ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Плазменно-реактивный двигатель. Двигатель плазма


комиксы, гиф анимация, видео, лучший интеллектуальный юмор.

Ионный двигатель - что это такое?

ионный двигатель,космос,космический двигатель,астрономия,космический корабль,длиннопост Ионный двигатель — хорошо отработанная на практике и исторически первая разновидность электрического ракетного двигателя. Недостатком ионного двигателя является малая тяга (например, разгон космического аппарата с весом автомобиля от 0 до 100 км/ч требует больше двух суток непрерывной работы ионного двигателя), которую невозможно увеличить из-за ограничений объёмного заряда.

Однако малый расход топлива (точнее, рабочего тела) и продолжительное время функционирования ионного двигателя (максимальный срок непрерывной работы самых современных образцов ионных двигателей составляет более пяти лет) позволяет за длительный промежуток времени разогнать космический аппарат небольшого веса до приличных скоростей. Сфера применения: управление ориентацией и положением на орбите искусственных спутников Земли (некоторые спутники оснащены десятками маломощных ионных двигателей) и использование в качестве главного тягового двигателя небольшой автоматической космической станции. Характеристики ионного двигателя: потребляемая мощность 1-7 кВт, скорость истечения 20-50 км/с, тяга 20-250 мН, КПД 60-80 %. Рабочим телом является ионизированный газ (аргон, ксенон и т. п.).

ионный двигатель,космос,космический двигатель,астрономия,космический корабль,длиннопост

Ионному двигателю в настоящее время принадлежит рекорд негравитационного ускорения космического аппарата в космосе без использования жидкостного ракетного двигателя — Deep Space 1 смог увеличить скорость на 4,3 км/с, израсходовав 74 кг ксенона (этот рекорд скорости в ближайшее время планируется превзойти на 10 км/с космическим аппаратом Dawn). Однако ионный двигатель не является самым перспективным типом электроракетного двигателя, поэтому данный рекорд скорости, скорее всего, будет превзойдён холловским или магнитоплазмодинамическим двигателем.

Существует проект межзвёздного зонда с ионным двигателем, получающим энергию через лазер от базовой станции, что дает некоторое преимущество по сравнению с чисто космическим парусом (в настоящее время данный проект неосуществим из-за технических ограничений.ионный двигатель,космос,космический двигатель,астрономия,космический корабль,длиннопост
Принцип работы двигателя заключается в ионизации газа и его разгоне электростатическим полем. При этом, благодаря высокому отношению заряда к массе, становится возможным разогнать ионы до очень высоких скоростей (вплоть до 210 км/с по сравнению с 3—4,5 км/с у химических ракетных двигателей). Таким образом, в ионном двигателе можно достичь очень большого удельного импульса. Это позволяет значительно уменьшить расход реактивной массы ионизированного газа по сравнению с расходом реактивной массы в химических ракетах, но требует больших затрат энергии.

В существующих реализациях для поддержки работы двигателя используются солнечные батареи. Но для работы в дальнем космосе такой способ неприемлем. Поэтому уже сейчас для этих целей иногда используются ядерные установки.

ионный двигатель,космос,космический двигатель,астрономия,космический корабль,длиннопост Источником ионов служит газ — как правило, аргон или водород. Бак с газом стоит в самом начале двигателя, оттуда газ подаётся в отсек ионизации; получается холодная плазма, которая разогревается в следующем отсеке посредством ионного циклотронного резонансного нагрева. После нагрева высокоэнергетическая плазма подаётся в магнитное сопло, где она формируется в поток магнитным полем, разгоняется и выбрасывается в окружающую среду. Таким образом достигается тяга.

С тех пор плазменные двигатели прошли большой путь и разделились на несколько основных типов — электротермические, электростатические, сильноточные или магнитодинамические и импульсные двигатели. В свою очередь электростатические двигатели делятся на ионные и плазменные (ускорители частиц на квазинейтральной плазме).

Ионный двигатель использует в качестве топлива ксенон или ртуть. Первый ионный двигатель назывался сетчатый электростатический ионный двигатель. В ионизатор подаётся ксенон, который сам по себе нейтрален, но при бомбардировании высокоэнергетическими электронами ионизируется. Таким образом в камере образуется смесь из положительных ионов и отрицательных электронов. Для «отфильтровывания» электронов в камеру выводится трубка с катодными сетками, которая притягивает к себе электроны.ионный двигатель,космос,космический двигатель,астрономия,космический корабль,длиннопост

Положительные ионы притягиваются к системе извлечения, состоящей из 2-х или 3-х сеток. Между сетками поддерживается большая разница электростатических потенциалов (+1090 вольт на внутренней против — 225 вольт на внешней). В результате попадания ионов между сетками, они разгоняются и выбрасываются в пространство, ускоряя корабль, согласно третьему закону Ньютона. Электроны, пойманные в катодную трубку выбрасываются из двигателя под небольшим углом к соплу и потоку ионов. Это делается по двум причинам:

чтобы корпус корабля оставался нейтрально заряженным;

чтобы ионы, «нейтрализованные» таким образом не притягивались обратно к кораблю.Чтобы ионный двигатель работал, нужны всего 2 вещи — газ и электричество.

Недостаток двигателя в его нынешних реализациях — очень слабая тяга (порядка 50-100 миллиньютонов). Таким образом, нет возможности использовать ионный двигатель для старта с планеты, но, с другой стороны, в условиях невесомости, при достаточно долгой работе двигателя, есть возможность разогнать космический аппарат до скоростей, недоступных сейчас никаким другим из существующих видов двигателей. Однако разрабатываются более совершенные и мощные типы электроракетных двигателей (холловский и магнитоплазмодинамический), превосходящие ионный двигатель по величине тяги и, как следствие, конечной скорости космического аппарата.

joyreactor.cc

Плазменный ракетный двигатель. | Наука для всех простыми словами

Плазменный двигатель (также плазменный инжектор) - ракетный двигатель, рабочее тело которого приобретает ускорение, находясь в состоянии плазмы.

Существует множество типов плазменных двигателей. В настоящее время наиболее широкое распространение - в качестве двигателей для поддержания точек стояния геостационарных спутников связи - получили стационарные плазменные двигатели, идея которых была предложена а. и. Морозовым в 1960-х гг. первые лётные испытания состоялись в 1972 г. плазменные двигатели не предназначены для вывода грузов на орбиту и могут работать только в вакууме. Плазменные двигатели не следует путать с ионными.

Принцип работы.Нейтральный газ ксенон подается через металлический кольцевой анод с отверстиями в двустенную (кольцевую) керамическую газоразрядную камеру, на выходе которой установлен полый газоразрядный (работающий также на ксеноне) катод - компенсатор для эмиссии электронов. В керамической газоразрядной камере внутренний и наружный полюса электромагнита создают радиальное магнитное поле в несколько сотен Гаусс, нарастающее вдоль камеры и быстро спадающее за её пределами. Лишь в том случае, если между анодом и катодом - компенсатором приложить постоянное напряжение в несколько сотен вольт, то в газоразрядном канале зажигается разряд, и ксенон ионизируется, создавая плазму. Тяжёлые ионы ксенона ускоряются электрическим полем вдоль канала, почти не отклоняясь слабым магнитным полем, и набирают энергию несколько меньшую, чем приложенное напряжение. Электроны же, напротив, не могут свободно перемещаться вдоль канала, поскольку их ларморовский радиус очень мал. Впрочем, из-за коллективных процессов в плазме электроны всё же составляют небольшую часть разрядного тока. Основной же ток разряда переносят ионы ксенона. Поток ускоренных ионов, вылетающих из газоразрядной камеры, создаёт реактивную тягу двигателя. Вместе с ионами из плазменного двигателя уходит равный им по величине поток электронов из катода - компенсатора.

science.ru-land.com

Плазменный ракетный двигатель - это... Что такое Плазменный ракетный двигатель?

Схематическое устройство плазменного ускорителя

Пла́зменный дви́гатель (также плазменный инжектор) — ракетный двигатель, рабочее тело которого приобретает ускорение, находясь в состоянии плазмы.[1]

Существует множество типов плазменных двигателей. В настоящее время наиболее широкое распространение — в качестве двигателей для поддержания точек стояния геостационарных спутников связи — получили стационарные плазменные двигатели, идея которых была предложена А. И. Морозовым в 1960-х гг. Первые лётные испытания состоялись в 1972 г.[2] Плазменные двигатели не следует путать с ионными. Они не предназначены для вывода грузов на орбиту, и могут работать только в вакууме.

Принцип работы

Нейтральный газ ксенон подается через металлический кольцевой анод с отверстиями в двустенную (кольцевую) керамическую газоразрядную камеру, на выходе которой установлен полый газоразрядный (работающий также на ксеноне) катод-компенсатор для эмиссии электронов. В керамической газоразрядной камере внутренний и наружный полюса электромагнита создают радиальное магнитное поле в несколько сотен Гаусс, нарастающее вдоль камеры и быстро спадающее за её пределами. Если между анодом и катодом-компенсатором приложить постоянное напряжение в несколько сотен Вольт, то в газоразрядном канале зажигается разряд и ксенон ионизируется, создавая плазму. Тяжёлые ионы ксенона ускоряются электрическим полем вдоль канала, почти не отклоняясь слабым магнитным полем, и набирают энергию несколько меньшую, чем приложенное напряжение. Электроны же, напротив, не могут свободно перемещаться вдоль канала, поскольку их ларморовский радиус очень мал. Впрочем, из-за коллективных процессов в плазме электроны всё же составляют небольшую часть разрядного тока. Основной же ток разряда переносят ионы ксенона. Поток ускоренных ионов, вылетающих из газоразрядной камеры, создаёт реактивную тягу двигателя. Вместе с ионами из плазменного двигателя уходит равный им по величине поток электронов из катода-компенсатора.[3]

См. также

Примечания

  1. ↑ Большая Советская Энциклопедия, Третье издание БСЭ, 1969—1978 г.
  2. ↑ Журнал Космические исследования, том XII, в.3, стр.461
  3. ↑ Журнал Технической физики, том XLII, в.1, стр.54

Ссылки

dic.academic.ru

Плазменный двигатель

 

Изобретение относится к авиационной технике и может использоваться для создания летательных аппаратов. Снаружи коаксиальных цилиндрических электродов плазменного двигателя установлены пусковые камеры для образования плазмы и ее автоматической подачи между электродами. Все стенки камеры покрыты кварцевым стеклом. Внутри камер установлены емкости с ртутью. Для ионизации рабочего газа используются ртутные лампы. Снизу ускорителя плазмы установлена тяговая камера с реактивным маховиком, закрепленным на шлицах вала, установленного на подшипниках. На каждой пусковой камере могут быть размещены коаксиальные плазменные ускорители, снабженные клапанами забора воздуха. Изобретение направлено на повышение КПД и снижение расхода газа. 4 з.п.ф-лы, 3 ил.

Изобретение относится к авиационной технике и может использоваться для создания летательных аппаратов.

Известен плазменный двигатель, содержащий два коаксиальных цилиндрических электрода, разделенных изолятором, на которые подается напряжение и создается плазменный шнур, замыкающий электроды. Плазма ускоряется в известном двигателе в магнитном поле, создаваемом током, протекающим по электродам (см. Гришин Г.Д. и Лесков Л.В. Электрические ракетные двигатели космических аппаратов, М., Машиностроение, 1989, стр. 154-157). Изобретение направлено на повышение КПД и снижение расхода газа. Указанный технический результат достигаетсяч за счет того, что в плазменном двигателе, содержащем два коаксиальных цилиндрических электрода, разделенных изолятором, на которые подается напряжение и создается плазменный шнур, замыкающий электроды, при этом плазма ускоряется в магнитном поле, создаваемом электродами, осуществляя реактивную тягу, согласно настоящему изобретению сверху ускорителя изолятор выполнен с возможностью забора воздуха, а снаружи коаксиальных цилиндрических электродов установлены наружные пусковые камеры для образования плазмы и ее автоматической подачи между электродами, при этом камеры выполнены с подводом газа в их среднюю часть, все стенки камеры покрыты кварцевым стеклом и содержат емкость с ртутью, позволяющую испарять ртуть в средней части камер, для подачи азота или воздуха сверху пусковых камер установлены всасывающие воздух приборы, а для ионизации - лампы на парах ртути или с ртутными электродами, причем снизу ускорителя установлена тяговая камера с реактивным маховиком, закрепленным на шлицах вала, установленного на подшипниках. На каждую пусковую камеру снаружи могут быть установлены коаксиальные ускорители, снабженные всасывающими клапанами забора воздуха, которые открываются от разряжения ускоряемой плазмы и закрываются давлением плазмы. Плазменный двигатель может содержать впускные и выпускные клапаны на ускорителях, которые закрыты и автоматически открываются для подачи плазмы, которая с большой скоростью втягивается ускорителями, засасывая воздух снаружи во все ускорители за счет разряжения при ускорении плазмы. Снизу пусковой камеры могут быть установлены ускорители для сбора плазмы, выходящей из тяговой камеры с маховиком. Тяговая камера может быть снабжена МГД-генератором с пластинами и катушками, а маховик выполнен в виде плоских электродов с диэлектриком, соединенных с дисковым заборным соплом, и полюсов с обмотками. На фиг. 1 изображен разрез плазменного двигателя; на фиг.2 - вид сверху на плазменный двигатель; на фиг.3 - вид снизу на реактивный маховик. Плазменный двигатель содержит коаксиальные цилиндрические электроды 1 и 2, наружные пусковые камеры 3, систему подачи газа с трубопроводами 4, коаксиальные ускорители 5, установленные снаружи на каждую пусковую камеру 3, емкости 6 для ртути, размещенные в средней части пусковых камер 3, лампы 7 на парах ртути или с ртутными электродами. На ускорителях установлены впускные и выпускные клапаны 8. Двигатель содержит также катушки 9 магнитной фокусировки, корпус 10 тяговой камеры для создания генератора с маховиком, неподвижные дисковые пластины 11 тяговой камеры с обмотками, плазменный реактивный маховик 12, установленный на шлицах вала с подшипниками, и коаксиальные ускорители 13, установленные снизу от пусковой камеры. Плазменный двигатель работает следующим образом. Газ подается по трубопроводам 4 в среднюю часть пусковых камер 3. Затем газ ионизируется с помощью ртутных ламп 7 вместе с парами ртути, поступающими из емкости 6, и превращается в плазму. Клапаны 8 открываются автоматически, и плазма поступает в разрядную камеру между коаксиальными электродами 1 и 2. Плазма, ускоряемая ускорителями 5, затягивает воздух в пусковые камеры 3. В ускорителе плазма замыкает коаксиальные цилиндрические электроды 1 и 2, ускоряется в магнитном поле и с большой скоростью выбрасывается в тяговую камеру. В состав тяговой камеры входит МГД-генератор с пластинами и катушками с полюсами 11 и заборное сопло реактивного маховика 12. Плазма из тяговой камеры с помощью ускорителей 13 выбрасывается в пусковые камеры 3 для повторного использования в работе.

Формула изобретения

1. Плазменный двигатель, содержащий два коаксиальных цилиндрических электрода, разделенных изолятором, на которые подается напряжение и создается плазменный шнур, замыкающий электроды, при этом плазма ускоряется в магнитном поле, создаваемом электродами, осуществляя реактивную тягу, отличающийся тем, что сверху ускорителя изолятор выполнен с возможностью забора воздуха, а снаружи коаксиальных цилиндрических электродов установлены наружные пусковые камеры для образования плазмы и ее автоматической подачи между электродами, при этом камеры выполнены с подводом газа в их среднюю часть, все стенки камеры покрыты кварцевым стеклом и содержат емкость с ртутью, позволяющую испарять ртуть в средней части камер, для подачи азота или воздуха сверху пусковых камер установлены всасывающие воздух приборы, а для ионизации газа - лампы на парах ртути или с ртутными электродами, причем снизу ускорителя установлена тяговая камера с реактивным маховиком, закрепленным на шлицах вала, установленного на подшипниках. 2. Двигатель по п.1, отличающийся тем, что снаружи на каждую пусковую камеру установлены коаксиальные ускорители, снабженные всасывающими клапанами забора воздуха, которые открываются от разряжения ускоряемой плазмы и закрываются давлением плазмы. 3. Двигатель по п. 2, отличающийся тем, что содержит впускные и выпускные клапаны на ускорителях, которые закрыты и автоматически открываются для подачи плазмы, которая с большой скоростью втягивается ускорителями, засасывая воздух снаружи во все ускорители за счет разряжения при ускорении плазмы. 4. Двигатель по п. 1, отличающийся тем, что снизу от пусковой камеры устанавливают ускорители для сбора плазмы, выходящей из тяговой камеры с маховиком. 5. Двигатель по п. 1, отличающийся тем, что тяговая камера снабжена МГД-генератором с пластинами и катушками, а моховик выполнен в виде плоских электродов с диэлектриком, соединенных с дисковым заборным соплом, и полюсов с обмотками.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3

Похожие патенты:

Изобретение относится к физике и может найти применение не только для научных исследований, но и для решения важных технических задач, связанных с получением протяженных однородных электромагнитных полей

Изобретение относится к области двигательных систем, в том числе реактивных, а именно к способам и устройствам создания активных движущихся сил (АДС) в изменяемых механических системах, моделирующих рабочие процессы в силовых установках различных транспортных средств, унифицированно применимых на различных поверхностях и в различных средах перемещения, включая среду с бесконечно малой плотностью

Изобретение относится к двигателям для космических летательных аппаратов и может быть использовано для летательных аппаратов, движущихся в атмосфере

Изобретение относится к области космонавтики , в частности к ракетостроению

Изобретение относится к силовым установкам , а именно к транспортным движителям

Изобретение относится к авиационной технике и может использоваться для летательных аппаратов

Изобретение относится к электрореактивным двигателям, а более конкретно, к импульсным электрореактивным двигателям

Изобретение относится к плазменной технике и может быть использовано в электрических ракетных двигателях, в частности плазменных ускорителях с замкнутым дрейфом электронов, предназначенных для работы в космических условиях, и может найти применение в электронике для ионной очистки, получения покрытий различного функционального назначения в вакуумной металлургии для совершенствования поверхностных характеристик металлов и сплавов

Изобретение относится к космической технике, а именно к электрореактивным двигательным установкам, в состав которых входят стационарные плазменные двигатели и двигатели с анодным слоем

Изобретение относится к ионно-оптическим ускорителям ионов и может быть использовано в ионных двигателях

Изобретение относится к ракетной и ядерной технике, предназначено для освоения космического пространства и может быть использовано для получения электрической и тепловой энергии на космическом корабле

Изобретение относится к плазменной технике, а более конкретно, касается конструирования ускорителей плазмы с замкнутым дрейфом электронов (УЗДЭ) и может быть использовано при разработке электроракетных двигателей, а также технологических ускорителей, применяемых в процессах вакуумно-плазменной технологии

Изобретение относится к электроракетным двигателям и можеи использоваться при их конструировании

Изобретение относится к плазменным двигателям, применяемым на космических аппаратах, в частности, к плазменным двигателям с замкнутым дрейфом электронов, называемых двигателями со стационарной плазмой или "холловскими двигателями"

Изобретение относится к области плазменных двигателей, предназначенных для установки на космических летательных аппаратах, в частности к плазменным двигателям с замкнутой траекторией дрейфа электронов, называемых также стационарными плазменными двигателями

Изобретение относится к авиационной технике и может использоваться для создания летательных аппаратов

www.findpatent.ru

ПЛАЗМЕННЫЕ ДВИГАТЕЛИ - это... Что такое ПЛАЗМЕННЫЕ ДВИГАТЕЛИ?

 ПЛАЗМЕННЫЕ ДВИГАТЕЛИ ПЛАЗМЕННЫЕ ДВИГАТЕЛИ         ракетные двигатели, в к-рых рабочее тело ускоряется, находясь в состоянии плазмы. Скорости истечения рабочего тела, достижимые в П. д., существенно выше скоростей, предельных для обычных газодинамич. (хим. или тепловых) двигателей. Увеличение скорости истечения позволяет получать данную тягу при меньшем расходе рабочего тела, что облегчает вес ракетной системы. Практич. применение на сов. и амер. косм. летат. аппаратах нашли плазменные электрореактивные двигатели. В таких П. д. через рабочее тело пропускается электрич. ток от бортового источника энергии, в результате чего образуется плазма с темп-рой в десятки тыс. градусов. Эта плазма затем ускоряется либо газодинамически, либо за счёт силы Ампера, возникающей при вз-ствии протекающего по плазме тока с магн. полями (см. ПЛАЗМЕННЫЕ УСКОРИТЕЛИ).

Исследуются возможности создания П. д. на др. принципах. Так, существуют модели П. д., работающие на отдаче, вызванной разлётом продуктов разложения и испарения поверхностей тв. тел, облучаемых мощными импульсами лазерного излучения или импульсными электронными пучками. Обсуждается также схема яд. ракетного двигателя на основе ядерного реактора с газофазными (точнее, плазменными) тепловыделяющими элементами. В этом реакторе делящееся в-во должно находиться в состоянии плазмы с темп-рой в неск. десятков тыс. градусов. При контакте с ним рабочее тело (напр., водород) будет нагреваться до соответствующих темп-р, что позволит получить скорости истечения в неск. десятков км/с.

Физический энциклопедический словарь. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983.

ПЛАЗМЕННЫЕ ДВИГАТЕЛИ

- космич. реактивные(ракетные) двигатели с рабочим веществом в плазменной фазе, использующиедля создания и ускорения потока плазмы электрич. энергию. П. д. представляютсобой соответствующим образом оптимизированные плазменные ускорители. П. д. - составная часть семейства электроракетных двигателей (ЭРД),в к-рое входят также ионные и эл.-нагревные двигатели. При эл.-магн. ускоренииплазмы скорость истечения существенно превосходит тепловую скорость, характернуюдля хим. (тепловых) ракетных двигателей, что в соответствии с ф-лой Мещерского- Циолковского (см. Механика тел переменной массы )расширяет диапазондостижимых характеристич. скоростей и увеличивает долю полезной нагрузкина космич. летат. корабле (КЛА). П. д. функционируют на борту КЛА в условияхневесомости либо очень малых гравитац. полей. П. д. имеют малую тягу (10-2- 10-1 Н), работают длит. время (15050-82.jpg103 ч) при большом числе включений. С учётом огранич. возможностей совр. космич. ( и- скорость истечения,15050-84.jpg= Fu/2N - тяговый кпд, где F - тяга, N - потребляемаяэлектрич. мощность), уменьшающаяся при заданной скорости истечения по мерероста 15050-85.jpgИспользование П. д. (ЭРД) дает возможностьпрецизионно установить требуемые параметры орбиты КЛА, поддерживать ихнеизменными и осуществлять перевод КЛА с одной траектории на другую.Интенсивная разработка П. д. началасьв кон. 1950-х гг. В качестве прототипов П. д. рассматривались все схемыплазменных ускорителей. Однако до сих пор применяются только два типа П. 1 закреплёнс одной стороны буртиком (выступом) 6, с другой - пружиной 8, к-рая подаёт брусок вперёд по море его выгорания. Запасаемая энергия1,85 Дж, унос вещества за разряд 10-8 кг, скорость истечения3 км/с. Двигатель рассчитан на 12 х 106 разрядов с импульсом2 х 10-5 Н/с.

15050-86.jpg

Схема эрозионного импульсного плазменногодвигателя спутника LES-6: 1 - брусок тефлона; 2 - катод;3 - анод; 4 - струя плазмы; 5 - устройство для поджига разряда;6- буртик; 7 - конденсатор; 8 - пружина подачи.

СПД - исторически сложившееся, не оченьудачное название двигат. варианта плазменного ускорителя с замкнутым дрейфомэлектронов и протяжённой зоной ускорения. Эти двигатели могут работатьдлит. время в пост. режиме. ЭРДУ с двумя СПД, работавшими на ксеноне, каждыймощностью 400 Вт, скоростью истечения ~10 км/с и тягой - 2 х 10-2 Н впервые функционировала на борту советского ИСЗ "Метеор" в 1972. С еёпомощью за 170 ч работы высота орбиты ИСЗ изменилась на 17 км, и спутникбыл установлен на геосинхронную орбиту. В дальнейшем ЭРДУ с ксеноновымиСПД были включены в состав советских спутников серии "Метеор - природа",они регулярно выводятся в космос на борту спутников связи, в т. ч. ретрансляторов, Лит.: Гильзин К. А., Электрическиемежпланетные корабли, 2 изд., М., 1970; Морозов А. И., Шубин А. П., Космическиеэлектрорсактивные двигатели, М., 1975; Гришин С. Д., Лесков Л. В., КозловН. П., Электрические ракетные двигатели, М., 1975.

А. П. Шубин.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.

.

Смотреть что такое "ПЛАЗМЕННЫЕ ДВИГАТЕЛИ" в других словарях:

dic.academic.ru

Плазменно-реактивный двигатель

 

Использование: в области авиационного и ракетного двигателестроения на жидком и газообразном топливе. Сущность изобретения: двигатель состоит из вихревой камеры воспламенения и сжигания топлива, магнитного ускорителя плазмы и газодинамического сопла, соединенных соосно и сопряженных торовыми поверхностями, на которых размещены форсунки для подачи воды (пара) и коронирующие электроды. 2 з.п. ф-лы, 7 ил.

Изобретение относится к области авиационного и ракетного двигателестроения на жидком топливе.

Известно применение прямоточного воздушно-реактивного двигателя в самолетах и летательных средствах [1] Недостатком таким двигателей является низкий индикаторный КПД, большой расход топлива и окислителя (катализатора), большой выброс токсичных окислов азота. Известно, что в воздухе атмосферы содержится 21% кислорода, а с учетом влаги атмосферы не более 23% Это основной резерв окислителя жидкого топлива. Кроме того, при предварительной ионизации встречного воздушного потока (в т. ч. и лазерным лучом), часть кислорода потребляется на окисление азота воздуха (которого 78% общей массы воздуха) и образование окислов азота. Следовательно, как бы не "съедал" летательный аппарат кислород атмосферы и озон стратосферы, его двигатель не доиспользуется по окислителю топлива и выбрасывает недогоревшее топливо и более 40 г окислов азота на каждый килограмм топлива (керосина). Это ведет к перерасходу топлива, ухудшению экологии атмосферы и стратосферы, ограничению полета по высоте и дальности. Известен плазменно-реактивный двигатель, содержащий соединенные между собой и расположенные соосно камеру сгорания, состоящую из камеры воспламенения и сжигания топлива и имеющую форсунку подачи, магнитный ускоритель плазмы и гидродинамическое сопло [2] Недостатком данного двигателя является расход топлива при малой реактивной тяге. Задачей изобретения является увеличение реактивной силы двигателя, уменьшение расхода топлива и выброса окислов азота при работе двигателя в плотной атмосфере и на космических высотах. Сущностью изобретения является создание двигателя на новых физико-химических принципах, с использованием естественных природных окислителя и топлива. Теплотворная способность топлива и количество кислорода (воздуха) определяют температуру горения. От режима горения зависит мощность двигателя и расход топлива. Чрезвычайно важным в реактивном двигателестроении является не только подъем температуры горения, но и скорость сгорания и распространение фронта горения горючей смеси. Процесс работы двигателя включает характер подвода реагентов в зону горения и взаимную "диффузию" в зоне реакции. Интенсивное испарение и газообразование топлива, диффузия окислителя и ускорение фронта горения приводят к увеличению давления и образование ударной (взрывной) волны, распространяющейся по направляющим сопла. В зависимости от высоты полета летательного средства (самолета или ракеты) работа двигателя будет в разных режимах: плотных слоях атмосферы; в стратосфере (до 50 км над Землей) и мезосфере (свыше 50 км). Предлагаемый двигатель схематически изображен на фиг. 1 (продольный разрез) и фиг. 2 поперечный разрез А-А на фиг. 1. Двигатель состоит из четырех основных блоков: соединенных между собой и соосно расположенных камеры сгорания, состоящей из камеры воспламенения и сжигания топлива 1 магнитного ускорителя плазмы 2, газодинамического сопла 3 и ионно-динамического зонда 4. Камера воспламенения и сжигания имеет корпус, состоящий из торцевых крышек 10 и 11 и вихревой камеры 13, выполненной в виде улитки (фиг. 2). На верхней торцевой крышке 11 укреплены топливная форсунка 5, коронирующие электроды-запальники 6 и расположенные радиально по периферии форсунки 7. Боковая радиальная стенка 14 имеет тангенциальные каналы 15 для подвода воздуха (окислителя) в плотных слоях атмосферы и ионизированной плазмы в стратосфере и мезосфере. Нижняя часть камеры сопрягается с магнитным ускорителем плазмы торовой поверхностью, на которой радиально периферийно и последовательно размещены форсунки 7 для подачи пара (или воды) и коронирующие электроды 6. Магнитный ускоритель плазмы состоит из ферромагнитного сердечника 8 (магнитотвердого или магнитомягкого) и катушки 9, создающей вращающееся переменное магнитное поле. Магнитный ускоритель плазмы торовой сужающейся поверхностью соединяется с соплом. Внешняя радиальная поверхность газодинамического сопла содержит радиальный карман-охладитель плазмы 16. Нижняя расширенная часть сопла содержит кольцевой желоб 17 для сбора отработанной воды. Из желоба по каналам 18 в стенках сопла вода путем теплообменных процессов превращается в пар и поступает на форсунки 7. Расширенная коническая часть газодинамического сопла переходит в радиально расположенные ионно-динамические зонды 4. При работе двигателя в плотных слоях атмосферы закрученный поток воздуха через всасывающий патрубок и тангенциальные каналы 15 поступает в камеру воспламенения топлива. Топливо (керосин), впрыскиваемое форсункой 5, коронирующими электродами-запальниками и приложенным импульсным коронным разрядом диспергируется и диссоциируется на простые (легкие) углеводороды. Происходит предварительное холодное "зажигание" топлива. Происходит пиролиз и электрокрекинг керосина на гомологически различающиеся по физическим свойствам продукты (газы, жидкости и твердые вещества). Основными газообразными продуктами разложения являются этилен (C2h5), метан (Ch5), ацетилен (C2h3) и остальные фазы CO, CO2, O2, h3. Разница в теплоте сгорания между высшими и низшими членами гомологического ряда уменьшается. Например, теплота сгорания ацетилена отличается от этилена на 600 700 кДж. Следовательно, эффективность работы двигателя зависит от интенсивности превращения высших углеводородов в низшие, с последующим воспламенением и сжиганием. По мере увеличения давления (при закрытых заслонках), за счет интенсивного испарения и газообразования горючей смеси, ток короны подпирается и возрастает температура накала коронирующего электрода-запальника 6, происходит воспламенения и вторая стадия (после холодного) сжигания горючей смеси. Первоначальное вращение горючей смеси осуществляется за счет вихревого потока (атмосферы Земли и Солнца), поступающего по тангенциальным каналам 15 вихревой камеры. Вращающаяся ионизированная плазма поступает в сужающуюся торовую область, где начинает ускоряться и получать добавочный окислитель топлива в виде перегретого пара до температуры 300oC, впрыскиваемое форсунками 7 (теплообменное устройство для перевода воды в перегретый пар на схеме не показано). Коронирующими электродами 6, расположенными по окружности расширяющейся торовой поверхности, производится ионизация плазмы. Для преодоления тепловой инерции (стоячих тепловых волн), в центральной части торового сечения, напряжение короны пульсирующее, с медленным подъемом до амплитудного, и резким спадом. При этом плазма диссоциируется и ионизируется, а вода диссоциируется на ионы: h3O H++OH- с последующим окислением и восстановлением до молекулярных газов водорода и кислорода: При этом энтальпия ионно-радиационной ионизированной плазмы возрастает. Источником электронов в вышеприведенных реакциях является коронный пульсирующий разряд в высокотемпературной ионизированной плазме. Горячая ионно-радиационная плазма из вихревой камеры поступает в магнитный ускоритель 2, где вращающимся переменным магнитным полем она ускоряется и разделяется. При температуре плазмы, превышающей 2000oC соединение водорода с кислородом не происходит. Ускоритель плазмы является и газоциклоном, разделяющим газы по массовому составу. Наиболее легкий водород, вращаясь, премещается к наружной поверхности ускорителя (толстые линии на фиг. 3), а ниже, с меньшей амплитудой (тонкая линия) кислород и далее догорающие углеводороды и тяжелые газы. В сечении сужающейся торовой поверхности газодинамического сопла, происходит ускорение плазмы и соединение водорода с кислородом. Охладителем (например жидким водородом) находящемся в кармане 16 сопла, периферийные газы водород и кислород охлаждаются до температуры 1500oC500oC. Охлажденные водород и кислород, в объемном отношении два к одному, при таких температурах соединяются взрывом, и в области расширяющейся части сопла создается добавочная реактивная сила. При этом образовавшаяся вода, по стенкам расширяющейся части сопла, собирается в кольцевом желобе 17, а затем по каналам 18 в стенках сопла, путем теплообменных процессов и разности давлений, в виде перегретого пара поступает на форсунки 6. Этот режим работы двигателей продолжается до перехода в стратосферу, где содержание кислорода минимальное, а содержание окислов азота максимальное (в нижней части стратосферы). При работе двигателя в режиме верхней стратосферы и мезосферы часть воды, при увеличении давления пара на форсунках 7, сбрасывается. Сбрасываемая вода (пар) ионизируется космическими лучами (согласно приведенным выше формулам), увеличивая поверхностную плотность заряда летаельного средства. При этом поверхностная плотность заряда, приобретаемого летательным средством в атмосфере, возрастает за счет суммарного заряда от ионизации воды и естественных зарядов из мезосферы. Магнитное поле с одинаковой силой воздействует на весь объем униполярной заряженной летательной среды. Летательное средство, с радиальным размещением двигателей на нем и движущимся по околоземной магнитной силовой орбите, с координатами 50 град. 30 мин. северной широты и 72 град. восточной долготы, показано на фиг. 4. Реактивная сила, действующая на единицу объема летательного средства (последний рассматривается как заряженный эллипсоид, направленный длинной осью вдоль силовых линий магнитного поля), со стороны поля напряженностью H, может быть представлена выражением: где, магнитная проницаемость среды; s поверхностная плотность заряда на летательном средстве. При концентрации и стечении поверхностных зарядов от ионизирующих газов с зондов 4 возникает добавочная реактивная сила. Зонды имеют телескопическую конструкцию. Управление летательным средством в стратосфере и мезосфере осуществляется выдвижением (удлинением или укорочением) зондов. С выдвинутого зонда стекают электрические заряды, создавая реактивную силу и вращающий момент, обеспечивающий поворот летательного средства. При выставленных всех, радиально расположенных зондов (применительно к данному средству), стекающие заряды создают добавочную реактивную силу. Координаты запуска летательного средства и его дальнейший полет определяется условиями наибольшей напряженности магнитного поля Земли. При полете летательного средства "ловится" магнитная силовая линия наиболее напряженности, с движением по ней, с учетом магнитного склонения и околоземных магнитных полюсов и фокусов, и дальнейшим переходом околосолнечные магнитные силовые линии. В области плотной атмосферы добавочная реактивная сила, определяемая напряженностью магнитного поля Земли, незначительна, и возрастает она по мере подъема, начиная с высот 58-60 км и выше. Поэтому запуск и первоначальный полет в плотных слоях атмосферы не существен и может быть осуществлен в любом месте земного шара. Но в верхних слоях стратосферы и мезосферы роль магнитодвижущей силы будет более существенной, т.к. реактивная сила будет зависеть не только от напряженности магнитной силовой линии, но и величины эквивалентного заряда, приобретаемого летательным средством из мезосферы (протоны водорода, гелия и незначительных положительных ионов атомарного кислорода) и генерируемых двигателем, путем ионизации космическими лучами воды, выбрасываемой форсунками двигателя. В ионосфере, начиная с высоты 50 60 км, при полностью открытой приточной системе, двигатель потребляет природное, естественное топливо-водород, в соответствии с реакциями: При этом источником электронов является коронный (или тихий) разряд, создаваемый электродами 6, а источником кислорода (так и водорода) - диссоциированная и ионизированная вода (пар), впрыскиваемая форсунками 7. Образовавшиеся молекулярные водород и кислород затрачиваются на создание реактивной силы (при соединении с кислородом). Высота 50 60 км характеризуются пониженной температурой (-50oC60oC) и наименьшим содержанием молекулярного водорода. Ионизированная космическими лучами, влага атмосферы создает озонный слой и водородное понижение температуры в граничной зоне атмосферы и стратосферы. Применительно к портативному (ранцевому) двигателю, на фиг. 5 показано устройство для подачи в двигатель топлива и окислителя. Над вихревой камерой воспламенения и сжигания топлива расположены питатель жидкого топлива (керосина) и воды. Оба питателя соединены на общую форсунку (сопло). Капельная подача топлива обеспечивается импульсным давлением мембраны 19 пьезового (электромагнитного) преобразователя 20. Подача воды осуществляется электроимпульсным давлением, путем электроискрового разряда в воде между заземленным 16 и не заземленным 17 игольчатыми электродами. Клапанный штуцер 18 служит для подачи воды в питатель, а штуцер 21 для подачи топлива. Коронирующие электроды 6, верхнего и нижнего расположения, выполняют те же функции, что и в непортативном двигателе. Электрическая (технологиская) схема приведена на фиг. 6. От автономного источника питания напряжением 12 В подается на высокочастотный прерыватель-преобразователь 1. Выходное переменное напряжение подается на трансформатор Тр. Низкое синусоидальное переменное напряжение подается на пьезовый (электромагнитный) элемент импульсного питателя топлива 3. Высокое напряжение с трансформатора подается на умножитель двухполупериодного выпрямления с отрицательным потенциалом на коронирующих электродах. Высокочастотное низкое напряжение с клемм AB подается на катушку магнитного ускорителя плазмы. В блоке 2 показаны коронирующие системы верхнего и нижнего расположения электродов. Кнопкой К производится зажигание горючей смеси. При нажатии кнопки возникает электрическая дуга между корпусом и изолированным от него одним из коронирующих электродов. После образования дуги и воспламенения горючей смеси кнопка возвращается в исходное положение. Искровой разряд на питателе воды 4 осуществляется при напряжении, меньшем напряжения короны. Периодичность импульсного разряда определяется емкостью C1. Питатель топлива (керосин), срабатывает раньше, а следовательно, впрыскивание и зажигание топлива производится раньше капельного впрыскивания воды. Обе капельницы работают на общее сопло 5, обеспечивающее подачу топлива и окислителя в вихревую камеру воспламенения и сжигания топлива. Аспирационная система обеспечивает поступление солнечной ионно-радиационной плазмы в камеру, с последующей рекомбинацией и нейтрализацией ионов плазмы с помощью коронного разряда пульсирующего напряжения (источника электронов). На фиг. 7 изображен полет человека с применением портативного (ранцевого) плазменно-реактивного двигателя. Ионно-радиационная солнечная плазма состоит (наибольшая концентрация ионов) из положительных ионов водорода (протонов) и гелия. Летящий объект заряжен положительно (знаки плюс по всей поверхности), а поверхностные заряды стекают с зондов. Объект летит по магнитной (солнечной или земной) магнитной силовой линии. Отработанная вода (получившаяся в результате соединения водорода с кислородом) стекает по направляющим газодинамического сопла и ионизируется космическими лучами. Предлагаемый двигатель обладает более мощной тягой, высокой экономичностью и является более экологическим. Работа двигателя возможна как в плотных слоях атмосферы, так и космических высотах, с использованием ионно-радиационной плазмы как источника добавочной естественной природной энергии. Уменьшение расхода топлива в 5 и более раз позволяет увеличить высоту и дальность полета. Возможно использование двигателя в качестве портативного (ранцевого) с использованием новых физико-энергетических принципов.

Формула изобретения

1. Плазменно-реактивный двигатель, содержащий соединенные между собой и расположенные соосно камеру сгорания, состоящую из камеры воспламенения и сжигания топлива и имеющую форсунку подачи топлива, магнитный ускоритель плазмы и газодинамическое сопло, отличающийся тем, что камера сгорания выполнена вихревого типа, соединена с магнитным ускорителем плазмы, а последний с газодинамическим соплом посредством сопряженных торовых поверхностей, причем на торцевой поверхности камеры сгорания по периферии форсунки подачи топлива размещены коронирующие электроды-запальники, а в нижней части камеры, на торовой поверхности, периферийно и последовательно размещены форсунки для подачи воды или пара и коронирующие электроды. 2. Двигатель по п.1, отличающийся тем, что магнитный ускоритель плазмы содержит катушку и ферромагнитный сердечник, создающие вращающееся магнитное поле. 3. Двигатель по пп.1 и 2, отличающийся тем, что коническая расширяющаяся часть газодинамического сопла содержит насадки-зонды для концентрации и стечения зарядов от ионизированных газов.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7

www.findpatent.ru

Плазменный двигатель - Большая Энциклопедия Нефти и Газа, статья, страница 1

Плазменный двигатель

Cтраница 1

Плазменный двигатель по принципу действия очень близок к электромотору, только проводником электричества у него служит не металл, а плазма.  [1]

Процесс в асинхронном плазменном двигателе аналогичен аномальному затуханию, а процесс в асинхронном генераторе - раскачке колебаний в плазме. Пусть по плазме распространяется волна с определенной по величине и направлению фазовой скоростью. Допустим: в плазме есть частицы, движущиеся с такой скоростью, что проекция ее на направление распространения волны равна фазовой скорости волны. Эти частицы находятся в фазовом резонансе с волной: поле волны действует на них все время в одной и той же фазе. Неподвижная частица не обменивается энергией с волной, так как волна действует на нее то в одну, то в другую сторону. Частицы, близкие к фазовому резонансу, теснее всего взаимодействуют с волной. Если частица движется немного медленнее, чем волна, то она отбирает энергию от волны ( как в плазменном двигателе), и это приводит к затуханию волны. Если же частица движется немного быстрее, чем волна, она отдает волне свою энергию ( как в плазменном генераторе), и это приводит к раскачке колебаний.  [2]

Итак, круг обязанностей плазменных двигателей в одной только системе ориентации весьма обширен. Но этим далеко не исчерпываются их возможности. Плазменные двигатели можно использовать при переводе спутников с одной орбиты на другую, для выполнения различных маневров при сборке околоземных космических станций, наконец, они могут служить и маршевым двигателем для многоступенчатых меж.  [3]

Основу ЭРДУ составляет связка из трех плазменных двигателей СПД-140 с удельной тягой 2100 г м / с, работающих от электроэнергии, вырабатываемой панелями солнечных батарей с кремниевыми фотопреобразователями. Общая масса ЭРДУ в заправленном состоянии составляет 735 кг, в том числе сухая масса ЭРДУ и солнечных батарей - 315 кг.  [4]

Принцип линейного двигателя используется при разработке реактивных плазменных двигателей космических ракет. Модель такого плазменного двигателя можно также изобразить с помощью схемы, приведенной на рис. 46, где место жидкого металла заняла плазма - высокотемпературный ( 400 С и более) ионизированный и поэтому токопроводящий газ. Электроэнергию для работы такого двигателя предполагается получить с помощью ядерного реактора.  [5]

Сообщается об использовании вольфрама для изготовления сопел топливных ракетных двигателей, частей плазменных двигателей и носовых конусов ракет. Небольшая самодиффузия вольфрама является ценным свойством для ионизаторов ионных двигателей, где при высоких температурах в течение длительного времени должна сохраняться постоянная пористость.  [6]

Тугоплавкие металлы и их сплавы будут необходимы при производстве ракет с атомным ил И плазменным двигателем, так как в рабочих органах этих летательных аппаратов температура может достигать соответственно 1930 и 3300 - 6200 С.  [7]

В зарубежной литературе высказывается мысль, что к концу 1970 г. в распоряжении США будут мощные источники энергии, способные приводить в действие ионные и плазменные двигатели будущих космических кораблей.  [8]

Теория взаимодействия проводящей жидкости или газа с электромагнитным полем имеет важные практические применения: удержание плазмы или расплавленного металла от соприкосновения со стенками сосуда, электромагнитные насосы для перекачки расплавленного металла, плазменные двигатели, генераторы с непосредственным преобразованием тепловой энергии в электрическую.  [9]

Ниобиевые ( табл. 170, 171) и гафниевые ( табл. 172) припои находят применение для пайки тантала, вольфрама, изделий электровакуумной и радиоэлектронной техники, сопловых насадок, деталей ионных и плазменных двигателей и других изделий, работающих при высоких температурах.  [10]

Если же приложить к электродам достаточно большое внешнее напряжение U и добиться нарушения неравенства (56.11), то плазма будет выталкиваться из магнитного поля силой плотностью с-1 [ ] В ] - - [ ЕВ ], Так работают плазменные двигатели и насосы для жидкого металла. Таким образом, МГД-генератор оказывается обратимым и может работать как в генераторном, так и в моторном режимах.  [11]

При этом ядерные энергодвигательные установки могут быть созданы на основе сочетания разработанных технологий ядерных термоэмиссионных установок типа ТОПАЗ со встроенными в активную зону электрогенериру-ющими каналами, либо с вынесенными из активной зоны термоэмиссионными преобразователями, либо с комбинированными схемами преобразования и технологии наиболее эффективных электрореактивных двигателей типа стационарных плазменных двигателей на ксеноне с удельным импульсом и 1800 с или ионных двигателей. Этот вариант ЭДУ является наиболее подготовленным к реализации и обеспечивает вывод на высокоэнергетические орбиты ( ГСО, межпланетные орбиты) наибольшей массы полезных нагрузок. Недостатком схемы является длительное ( до 0 5 года) время вывода полезной нагрузки на ГСО даже при условии форсирования ( 2 5 раза) энергоустановки по электрической мощности.  [12]

Плазменные двигатели хорошо зарекомендовали себя в космосе. Еще в 1964 г. впервые в мире на советской автоматической станции Зонд-2, удалившейся от Земли на миллионы километров, были успешно проведены испытания плазменных электрореактивных двигателей.  [13]

Тягу плазменных двигателей очень легко регулировать в широких пределах изменением параметров их электропитания. Такие двигатели обладают большим ресурсом работы. Все это делает плазменные двигатели очень перспективными для применения на космических объектах, с длительным временем полета.  [14]

Принцип линейного двигателя используется при разработке реактивных плазменных двигателей космических ракет. Модель такого плазменного двигателя можно также изобразить с помощью схемы, приведенной на рис. 46, где место жидкого металла заняла плазма - высокотемпературный ( 400 С и более) ионизированный и поэтому токопроводящий газ. Электроэнергию для работы такого двигателя предполагается получить с помощью ядерного реактора.  [15]

Страницы:      1    2    3

www.ngpedia.ru


Смотрите также