ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Двигатель нового типа


Создан ионный двигатель нового типа, выигрывающий по эффективности у двигателя HiPEP НАСА - Новости

IT новости на Учитель программирования РуДоктор Патрик Нойман из университета Сиднея в рамках своей докторской диссертации произвел разработку и изготовил экспериментальный ионный двигатель, который, согласно имеющейся информации, выигрывает по эффективности у лучшей разработки специалистов НАСА, у ионного двигателя High Power Electric Propulsion (HiPEP). И высокая эффективность этого нового двигателя позволит в недалеком будущем реализовать концепцию, которая определяется фразой “на Марс и обратно на одной заправке топлива”.

Ионные двигатели производят тягу, ускоряя ионы газообразного топлива при помощи электрического или магнитного поля. В отличие от химических реактивных двигателей, которые, сжигая топливо, могут вырабатывать сотни тонн силы тяги, ионные двигатели вырабатывают тягу, силой, эквивалентной массе небольшой монеты. Однако, химические двигатели способны проработать лишь несколько минут, в то время, как ионные двигатели способны работать непрерывно в течение многих тысяч часов. И это означает, что космические корабли с ионными двигателями могут развивать в космосе скорости, недостижимые для ракетных двигателей.

В настоящее время существует несколько типов ионных двигателей. И у каждого из этих типов имеется свой ряд преимуществ и недостатков. Некоторые из них чрезвычайно просты, но обладают низкой эффективностью, другие, наоборот, способны произвести большую тягу, но они весьма тяжелы и имеют сложную конструкцию. И различные группы ученых и инженеров постоянно находятся в поисках оптимальной конструкции ионных двигателей, которые основаны на новых принципах, способных обеспечить им максимальную эффективность.

Самыми эффективными в нынешнее время являются электростатические или электромагнитные ионные двигатели, которые используют инертные газы, к примеру, ксенон, в качестве топлива. Ионизация этого газа осуществляется за счет электронной бомбардировки или радиочастотного возбуждения, ионизированный газ, плазма, ускоряется при помощи электростатической сетки или магнитного поля. Из этого типа двигателей максимальную эффективность демонстрируют двигатели на эффекте Холла, в которых используется осевое электрическое поле и радиальное магнитное поле. Магнитное поле удерживает инжектируемые свободные электроны, которые сталкиваются с атомами газа и ионизируют их. Сила магнитного поля подобрана таким образом, что оно может удерживать электроны, а ионы газа свободно проходят через него и попадают в область ускорения.

В нынешнее время рекордсменом по эффективности среди всех ионных двигателей является двигатель HiPEP НАСА. В нем используется полый катод, работающий в камере типа электронного циклотрона, что обеспечивает его мощность в 40 кВт при скорости вылетающего из сопла потока газа в 90 тысяч метров в секунду. Новый двигатель Ноймана является двигателем с импульсным катодом. Процессы, работающие в этом двигателе достаточно сложны, но конструкция такого двигателя максимально проста. Первый подобный двигатель был установлен на неудавшемся советском Зонде-2, который был запущен в 1964 году. В недрах этого двигателя производился нагрев пластмассовой “таблетки”, которая вскипала, выделяя ионизированный газ. Однако, к конструкции тех времен было множество недочетов, что привело к низкой эффективности такого двигателя, большая часть выделяющегося газа не ионизировалась и попросту мешала разгону плазменного потока.

Двигатель Ноймана также работает на схожем принципе. Только внутри него высоковольтный электрический разряд пропускается через “топливную таблетку”, выступающую в качестве катода, испаряя с ее поверхности некоторое количество материала. Этот газообразный материал ионизируется, ускоряется и фокусируется при помощи магнитного поля, направляясь в выходное сопло двигателя.

Этот двигатель имеет преимущества перед двигателями на эффекте Холла. Во-первых, такой двигатель намного проще, и во-вторых, он сможет работать непрерывно гораздо дольше. В качестве топлива двигатель Ноймана может использовать “таблетки” из магния, титана, ванадия, молибдена и даже из углерода. Во время испытаний экспериментального двигателя было выяснено, что он уступает некоторым ионным двигателям по количеству вырабатываемой тяги. Двигатели на эффекте Холла способны вырабатывать 30-40 мкН/Вт, в то время, как двигатель Ноймана вырабатывает 20 мкН/Вт, однако, с точки зрения вырабатываемого импульса силы, этот двигатель более эффективен.

В качестве мерила количества импульса берется время, которое требуется двигателю на выброс топлива, эквивалентного по массе импульсу. В случае системы HiPEP это время равно 9 600 ( /-200) секунд, а двигатель Ноймана делает это за 14 690 ( /-2000) секунд в зависимости от вида используемого топлива.

Доктору Нойману потребуется еще некоторое время на преодоление различных проблем технического плана, что должно привести к увеличению тяги его двигателя и к еще большему упрощению конструкции. И после этого новый двигатель можно будет рассматривать в качестве средства достижения любой точки Солнечной системы с отправной точкой в районе низкой околоземной орбиты.

Источник

uchitel-program.ru

Создан ионный двигатель нового типа

Ионный двигатель Ноймана

Доктор Патрик Нойман из университета Сиднея в рамках своей докторской диссертации произвел разработку и изготовил экспериментальный ионный двигатель, который, согласно имеющейся информации, выигрывает по эффективности у лучшей разработки специалистов НАСА, у ионного двигателя High Power Electric Propulsion (HiPEP). И высокая эффективность этого нового двигателя позволит в недалеком будущем реализовать концепцию, которая определяется фразой "на Марс и обратно на одной заправке топлива".

Ионные двигатели производят тягу, ускоряя ионы газообразного топлива при помощи электрического или магнитного поля. В отличие от химических реактивных двигателей, которые, сжигая топливо, могут вырабатывать сотни тонн силы тяги, ионные двигатели вырабатывают тягу, силой, эквивалентной массе небольшой монеты. Однако, химические двигатели способны проработать лишь несколько минут, в то время, как ионные двигатели способны работать непрерывно в течение многих тысяч часов. И это означает, что космические корабли с ионными двигателями могут развивать в космосе скорости, недостижимые для ракетных двигателей.

В настоящее время существует несколько типов ионных двигателей. И у каждого из этих типов имеется свой ряд преимуществ и недостатков. Некоторые из них чрезвычайно просты, но обладают низкой эффективностью, другие, наоборот, способны произвести большую тягу, но они весьма тяжелы и имеют сложную конструкцию. И различные группы ученых и инженеров постоянно находятся в поисках оптимальной конструкции ионных двигателей, которые основаны на новых принципах, способных обеспечить им максимальную эффективность.

Доктор Нойман

Самыми эффективными в нынешнее время являются электростатические или электромагнитные ионные двигатели, которые используют инертные газы, к примеру, ксенон, в качестве топлива. Ионизация этого газа осуществляется за счет электронной бомбардировки или радиочастотного возбуждения, ионизированный газ, плазма, ускоряется при помощи электростатической сетки или магнитного поля. Из этого типа двигателей максимальную эффективность демонстрируют двигатели на эффекте Холла, в которых используется осевое электрическое поле и радиальное магнитное поле. Магнитное поле удерживает инжектируемые свободные электроны, которые сталкиваются с атомами газа и ионизируют их. Сила магнитного поля подобрана таким образом, что оно может удерживать электроны, а ионы газа свободно проходят через него и попадают в область ускорения.

В нынешнее время рекордсменом по эффективности среди всех ионных двигателей является двигатель HiPEP НАСА. В нем используется полый катод, работающий в камере типа электронного циклотрона, что обеспечивает его мощность в 40 кВт при скорости вылетающего из сопла потока газа в 90 тысяч метров в секунду. Новый двигатель Ноймана является двигателем с импульсным катодом. Процессы, работающие в этом двигателе достаточно сложны, но конструкция такого двигателя максимально проста. Первый подобный двигатель был установлен на неудавшемся советском Зонде-2, который был запущен в 1964 году. В недрах этого двигателя производился нагрев пластмассовой "таблетки", которая вскипала, выделяя ионизированный газ. Однако, к конструкции тех времен было множество недочетов, что привело к низкой эффективности такого двигателя, большая часть выделяющегося газа не ионизировалась и попросту мешала разгону плазменного потока.

Двигатель Ноймана также работает на схожем принципе. Только внутри него высоковольтный электрический разряд пропускается через "топливную таблетку", выступающую в качестве катода, испаряя с ее поверхности некоторое количество материала. Этот газообразный материал ионизируется, ускоряется и фокусируется при помощи магнитного поля, направляясь в выходное сопло двигателя.

Топливная таблетка

Этот двигатель имеет преимущества перед двигателями на эффекте Холла. Во-первых, такой двигатель намного проще, и во-вторых, он сможет работать непрерывно гораздо дольше. В качестве топлива двигатель Ноймана может использовать "таблетки" из магния, титана, ванадия, молибдена и даже из углерода. Во время испытаний экспериментального двигателя было выяснено, что он уступает некоторым ионным двигателям по количеству вырабатываемой тяги. Двигатели на эффекте Холла способны вырабатывать 30-40 мкН/Вт, в то время, как двигатель Ноймана вырабатывает 20 мкН/Вт, однако, с точки зрения вырабатываемого импульса силы, этот двигатель более эффективен.

В качестве мерила количества импульса берется время, которое требуется двигателю на выброс топлива, эквивалентного по массе импульсу. В случае системы HiPEP это время равно 9 600 (+/-200) секунд, а двигатель Ноймана делает это за 14 690 (+/-2000) секунд в зависимости от вида используемого топлива.

Доктору Нойману потребуется еще некоторое время на преодоление различных проблем технического плана, что должно привести к увеличению тяги его двигателя и к еще большему упрощению конструкции. И после этого новый двигатель можно будет рассматривать в качестве средства достижения любой точки Солнечной системы с отправной точкой в районе низкой околоземной орбиты.

tech.indexdirectory.net

Электродвигатель нового типа - Оборудование и технологии - Почитать

Разработан электродвигатель нового типа, обладающий значительно более высокой эффективностью, чем выпускающиеся сейчас. С возбуждением, от электромагнитов, или от постоянных магнитов. Вариантов конструктивного исполнения может быть много.Все находится в полном соответствии с известными законами физики и законами сохранения энергии. Дело в том, что в известных электродвигателях только очень малая часть потребляемой мощности используется для создания работы, а основная часть тратится на преодоление так называемой обратной(или генераторной) ЭДС, возникающей согласно закону Ленца во вращающемся роторе. Во всех руководствах по электротехнике утверждается, что КПД электродвигателя может достигать 80-98%, но проведя необходимые исследования, я убедился, что это не так, а истинный КПД электродвигателя не превышает 5-10%, поэтому имеются огромные резервы для его увеличения, и соответственно улучшения экономичности электродвигателя во много раз.

С тех пор, как в 1821 году Эрстед продемонстрировал возникновение магнитного поля вокруг проводника с током, электротехника начала стремительно развиваться.

Уже через несколько лет были установлены основные законы электротехники, созданы мощные электромагниты, а также первые электродвигатели. Но удивительное дело: электромагниты, создающие большую статическую силу магнитного взаимодействия и потребляющие при этом небольшую мощность, при работе электродвигателя, когда ротор начинал вращаться, теряли свою силу и требовали увеличения напряжения, а следовательно и мощности для того, чтобы электродвигатель мог совершать механическую работу.

Правильное объяснение этому явлению дал русский физик Ленц. Сейчас это явление можно кратко назвать противоЭДС.

Суть этого явления в том, что при движении относительно друг друга проводников с током или магнита и проводника с током, в проводнике возникает напряжение, которое всегда направлено встречно питающему обмотку двигателя, поэтому и приходится, для поддержания мощности двигателя, увеличивать напряжение его питания. Получается странная картина: с одной стороны - мощное магнитное поле и огромная сила взаимодействия катушек с ферромагнитными сердечниками друг с другом, при малой потребляемой мощности, а с другой, при относительно медленном движении катушек относительно друг друга уже требуется значительно увеличивать напряжения питания для поддержания силы магнитного взаимодействия. Поэтому возникла мысль, что если удастся найти способ нейтрализовать влияние закона Ленца в электродвигателе, то можно получить огромный выигрыш в получаемой механической мощности, относительно затраченной электрической. В результате проведенных исследований были теоретически найдены и подтверждены опытным путем несколько частных случаев, когда закон Ленца не оказывает своего влияния на процессы, происходящие в электродвигателе, или значительно ослабляется. Это дает возможность создавать электродвигатели, которые способны на единицу затраченной электрической мощности, произвести от двух до десяти и больше единиц механической работы. При этом все остается в полном соответствии с любыми известными законами физики! Я не могу открыто говорить о конструктивных особенностях подобных двигателей, скажу только, что основные варианты мало отличаются от уже известных конструкций. Другие варианты совершенно не похожи на любые известные электродвигатели. Я даже не ожидал, что задача имеет такое множество решений! А взяться за решение подобной задачи меня побудила заметка, что около 50-и лет назад, в СССР, один умелец ездил на автомобиле "Москвич" с электромотором целый день, на энергии обычного автомобильного аккумулятора. Я сразу подумал о том, что его электромотор потреблял значительно меньшую мощность, чем развиваемая механическая и принял за аксиому, что раз было возможно тогда, то возможно и сейчас.

Сравнение электродвигателя без противоЭДС с обычным, по мощности потребления

Для простоты анализа возьмем любой коллекторный или вентильный двигатель. Он состоит из ротора и статора. Обмотки возбуждения могут быть как на роторе со статором, так и только на одном роторе или статоре (если используются постоянные магниты возбуждения). При подаче напряжения на двигатель, ротор и статор начинают двигаться относительно друг друга, при этом в обмотках якоря или статора (если ротор возбуждается постоянными магнитами), индуцируется ЭДС, направленная всегда против напряжения внешнего источника питания. По мере увеличения числа оборотов ротора (действительной или кажущейся линейной скорости движения проводника относительно магнитного поля возбуждения) ток в обмотках под действием этой ЭДС уменьшается, соответственно уменьшается, и вращающий момент. Для его увеличения приходится повышать напряжение (мощность) питания электродвигателя. В современных электродвигателях практически вся мощность, подводимая для питания, расходуется на преодоление противодействующей ЭДС.

Например, серийный электродвигатель постоянного тока типа 4ПН 200S имеет следующие характеристики: мощность 60 кВт; напряжение 440 В; ток 149 А; частота вращения 3150/3500 об/мин; кпд 90,5%; длина статора 377 мм; диаметр ротора 250 мм, напряжение потерь 41,8 В; напряжение на преодоление индуцированной ЭДС 398,2 В; мощность на преодоление потерь 6228 Вт; вращающий момент (3500 об/мин) 164,6 Нм.

Получается, что если мы избавимся от противоЭДС, то для питания двигателя нужен источник напряжения не 440 вольт, а только 42 вольта, при том же токе 150А. Поэтому потребляемая мощность при полной нагрузке составит 6300 ватт при механической выходной мощности 60 кВт. Регулировка выходной мощности двигателя без противоЭДС может осуществляться изменением напряжения питания или импульсным регулированием.

В результате сравнительного анализа мы видим, что использование электродвигателя без противоЭДС способно в корне изменить всю экономику человечества. Это один из способов навсегда отказаться от использования органического топлива для энергетических и транспортных потребностей человечества. В самом деле, подобные электродвигатели, возможно, соединить на одном валу с генераторами небольшой мощности и получить самопитаемую систему! Только для запуска требуется аккумулятор. А ведь есть еще и разработки безтопливных генераторов, которые могут использоваться совместно с электродвигателями данного типа. При этом возникает большая экономия, так как требуется генератор гораздо меньшей мощности. Совместное использование БТГ и описанных электродвигателей позволит в ближайшем будущем выпускать абсолютно автономные электромобили, способные двигаться без всякого топлива до тех пор, пока не износятся механически. На таком принципе можно строить большинство известных сегодня транспортных средств. В том числе и самолеты, и даже космические аппараты, ведь есть варианты и электрических полевых устройств, создающих тягу без отбрасывания массы. Это совершенно новая эра в истории человечества и трудно даже предположить последствия применения подобных конструкций.

Двигатель прост по конструкции и недорог.

Отличие от существующих двигателей небольшое. Но при этом, предлагаемый двигатель будет потреблять в несколько раз меньшую мощность, чем равный ему по характеристикам промышленный.

КПД двигателя не превысит 100%, это невозможно. Просто он гораздо эффективнее преобразует электрическую энергию в механическую. Обычные электродвигатели, имеют самый высокий КПД только в узком диапазоне нагрузок, но и при этом он очень далек от указываемого производителем.

Проведенные практические опыты показали, что на единицу израсходованной электрической энергии, новый двигатель, сможет выработать в несколько раз большую механическую мощность. Испытание макета двигателя полностью подтвердило теорию. Выходная, механическая мощность, в три раза превысила, потребляемую электрическую. Для эксперимента был изготовлен один из самых простых и неэффективных вариантов двигателя. Данный двигатель разместили на одной раме с автомобильным генератором от автомобиля «Жигули», соединив клиноременной передачей их шкивы. Двигатель питался от сети 220 вольт. Для управления двигателем был использован механический коммутатор, а не электронный, что также значительно снизило эффективность его работы. В качестве нагрузки генератора использовались автомобильные лампы. При этом потребляемая двигателем мощность (по постоянному току) составила 140 ватт. Измерив мощность на выходе генератора на лампочках(тоже по постоянному току), получили 160 ватт электрической мощности. Известно, что автомобильные генераторы имеют КПД, не превышающий 60%, поэтому механическая мощность на валу двигателя была значительно выше, чем электрическая на выходе генератора. К сожалению, не было возможности достать генератор переменного тока на 220 вольт необходимой мощности и проверить устройство в режиме самозапитки. А от того генератора, что использовался, это было невозможно. Но и в этом виде, испытания показали, что возможно получение большей механической мощности, чем затрачено электрической. Используя электронный Блок Управления двигателем, можно значительно улучшить параметры. Исследования на другом макете(электромагнитных взаимодействий) показало, что реально достичь отношения входная электрическая/выходная механическая мощность 1/20, а немного усложнив конструкцию, показатели можно улучшить в несколько раз.

energetika.com.ru


Смотрите также