oxygen Pilot Plant--Lunar Base Systems Study. (EEI-88-182, Eagle Engineering, Inc., NASA Contract NAS9-17878) NASA-CR-172082.
9. Brinker, D.J.; and Flood, D.J.: Advanced Photovoltaic Power Power System Technology for Lunar Base Applications. NASA TM-100965, 1988.
10. A.C. Klein, NASA Lewis Summer Intern Report.
11. Personal communication from J. Alfred, NASA Johnson Space Center.
12. Bloomfield, H.S.: Small Reactor Power Systems for Manned Planetary Surface Bases. NASA TM-100223, 1987.
13. Slaby, J.G.: Overview of the 1988 Free-Piston Stirling SP-100 Activities at the NASA Lewis Research Center. NASA TM-87305, 1986.
14. English, R.E.; and Guentart, D.G.: Segmenting of Radiators for Meteoroid Protection. ARS J., vol. 31, no.8, Aug. 1961, pp. 1162-1163.
15. Bien, D.D.; and Guentart, D.C.: A Method for Reducing the Equivalent Sink Temperature of a Vertically Oriented Radiator on the Lunar Surface. NASA TM X-1729, 1969.
16. Roberts, B.B.; and Bland, D.: Office of Exploration: Exploration Studies Technical Report, Volume 2: Studies Approach and Results. NASA TM-4075-VOL-2, 1988.
17. Lee S. Mason and Harvey S. Bloomfield National Aeronautics and Space Administration Lewis Research Center, Cleveland, Donald C. Hainley Sverdrup Technology, Inc. NASA Lewis Research Center Group Cleveland SP-100 Power System Conceptual Design for Lunar Base Applications 6th Symposium on Space Nucelar Power Systems. 6th Symposium on Space Nucelar Power Systems sponsored by the Institute for Space Nucelar Power Studies, Albuquerque, NM, January 8-12, 1989
www.km.ru
С О Д Е Р Ж А Н И Е
Стр.
В в е д е н и е . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 3
1. Что представляет собой двигатель Стирлинга? . . . . . . . . . . . .. . 4
2. Классификация двигателей. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3. Схема работы двигателя Стирлинга . . . . . . . . . . . . . . . . . . . . .11
4. Рабочие характеристики и особенности конструкции . . . . . . .13
5. Очерк развития двигателя Стирлинга . . . . . . . . . . . . . . . . . . .15
6. Области применения . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6-1. Автомобильные двигатели . . . . . . . . . . . . . . . . . . . . . . . . . .18
6-2. Криогенные газовые машины . . . . . . . . . . . . . . . . . . . . . . 19
6-3. Рефрижераторные установки . . . . . . . . . . . . . . . . . . . . . . 20
6-4. Электрогенераторы малой мощности . . . . . . . . . . . . . . . .. 20
6-5. Двигатели для морских судов . . . . . . . . . . . . . . . . . . . . . . .21
6-6. Подводные энергетические системы . . . . . . . . . . . . . . . . .22
6-7. Солнечные энергетический установки . . . . . . . . . . . . . . . .22
6-8. Механический привод в аппаратах «искусственное
сердце» . . . . . . . .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6-9. Универсальные энергетические системы . . . . . . . . . . . . . 23
З а к л ю ч е н и е . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Л и т е р а т у р а . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 27
П р и л о ж е н и е . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
В В Е Д Е Н И Е
На рубеже веков человечество смотрит в будущее с надеждой. Надежда эта вполне оправдана: ученая мысль не стоит на месте, напротив, предлагает все новые и новые разработки, внедряя в нашу жизнь все более экономичные, экологически безопасные и перспективные технологии.
В полной мере это касается альтернативного двигателестроения и использования так называемых "новых" альтернативных видов топлива: ветра, солнца, воды и других источников энергии.
Двигатели - сердце современной цивилизации. Они обеспечивают рост производства, сокращают расстояния. Благодаря им человек получает энергию, свет, тепло, информацию, Наиболее распространенные в настоящее время двигатели внутреннего сгорания имеют ряд существенных недостатков: их работа сопровождается шумом, вибрациями, они выделяют вредные отработавшие газы и потребляют много топлива. Известен класс двигателей, вред от которых минимален, - это двигатели Стирлинга. Они работают по замкнутому циклу, без непрерывных микровзрывов в рабочих цилиндрах, практически без выделения вредных газов, да и топлива им требуется значительно меньше.
Двигатель Стирлинга был изобретен 21 сентября 1816г. в Эдинбурге, столице Шотландии Робертом Стирлингом. Это было приблизительно за 80 лет до дизеля, и поэтому двигатель Стирлинга пользовался значительной популярностью да начала ХХ века.
В 1816 году Стирлинг получил патент на «машину, которая производит движущую силу посредством нагретого воздуха». В 1827 и 1840 годах он получает еще два патента на усовершенствованные варианты своей машины. А в 1845 году на литейном заводе в Дании была пущена машина Стирлинга мощностью 50 индикаторных лошадиных сил, проработавшая в течение трех лет.
Долгое время после этого Двигатели Стирлинга не строились. И только в 1890 году было выпущено несколько образцов таких машин малой мощности. С конца XIX века, в связи с успехами в развитии двигателей внутреннего сгорания и отсутствия подходящих конструкционных материалов в значительной степени затруднило его дальнейшее совершенствование, интерес к двигателю Стирлинга утратился окончательно, и только с 1938 года началось ее возрождение. В 50-е годы ХХ века быстрое развитие технологии производства различных материалов вновь открыло перед двигателем Стирлинга некоторые перспективы, однако настоящий интерес к нему возродился только во времена так называемого "«энергетического кризиса». Именно тогда особенно привлекательными показались потенциальные возможности этого двигателя в отношении экономического потребления обычного жидкого топлива, что представлялось особенно важным в период роста цен на топливо в геометрической прогрессии.
1. Что представляет собой двигатель Стирлинга?
Двигатель Стирлинга - это машина, работающая по замкнутому термодинамическому циклу, в которой циклические процессы сжатия и расширения происходят при различных уровнях температур, а управление потоком рабочего тела осуществляется путем изменения его объема. Работа двигателей характеризуется
1) Высокими значениями среднего давления газа;
2) Свободным от масла рабочим пространством;
3) Отсутствием клапанного механизма;
4) Передачей тепла через стенки цилиндра или теплообменник.
Данное определение является обобщенным для большого семейства машин Стирлинга, различающихся по своим функциям, характеристикам и конструктивным схемам. Эти двигатели могут быть роторными и поршневыми различной степени сложности. Указанные машины способны работать как двигатели, тепловые насосы, холодильные установки и генераторы давления. Вместе с тем, существуют машины, работающие по открытому циклу, в которых управление потоком рабочего тела осуществляется с помощью клапанов. Такие машины более точно могут быть названы двигателями Эриксона - по имени изобретателя.
Между двумя типами этих машин, как правило, не делается никакого различия, поэтому название "двигатель Стирлинга" употребляется для всех без исключения регенеративных машин.
Двигатель Стирлинга представляет собой преобразователь энергии, относящийся к типу тепловых двигателей, совершающих механическую работу на выходном валу при подводе к ним тепловой энергии. Полезная работа в рабочем цикле Стирлинга совершается, как и в других тепловых двигателях, посредством сжатия рабочего тела (гелий, водород) при низкой температуре и расширения того же рабочего тела после нагрева при более высокой температуре. Основные термодинамические процессы, протекающие в обычных тепловых двигателях: сжатие газа, поглощение тепла, расширение газа и отвод тепла, легко различимы и в цикле двигателя Стирлинга, однако имеется радикальное различие в том, как протекает процесс поглощения тепла в двигателе внутреннего сгорания (ДВС).
В ДВС распыленное топливо соединяется с окислителем, как правило воздухом, до фазы сжатия или после этой фазы, и образовавшаяся горючая смесь отдает свою энергию во время кратковременной фазы горения (сгорания), в то время как в двигателе Стирлинга энергия поступает в двигатель и отводится от него через стенки цилиндра или теплообменник (Схема 1) . Еще одним существенным различием между двигателем внутреннего сгорания и двигателем Стирлинга является отсутствие в последнем клапанов или отверстий для впуска и выпуска, поскольку рабочее тело (газ) постоянно находится в полостях двигателя.
Скорость двигателя Стирлинга можно регулировать, изменяя количество газа в двигателе или величину среднего давления. Применяя эти средства регулирования скорости, необходимо предусмотреть клапанный механизм с соответствующей системой патрубков, примыкающих к цилиндрам, но не составляющих с ними одно целое. При этом клапанный механизм имеет другое назначение и другие характеристики по сравнению с клапанным механизмом двигателя внутреннего сгорания.
Работа двигателя Стирлинга по замкнутому циклу определяет как его преимущества, так и недостатки. Например, поскольку рабочее газообразное тело постоянно находится в полости двигателя, отвод неиспользованного тепла в атмосферу полностью осуществляется через теплообменник, в то время как в двигателях, работающих по незамкнутому циклу, производится также выпуск горячих газов из цилиндров. Поэтому по сравнению с двигателем внутреннего сгорания двигателю Стирлинга требуется более развитая система охлаждения, как это видно из структуры энергетического баланса (Схема 2). В системах, предназначенных для транспортных средств, где экономия занимаемого двигателем объема является определяющим фактором, необходимость использования радиатора с увеличенным рабочим объёмом является недостатком, в то же время это может стать преимуществом в системах, потребляющих всю энергию, и в тепловых насосах, где холодильник больших размеров может увеличить КПД системы.
Отсутствие клапанов в основном корпусе двигателя Стирлинга существенно и работа без периодических взрывов означают, что устранены основные источники шума, как газодинамического, так и механического. Это делает двигатель Стирлинга существенно менее шумным, чем другие устройства для выработки механической энергии с возвратно-поступательным движением, и тем самым более приемлемым с точки зрения социальных требований, а также перспективным для применения в военных целях.
Хотя двигатель Стирлинга и получает энергию извне, его нельзя с достаточной строгостью назвать двигателем внешнего сгорания, поскольку любой источник тепла с подходящей температурой, например сфокусированная солнечная энергий, аккумулированная тепловая энергия, тепловая энергия, выделяющая при горении металла, ядерная энергия и т.п. может быть использована для этой цели. В настоящее время в большинстве установок с двигателями Стирлинга применяется жидкое топливо из-за простоты его использования и из-за требований, обусловленных конкретным назначением установки.
В двигателях Стирлинга применяются регенеративные теплообменники (регенераторы), размещенные в каналах, по которым газ перемещается между горячей и холодной зонами двигательной установки. Функцией регенератора является попеременное накопление и возвращение части тепловой энергии, полученной в рабочем цикле двигателя. Передача энергии пульсирующему газовому потоку должна происходить таким образом, чтобы свести к минимуму подвод тепла к установке и в то же время поддерживать на заданном уровне мощность, снимаемую с вала. Результатом действия регенератора является возрастание КПД цикла, поэтому теплообменник такого типа - существенный элемент любого двигателя Стирлинга, рассчитанного на практическое применение.
mirznanii.com
Двигатели стирлинга
Роберт Стирлинг начал совершенствовать свой двигатель, работающий на подогретом воздухе, примерно в то же время, когда войска Наполеона и Веллингтона встретились в битве при Ватерлоо, за 6 лет до публикации знаменитой статьи Карно о термодинамике и за 42 года до рождения Рудольфа Дизеля. К 1908 г. двигатель Стирлинга был уже настолько усовершенствован, что по обе стороны Атлантического океана широко использовались регенератор и принцип двойного действия в нем. Обсуждение возможных областей Применения и перспектив этого двигателя регулярно проводилось в известных журналах, таких, как «Труды института инженеров-механиков» (Великобритания). С середины XIX в. и до начала первой мировой войны воздушно-тепловые двигатели как с разомкнутым, так и с замкнутым циклом имели значительный коммерческий успех, удовлетворяя технические потребности человечества в чрезвычайно широком диапазоне — от энергетических установок на судах до приводов швейных машин, ирригационных насосов и агрегатов для подачи воздуха в церковные органы. Эта последняя область применения была, пожалуй, первым случаем, когда основанием для применения двигателя была бесшумность его работы. Удивительно, что до сих пор существует довольно много таких двигателей, и они находятся в хорошем рабочем состоянии. Области применения некоторых из них кажутся почти неправдоподобными. Совсем недавно один из авторов этой книги, обсуждая с поставщиком вопрос о материалах для двигателя, неожиданно узнал, что у того имеются два двигателя Стирлинга, изготовленные в прошлом веке, один из которых ранее использовался в качестве источника энергии для вращения контейнеров с молоком при изготовлении творога на молокозаводе, а с помощью другого в парикмахерской вращались щетки для укладки волос! Однако, хотя двигатель Стирлинга в отличие от паровой машины был вполне безопасным.
Отсутствие подходящих материалов для головки цилиндра ограничивало рабочие давления в двигателе весьма малыми величинами, и его удельная мощность и КПД были очень низки — 1 кВт/т и 1 % соответственно. Температура головки цилиндра была гораздо более низкой, чем в современных двигателях Стирлинга, опять-таки из-за отсутствия подходящих материалов, и это тоже оказывало влияние на его рабочие характеристики. Тем не менее двигатели были надежными и особенно успешно использовались для привода домашних водяных насосов, причем предпочтение отдавалось, как правило, модификации Райдера (рис. 1.22).
Еще в 1908 г. была предложена солнечная установка для привода водяного насоса с помощью двигателя Стирлинга! Популярность водяных насосов Райдера подтверждалась наличием в фирменных каталогах рекомендаций, подписанных такими известными личностями, как король Эдуард VII, хедив Египта, султан Турции и Эндрью Карнеги [9]. Но несмотря на этот успех, к 20-м годам нашего века интерес к двигателям Стирлинга угас. Этот процесс в значительной степени ускорился вследствие разработки во время войны двигателей других типов. Появление двигателей внутреннего сгорания с принудительным зажиганием и электродвигателя было основной причиной утраты интереса к двигателям Стирлинга, и здесь заключена определенная ирония, поскольку в настоящее время двигатель Стирлинга многими рассматривается как естественный преемник двигателя с принудительным зажиганием. Еще большей иронией следует считать то, что как раз тогда, когда начал падать интерес к двигателям Стирлинга, был налажен выпуск нержавеющей стали, которая могла бы существенно улучшить характеристики двигателя Стирлинга, сохранив его высокую надежность.
Этапы разработки двигателей Стирлинга можно проследить но многим статьям, опубликованным начиная с 1818 г., однако разнообразие характера публикаций и обилие источников, в которых эти публикации появлялись, до сих пор затрудняло сбор необходимых данных и составление достаточно полной истории вопроса. Хотя такая исследовательская работа представляется весьма заманчивой и может привлечь внимание историков техники, в настоящей книге наибольшее внимание уделяется совершенствованию двигателей Стирлинга начиная с 1938 г. Читателей, которых заинтересует развитие этих двигателей в более ранний период, мы отсылаем к прекрасной серии статей [5]. Заслуживают внимания также более поздние публикации [9, 23].
В краткой истории, изложенной в настоящей книге, мы не пытались каталогизировать все созданные двигатели и рассматривать детально все случаи их применения. Наше внимание было сосредоточено скорее на важнейших вехах истории разработки современных двигателей Стирлинга. Мы надеемся, что при таком подходе причины разнообразия типов двигателей Стирлинга и областей их применения станут более понятными.
Несомненно, что разработка конструкций двигателей Стирлинга с 1938 г. прошла через определенные этапы, и учет этого поможет лучше понять существующие в настоящее время тенденции и пути развития. При этом современный этап не должен рассматриваться изолированно, и к ряду идей и новшеств, предложенных в более ранний период, необходимо вернуться вновь в свете современных знаний. Бил (фирма «Санпауэр») провел такое исследование по поиску подходящих конструктивных решений. Двигатель, созданный в лаборатории Била, по своему виду напоминал ранние двигатели Хенричи, однако с помощью ЭВМ, облегчающих разработку конструкции, и современной технологии материалов удалось получить более чем двадцатикратное увеличение удельной мощности на единицу массы. Такой резкий скачок в характеристиках двигателя Стирлинга побудил фирму «Филипс» в конце 30-х годов начать собственные исследовательские работы по этому двигателю. Это было время широкого распространения радиовещания, однако электрификация еще не была всеобщей даже в сравнительно развитых странах. Во многих районах легче было достать топливо, чем получить электроэнергию не только через электросеть, но даже от аккумуляторных батарей. Поэтому возникла потребность в портативных электрогенераторах, использующих тепловую энергию, которые могли бы питать радиоприемники и другие подобные устройства. Двигатели таких устройств должны были иметь малые размеры и низкий уровень шума и не возбуждать электрических помех. Дизельные двигатели не удовлетворяли первому из этих требований, а двигатели с принудительным зажиганием — последнему. Сотрудники фирмы «Филипс» пришли к выводу, что имеются только два реальных устройства, удовлетворяющие этим требованиям, — паровая машина с замкнутым циклом и двигатель Стирлинга.
К 30-м годам, несмотря на то что двигатель Стирлинга в целом был практически забыт, еще выпускались отдельные маломощные двигатели, в основном для использования в условиях тропического климата для привода домашних вентиляторов. Один из таких малых двигателей и был использован фирмой «Филипс» в радиоустановке с генератором (рис. 1.136). При этом обнаружилось, что многие усовершенствования, ранее предложенные для этого двигателя, например регенератор, не использовались и что двигатели, по существу, не совершенствовались с начала 1900-х годов. Поэтому КПД двигателя состав-
Рис. 1.136. Портативный электрогенератор с двигателем фирмы «Филипс» (первоначальный вариант). |
Лял лишь 1 %, в то время как термодинамический КПД цикла Карно для двигателя Стирлинга превышает 50 %■
Сотрудникам фирмы «Филипс» сразу же стало ясно, что у двигателя Стирлинга значительно больше потенциальных возможностей, чем у паровой машины. И когда над Европой нависла угроза второй мировой войны, фирма начала работы с двигателем Стирлинга, вернувшись к. первоначальной концепции 1816 г.— одноцилиндровому двигателю, хотя одним из первых прототипов был двигатель в модификации Райдера с противоположно расположенными цилиндрами. Мы предполагаем, что работа велась в период 1938—1945 гг., поскольку в 1946 г. были опубликованы многочисленные технические статьи, содержащие обширную информацию, которая могла быть получена только в результате работ, продолжавшихся несколько лет. За 'Сравнительно короткий период (немногим менее 10 лет) при неблагоприятной международной обстановке были достигнуты значительные успехи. Фирма «Филипс» взялась за почти забытый двигатель, дала ему новое название, увеличила его удельную мощность (на килограмм массы) почти в 50 раз, уменьшила его размеры на единицу мощности почти в 125 раз и повысила КПД в 15 раз. Таким образом, двигатель Стирлинга вступил в современную фазу своего развития.
Ранние двигатели «Филипс», один из которых показан на рис. 1.50, имели в качестве рабочего тела сжатый воздух, и на них устанавливались оребренные нагревательные головки без трубчатой структуры, которая появилась позднее. Двигатель, показанный на рис. 1.50, развивал мощность до 0,7 кВт и использовался в качестве механического привода в генераторной установке мощностью 200 Вт (рис. 1.51), которая успешно применялась во время катастрофического наводнения в Голландии в 1953 г. Было изготовлено 50 таких установок.
Однако к этому времени благодаря усовершенствованиям в аккумуляторных батареях и электронных устройствах уменьшилась потребность в портативных генераторных установках малой мощности. И все же удивительно, что двигатель Стирлинга повышенной мощности не был доведен до стадии серийного производства, хотя еще в 1948 г. двигатель двойного действия V-4 мощностью 11 кВт был продемонстрирован в лаборатории фирмы «Филипс» ( г. Эйндховен) крупнейшему изготовителю двигателей — Генри Форду II [9], а аналогичных размеров двигатель двойного действия с косой шайбой был подготовлен к выпуску к началу 50-х годов [95]. Дальнейшему прогрессу двигатель Стирлинга обязан фирме «Дженерал моторе», которая предложила фирме «Филипс» разработать совместную программу разработок таких двигателей, однако в то время «Филипс» уклонилась от этого предложения [45]. О причинах этого можно только гадать, но фактом является то, что примерно в 1946—1947 гг. в фирму «Филипс» влилась новая группа исследователей, после чего предпочтение было отдано использованию двигателя в качестве рефрижератора и холодильной машины, а не источника механической энергии. Сразу же начала выполняться соответствующая программа, принесшая фирме «Филипс» существенный коммерческий успех в этой области. Одноступенчатая машина, построенная в 1963 г., обеспечивала температуру 12 К с охлаждающим эффектом, достаточным для получения сверхпроводимости в пластине из сплава ниобия с оловом, так что стержневой магнит мог висеть в воздухе над этой пластиной. В этот первый период совершенствования двигателя обратного действия (т. е. двигателя, работающего в режиме холодильной машины) были достигнуты важные результаты, связанные с применением в качестве рабочего тела водорода и гелия, что уменьшило потери на перетекание и улучшило рабочие характеристики. Успех работ по холодильным машинам и утрата предполагавшегося рынка для двигателя Стирлинга как источника механической энергии, казалось бы, закрывали перспективы использования этого двигателя для получения мощности на выходном валу. Однако благодаря энтузиазму и энергии Мейера — одного из инженеров фирмы «Филипс» — эти работы были продолжены, а изобретение Мейе - ром в 1953 г. ромбического привода обеспечило двигателю Стирлинга будущее. Генераторная установка с ромбическим приводом показана на рис. 1.137.
Если бы не работы этого выдающегося инженера, то вряд ли двигатели Стирлинга достигли современного уровня развития.
Рис. 1.137. Портативный генератор фирмы «Филипс» с ромбическим приводом. |
Использование ромбического привода, трубчатых теплообменников и газов с малой молекулярной массой позволило фирме «Филипс» изготавливать к концу 50-х годов двигатели с эффективным КПД до 30 % и мощностью порядка десятков киловатт, так что фирма уже намеревалась получить из своих работ коммерческую выгоду. С этого времени все наиболее существенные усовершенствования двигателя Стирлинга с кривошипным приводом основывались на разработках фирмы «Филипс» — как на созданных ею конструкциях, так и на лицензиях этой фирмы. Краткая хроника развития двигателей Стирлинга в этот период приведена ниже.
1937— 1938 гг.
Фирма «Филипс» проявляет интерес к двигателям е замкнутым циклом, работающим на подогретом воздухе и предназначенным для электрогенераторов малой мощности.
1938— 1947 гг.
Создано несколько опытных образцов двигателей с лучшими рабочими характеристиками по сравнению с двигателями 30-х годов.
1948—1953 гг.
Внимание переключается на холодильные машины. Выясняется, что применение газов с малыми молекулярными массами
Улучшает рабочие характеристики. Тем не менее продолжается исследование и разработка двигателей — источников механической энергии как простого, так и двойного действия. Интерес к ним проявляют фирмы «Форд» (США) и «Дженерал моторе». Резкий скачок в разработке двигателя Стирлинга был сделан в 1953 г., когда Мейер изобрел ромбический привод, что позволило использовать более высокие рабочие давления. Развитие конструкций двигателей — источников механической энергии и холодильных машин пошло различными путями.
1954—1958 гг.
В течение этого периода было построено и испытано много двигателей с ромбическим приводом, при этом в двигателе 1-365 с водородом в качестве рабочего тела среднее давление цикла достигло 14 МПа. С использованием газа при высоких давлениях возникла проблема надежности уплотнений. Чугунные поршневые кольца не подходили из-за значительной утечки масла. Уплотнения сальникового типа для картера также оказались неподходящими. Было разработано уплотнение поршня с плотной посадкой. Поршень изготавливался с нанесенными на нем кольцевыми слоями сплава олова, свинца и сернистого молибдена. Затем поршень при сильном охлаждении вставлялся в цилиндр. «Дженерал моторе» в 1957 г. вновь проявляет интерес к двигателю Стирлинга и работам фирмы «Филипс». В ноябре 1958 г. между ними заключается соглашение по предоставлению лицензий сроком на 10 лет [45], которое обошлось в конечном счете фирме «Дженерал моторе» в 1,2 млн. долл. (по курсу 60-х годов),
1958—1962 гг.
«Филипс» продолжает работу над двигателем 1-98 с ромбическим приводом. Было построено свыше 30 вариантов этого двигателя. Некоторые из них использовались в качестве привода генератора мощностью 4 кВт. Было достигнуто среднее давление цикла 22 МПа, а при среднем давлении 11 МПа были проведены испытания на долговечность продолжительностью 10 000 ч. Двигатель 1-365 был установлен на моторную яхту «Джон де Вит». На стенде двигатель развивал мощность до 42 кВт при КПД 38 % и среднем давлении цикла 16,5 МПа, в то время как двигатель 1-98 развивал мощность 19 кВт при КПД 33 % и среднем давлении цикла 21 МПа.
Были намечены три основные области применения двигателей Стирлинга, в которых фирма «Дженерал моторе» намеревалась проводить дальнейшую работу: подвесной мотор для судов, генератор для спутников, работающий на солнечной энер - тии, и компактный генератор ГПУ (англ. GPU — Ground Power
Unit) для работы в полевых условиях для армии США. Другие возможные области применения включали силовые установки для речных и каботажных морских судов, подводных лодок и железнодорожного транспорта.
Первым двигателем, который испытывался фирмой «Дженерал моторе», был одноцилиндровый двигатель мощностью 23 кВт с плотной посадкой поршня в цилиндре.
Применение колец из тефлона упростило проблему уплотнения поршня, однако дальнейшая разработка двигателя стала возможной только после изобретения в 1960 г. уплотнения типа «скатывающийся чулок». Это позволило проектировать двигатели увеличенных размеров, особенно после того, как стали применять более эффективные трубчатые и оребренные теплообменники и сетчатые регенераторы. В «Дженерал моторе» двигатель 1-98 был использован в качестве базового для установки ГПУ и генератора для спутника. Затем «Дженерал моторе» отказалась от уплотнения с плотной посадкой в пользу уплотнения фирмы «Грин Твид», разработка которого началась в 1960 г. Кольцевые уплотнения этого типа испытывались параллельно с кольцевыми уплотнениями других типов, предназначенных для штока поршня. По существу, это были первые уплотнения скользящего типа. В 1961 г. «Дженерал моторе» получила детальную документацию на уплотнение типа «скатывающийся чулок» и начала заниматься параллельно этим типом уплотнения и уплотнением скользящего типа. Однако наиболее важным событием в конце этого периода было решение «Дженерал моторе» установить на автомобиле двигатель Стирлинга, работающий на природном топливе с использованием аккумулятора тепловой энергии.
1963—1968 гг.
Изобретение ромбического привода и уплотнения типа «скатывающийся чулок», а также усовершенствования процесса сгорания, теплообменников и систем регулирования позволили приступить к созданию более мощных двигателей. Продолжалась интенсивная работа с двигателем ГПУ, и его мощность была доведена до 9 кВт. Кроме того, и «Филипс», и «Дженерал моторе» провели исследования и построили двигатели мощностью 200 кВт, причем «Филипс» предполагала использовать такой двигатель (рис. 1.48) в силовой установке универсального типа, а «Дженерал моторе» — специально для морских судов. При этом военно-морские силы США испытывали также и двигатель фирмы «Филипс», однако первое практическое применение он нашел на автобусе (рис. 1.138).
«Дженерал моторе» изучала проблему аккумулирования тепловой энергии с начала 50-х годов, совмещая эту работу с совершенствованием двигателя Стирлинга. Предполагалось создать ряд двигателей для подводных лодок с диапазоном мощностей 3—3750 кВт. Фирма «Филипс» также проявила достаточно большой интерес к этим работам и выполнила ряд собственных исследований. К середине 60-х годов двигатель Стирлинга, по крайней мере с технической точки зрения, стал вполне конкурентоспособным с дизелем, однако еще не представлял собой достаточно серьезного соперника двигателю с
msd.com.ua
Сти́рлинга дви́гатель
Двигатель внешнего сгорания с внешним подводом и регенерацией тепловой энергии, преобразуемой в полезную механическую работу. Разработан английским инженером Р. Стирлингом в 1816 г. В качестве рабочего тела в нём использовался воздух, который периодически подогревался и охлаждался. Современный двигатель Стирлинга содержит два цилиндра с поршнями – нагреваемый (рабочий) и холодный (вытеснитель). Штоки обоих поршней связаны между собой и входят в состав кривошипно-шатунного механизма, приводящего во вращение выходной вал двигателя. Рабочее тело (гелий или водород) находится в замкнутом пространстве между полостями цилиндров и во время работы не заменяется, а только изменяет объём при периодическом нагревании и охлаждении. Между полостями цилиндров находится регенератор – холодильник, который разделяет эту полость на горячую и холодную. К горячей полости теплота подводится извне от пламени при сгорании топлива, а от холодной полости отводится охладителем, в котором циркулирует вода. За счёт изменения объёма рабочего тела при периодическом нагревании и охлаждении происходит возвратно-поступательное движение поршней, вызывающее вращение выходного вала двигателя. Рабочий цикл осуществляется за четыре такта: сжатие, нагревание, рабочий ход, охлаждение.
Двигатель внешнего сгорания по конструкции проще, чем поршневые двигатели внутреннего сгорания. Клапаны, их кулачковые приводы, системы впрыска топлива и зажигания в нём отсутствуют. Тепло подводится от внешнего источника – пламени, которое горит в наружном воздухе с избытком кислорода. Поэтому продукты сгорания такого двигателя намного безвреднее, чем при внутреннем сгорании. Изменение давления в двигателе внешнего сгорания происходит плавно, поэтому он не создаёт шума и вибрации.
Преимущество двигателя Стирлинга по сравнению с двигателями внутреннего сгорания состоит ещё и в том, что для него не имеют значения химические свойства топлива. Его мощность зависит только от разности температур между горячей и холодной стороной. Поэтому для него годится любое топливо, любой другой источник тепла, напр. солнечные лучи. Двигатель Стирлинга обратим, т. е. при затрате механической работы может производить холод. Один и тот же двигатель внешнего сгорания можно использовать для выработки электроэнергии, в качестве холодильной установки и для получения горячей воды. Двигатель Стирлинга используют на грузовых автомобилях и судах.
Источник: Техника. Современная энциклопедия на Gufo.megufo.me
Двигатель Стирлинга был впервые запатентован шотландским священником
Робертом Стирлингом 27 сентября 1816 года
(английский патент № 4081).
Роберт Стирлинг
Однако первые элементарные «двигатели горячего воздуха» были известны ещё в конце XVII века, задолго до Стирлинга.
Достижением Стирлинга является добавление очистителя, который он назвал «эконом».
В современной научной литературе этот очиститель называется «рекуператор». Он увеличивает производительность двигателя, удерживая тепло в тёплой части двигателя, в то время как рабочее тело охлаждается. Этот процесс намного повышает эффективность системы. Чаще всего рекуператор представляет собой камеру, заполненную проволокой, гранулами, гофрированной фольгой (гофры идут вдоль направления потока газа). Газ, проходя через наполнитель рекуператора в одну сторону, отдаёт (или приобретает) тепло, а при движении в другую сторону отбирает (отдаёт) его.
Рекуператор может быть внешним по отношению к цилиндрам, а может быть размещён на поршне-вытеснителе в бета- и гамма-конфигурациях. В последнем случае габариты и вес машины оказываются меньше. Частично роль рекуператора выполняет зазор между вытеснителем и стенками цилиндра (при длинном цилиндре надобность в таком устройстве вообще исчезает, но появляются значительные потери из-за вязкости газа). В альфа-стирлинге рекуператор может быть только внешним. Он монтируется последовательно с теплообменником, в котором происходит нагрев рабочего тела, со стороны холодного поршня.
В 1843 году Джеймс Стирлинг использовал этот двигатель на заводе, где он в то время работал инженером. В 1938 году фирма «Филипс» инвестировала в мотор Стирлинга мощностью более двухсот лошадиных сил и отдачей более 30 %. Двигатель Стирлинга имеет много преимуществ и был широко распространён в эпоху паровых машин.
В XIX веке инженеры хотели создать безопасную альтернативу паровым двигателям того времени, котлы которых часто взрывались из-за высоких давлений пара и неподходящих материалов для их постройки. Хорошая альтернатива паровым машинам появилась с созданием двигателей Стирлинга, который мог преобразовывать в работу любую разницу температур. Основной принцип работы двигателя Стирлинга заключается в постоянно чередуемых нагревании и охлаждении рабочего тела в закрытом цилиндре. Обычно в роли рабочего тела выступает воздух, но также используются водород и гелий. В ряде экспериментальных образцов испытывались фреоны, двуокись азота, сжиженный пропан-бутан и вода. В последнем случае вода остаётся в жидком состоянии на всех участках термодинамического цикла. Особенностью стирлинга с жидким рабочим телом является малые размеры, высокая удельная мощность и большие рабочие давления. Существует также стирлинг с двухфазным рабочим телом. Он тоже характеризуется высокой удельной мощностью, высоким рабочим давлением. Из термодинамики известно, что давление, температура и объём идеального газа взаимосвязаны и следуют закону:
PV = nRT , где:
P — давление газа; V — объём газа; n — количество молей газа; R — универсальная газовая константа; Т — температура газа в кельвинах.Это означает, что при нагревании газа его объём увеличивается, а при охлаждении — уменьшается. Это свойство газов и лежит в основе работы двигателя Стирлинга.
Двигатель Стирлинга использует цикл Стирлинга, который по термодинамической эффективности не уступает циклу Карно, и даже обладает преимуществом. Дело в том, что цикл Карно состоит из мало отличающихся между собой изотерм и адиабат. Практическая реализация этого цикла малоперспективна. Цикл Стирлинга позволил получить практически работающий двигатель в приемлемых габаритах.
Так может быть устроен один из вариантов
современного Двигателя Стирлинга:
stirling.at.ua