Характеристика | Единицы | SY 3437 (0240) | SY 3424 (0240) | SY 3424 (0450) | SY 3424 (0450) |
Частота | Гц | 50 | 60 | 50 | 60 |
Скорость | об./мин | 60 | 72 | 60 | 72 |
Напряжение | В | 220 | 220 | 120 | 120 |
Номинальный фазный ток | А | 0,24 | 0,24 | 0,45 | 0,45 |
Синхронный крутящиймомент | унция-дюйм Нсм | 240 170 | 240 170 | 240 170 | 240 170 |
Резистор | Ом Вт | 820 50 | 820 50 | 820 50 | 820 50 |
Конденсатор | мкФ В | 1,60 400 | 1,25 400 | 6,3 250 | 4,0 250 |
Масса двигателя | кг | 2,4 | 2,4 | 2,4 | 2,4 |
Стандартноеколичество выводов | - | 3 | 3 | 3 | 3 |
wexon.ru
Изобретение относится к области электротехники, в частности к электрическим машинам и электроприводу. Предлагаемый низкооборотный асинхронный электродвигатель содержит статор с многофазной обмоткой и ротор с шихтованным магнитопроводом и короткозамкнутой обмоткой. Фазы статора выполнены в виде кольцевых обмоток, соосных с ротором, каждая из которых расположена между двумя кольцевыми магнитопроводами с зубцами, выступающими в осевом направлении и направленными встречно, причем кольцевые магнитопроводы фазы смещены относительно друг друга на угол
Изобретение относится к электротехнике, в частности к электрическим машинам и электроприводу.
Аналогом является, например, асинхронный электродвигатель (Проектирование электрических машин, под ред. Копылова И.П., книга 1. М., «Энергоатомиздат», 1993, с.244, рис.8.4), имеющий статор, состоящий из шихтованного магнитопровода с обмоткой, и ротор с короткозамкнутой обмоткой.
Наиболее близок к предлагаемому низкооборотному асинхронному электродвигателю асинхронный электродвигатель (Брускин Д.Э., Зорохович А.Е., Хвостов В.С. Электрические машины, ч.1. М., «Высшая школа», 1987, с.214, рис.4.3), имеющий шихтованный магнитопровод статора с пазами, проходящими в осевом направлении, в которые укладываются проводники обмотки статора, и ротор, содержащий шихтованный сердечник и короткозамкнутую обмотку. Такое исполнение асинхронного электродвигателя является традиционным. При подаче на обмотку статора многофазного (обычно - трехфазного) переменного напряжения статор создает вращающееся магнитное поле. При вращении магнитного поля относительно ротора в обмотке ротора индуцируется электродвижущая сила, которая создает в замкнутой обмотке ротора ток. Ток обмотки ротора взаимодействует с магнитным полем статора, в результате чего возникает электромагнитный момент, вращающий ротор.
Для некоторых электроприводов необходимы низкооборотные асинхронные электродвигатели, применение которых позволяет исключить механический редуктор. Для уменьшения частоты вращения магнитного поля и ротора асинхронного двигателя увеличивают число пар полюсов магнитного поля, созданного обмоткой статора. При увеличении числа пар полюсов асинхронного двигателя традиционного исполнения необходимо увеличивать число продольных пазов в шихтованном магнитопроводе статора, в которых укладывается статорная обмотка. С увеличением числа пар полюсов и пазов увеличивается трудоемкость и стоимость изготовления машины (Проектирование электрических машин, под ред. Копылова И.П., книга 1. М., «Энергоатомиздат», 1993, с.282). Кроме того, число пазов и зубцов ограничено минимально допустимой шириной зубцов магнитопровода статора, обеспечивающих механическую прочность.
Предлагаемое изобретение позволит создать низкооборотный асинхронный электродвигатель с большим числом пар полюсов магнитного поля, трудоемкость и стоимость изготовления которого значительно ниже, чем прототипа.
Это достигается тем, что в низкооборотном асинхронном электродвигателе, содержащем статор с многофазной обмоткой и ротор с шихтованным магнитопроводом и короткозамкнутой обмоткой, каждая фаза статора выполнена в виде кольцевой обмотки, соосной с ротором, расположенной между двумя кольцевыми магнитопроводами. Кольцевые магнитопроводы каждой фазы имеют зубцы, выступающие в осевом направлении и направленные встречно, число которых z на каждом кольцевом магнитопроводе равно числу полюсов двигателя р. Кольцевые магнитопроводы, между которыми размещена любая из фаз двигателя, смещены относительно друг друга на угол
Заявляемая конструкция низкооборотного асинхронного электродвигателя позволяет упростить технологию выполнения обмоток статора и одновременно увеличить технически возможное число пар полюсов двигателя. Трудоемкость и стоимость изготовления такого асинхронного двигателя намного ниже, чем электродвигателя с уложенной в пазы магнитопровода статора обмоткой. Причем при увеличении числа пар полюсов двигателя преимущества предлагаемого асинхронного двигателя становятся более очевидными.
На фиг.1 показано осевое сечение низкооборотного асинхронного электродвигателя в трехфазном исполнении. На фиг.2 - элементы магнитной цепи одной из фаз статора. На фиг.3, 4 и 5 - осевые сечения двигателя.
В изображенном на фиг.1 трехфазном, низкооборотном, асинхронном электродвигателе в корпусе 1 размещен статор, фазы которого выполнены в виде кольцевых обмоток 2, 3 и 4, расположенных соосно с ротором. Фаза 2 расположена между кольцевыми магнитопроводами 5 и 6, фаза 3 - между кольцевыми магнитопроводами 7 и 8, а фаза 4 - между кольцевыми магнитопроводами 9 и 10. Каждый из кольцевых магнитопроводов 5-10 имеет выступающие в осевом направлении зубцы. Магнитопровод 5 имеет зубцы 11, магнитопровод 6 - зубцы 12, магнитопровод 7 - зубцы 13, магнитопровод 8 - зубцы 14, магнитопровод 9 - зубцы 15, магнитопровод 10 - зубцы 16. Зубцы 11 и 12 (13 и 14; 15 и 16) кольцевых магнитопроводов 5 и 6 (7 и 8; 9 и 10), между которыми располагается кольцевая фаза 2 (3; 4), направлены встречно, и кольцевые магнитопроводы 5 и 6 (7 и 8; 9 и 10) развернуты друг относительно друга по углу на угол
На фиг.2 показано расположение элементов магнитной цепи фазы 2 статора при сборке. Как уже было отмечено, кольцевые магнитопроводы 5 и 6 развернуты друг относительно друга по углу на угол
При установке в корпус 1 пары кольцевых магнитопроводов 5 и 6; 7 и 8; 9 и 10 фаз 2, 3 и 4 должны быть развернуты друг относительно друга на угол 2
На валу 18 ротора установлен пакет шихтованного магнитопровода 19, пластины которого располагаются в диаметральной плоскости. В пазах шихтованного магнитопровода 19 проходят стержни 20 короткозамкнутой обмотки, которые замыкаются по торцам шихтованного магнитопровода 19 кольцами 21.
Электродвигатель работает следующим образом. На фазы 2, 3 и 4 электродвигателя подается стандартное трехфазное синусоидальное напряжение, у которого фазные напряжения имеют равную амплитуду, частоту и смещены во времени на треть периода. Первая фаза 2 создает пульсирующий магнитный поток, который проходит в радиальном направлении через кольцевой магнитопровод 5, зубцы 11 кольцевого магнитопровода 5, воздушный зазор между зубцами 11 и шихтованным магнитопроводом 19 ротора, через магнитопровод 19 в тангенциальном направлении, затем через зазор между магнитопроводом 19 и зубцами 12 кольцевого магнитопровода 6, через кольцевой магнитопровод 6 и в осевом направлении через тороидальный магнитопровод 17 от магнитопровода 6 к магнитопроводу 5. Зубцы 11 магнитопровода 5 и зубцы 12 магнитопровода 6 являются полюсами пульсирующего магнитного поля, созданного первой фазой 2 статора, при этом зубцы 11 и 12 смещены в тангенциальном направлении на угол, равный /z, где z - число зубцов каждого из кольцевых магнитопроводов 2-7. Таким образом, фаза 2 создает пульсирующее магнитное поле, число пар полюсов которого равно числу зубцов z кольцевых магнитопроводов 5 и 6.
Аналогичное пульсирующее магнитное поле создает вторая фаза 3. Но так как кольцевые магнитопроводы фаз развернуты относительно друг друга на 2 /z·m, то полюсы магнитного поля второй фазы 3 смещены относительно полюсов первой фазы на угол 2 /3z.
Третья фаза 4 также создает аналогичное пульсирующее магнитное поле, полюсы которого смещены относительно полюсов первой фазы соответственно на угол 4 /3z.
Таким образом, пульсирующие магнитные поля, созданные фазами, смещены относительно друг друга на 2 /3 эл. радиан.
Каждое пульсирующее магнитное поле создает в стержнях 20 короткозамкнутой обмотки ротора ЭДС. Суммарная ЭДС в стержнях 20 короткозамкнутой обмотки предлагаемого двигателя будет аналогична ЭДС, создаваемой вращающимся магнитным полем в асинхронных электродвигателях традиционного исполнения. Под действием суммарной ЭДС в стержнях 20 короткозамкнутой обмотки ротора возникают токи, при взаимодействии которых с магнитными полями, созданными фазами 2, 3 и 4 статора, появляется электромагнитный момент, вращающий ротор.
В предлагаемом асинхронном электродвигателе число зубцов кольцевых магнитопроводов определяет число пар полюсов магнитного поля, а каждая фаза выполнена в виде компактной кольцевой обмотки. Так как в пазах между зубцами кольцевых магнитопроводов не располагаются витки обмотки статора, то выполнить предлагаемый двигатель с большим числом пар полюсов и получить низкие частоты вращения ротора намного проще и дешевле, чем в прототипе. Предлагаемую электрическую машину можно использовать также в режиме асинхронного генератора.
Низкооборотный асинхронный электродвигатель, содержащий статор с многофазной обмоткой и ротор с шихтованным магнитопроводом и короткозамкнутой обмоткой, отличающийся тем, что фазы статора выполнены в виде кольцевых обмоток, соосных с ротором, каждая из которых расположена между двумя кольцевыми магнитопроводами с зубцами, выступающими в осевом направлении и направленными встречно, причем кольцевые магнитопроводы фазы смещены относительно друг друга на угол /z, и между ними размещен тороидальный магнитопровод, а кольцевые магнитопроводы разных фаз смещены относительно друг друга на угол 2 /z·m, где z - число зубцов каждого из кольцевых магнитопроводов, а m - число фаз.
www.freepatent.ru
Основные Продукции: | Затененные Полюса Двигателя, Двигатель Вентилятора, Расщепленными Полюсами Двигатель Переменного Тока, Бесщеточный Двигатель Постоянного Тока, Подогреватель Двигателя |
ru.made-in-china.com
Изобретение относится к электротехнике, в частности к электрическим машинам и электроприводу. Низкооборотный асинхронный электродвигатель содержит статор с многофазной обмоткой и ротор с короткозамкнутой обмоткой. Фазы размещены между кольцевыми магнитопроводами, сопряженными с пакетами осевых магнитопроводов. Число зубцов z кольцевых магнитопроводов равно числу пар полюсов магнитного поля. Кольцевые магнитопроводы фазы двигателя смещены на угол π, а кольцевые магнитопроводы разных фаз смещены на 2π. При этом во внутренней полости магнитопровода ротора расположены пакеты осевых магнитопроводов. Наружные конические поверхности кольцевых магнитопроводов статора сопряжены с коническими боковыми поверхностями цилиндрических магнитопроводов. Кольцевые обмотки каждой фазы предлагаемого электродвигателя разделены на секции. Технический результат - создание низкооборотного асинхронного двигателя с большим числом пар полюсов магнитного поля и низкой частотой вращения ротора. 2 з.п. ф-лы, 5 ил.
Изобретение относится к электротехнике, в частности к электрическим машинам и электроприводу.
Аналогом является, например, асинхронный электродвигатель (Проектирование электрических машин. /Под ред. Копылова И.П., книга 1, М., "Энергоатомиздат", 1993, с.244, рис.8.4), имеющий статор, состоящий из шихтованного магнитопровода с обмоткой, и ротор с короткозамкнутой обмоткой.
Наиболее близок к предлагаемому низкооборотному асинхронному электродвигателю асинхронный электродвигатель (Брускин Д.Э., Зорохович А.Е., Хвостов В.С. Электрические машины. Ч.1, М., "Высшая школа", 1987, с.214, рис.4.3), имеющий шихтованный магнитопровод статора с пазами, проходящими в осевом направлении, в которые укладываются проводники обмотки статора, и ротор, содержащий шихтованный сердечник и короткозамкнутую обмотку. Такое исполнение асинхронного электродвигателя является традиционным. При подаче на обмотку статора многофазного (обычно трехфазного) переменного напряжения статор создает вращающееся магнитное поле. При вращении магнитного поля относительно ротора в обмотке ротора индуцируется электродвижущая сила, которая создает в замкнутой обмотке ротора ток. Ток обмотки ротора взаимодействует с магнитным полем статора, в результате чего возникает электромагнитный момент, вращающий ротор.
Для многих электроприводов необходимы низкооборотные асинхронные электродвигатели, применение которых позволяет исключить механический редуктор. Для уменьшения частоты вращения магнитного поля и ротора асинхронного двигателя увеличивают число пар полюсов магнитного поля, созданного обмоткой статора. При увеличении числа пар полюсов асинхронного двигателя традиционного исполнения необходимо увеличивать число продольных пазов в шихтованном магнитопроводе статора, в которых укладывается статорная обмотка. С увеличением числа пар полюсов и пазов увеличивается трудоемкость и стоимость изготовления машины (Проектирование электрических машин. /Под ред. Копылова И.П., книга 1, М., "Энергоатомиздат", 1993, с.282). Кроме того, поскольку минимальная ширина зубца магнитопровода статора по технологическим соображениям ограничена, то для каждого диаметра расточки статора максимальное число пазов, а значит и число пар полюсов, также ограничено.
Предлагаемое изобретение позволит создать низкооборотный асинхронный электродвигатель с большим числом пар полюсов магнитного поля и низкой частотой вращения ротора, трудоемкость и стоимость изготовления которого значительно ниже, чем прототипа.
Это достигается тем, что в низкооборотном асинхронном электродвигателе, содержащем статор с многофазной обмоткой и ротор с короткозамкнутой обмоткой, каждая фаза статора выполнена в виде кольцевой обмотки, соосной с ротором. Обмотки фаз размещены между шихтованными кольцевыми магнитопроводами, которые сопряжены по наружной поверхности с пакетами шихтованных магнитопроводов, расположенными в осевом направлении. Кольцевые магнитопроводы во внутренней полости имеют зубцы, число которых z определяет число пар полюсов магнитного поля статора двигателя. Кольцевые магнитопроводы, между которыми размещена любая из фаз двигателя, смещены относительно друг друга на угол π/z, а кольцевые магнитопроводы разных фаз смещены относительно друг друга на угол 2π/z·m, где m - число фаз. При этом во внутренней полости шихтованного магнитопровода ротора расположены пакеты магнитопроводов, набранные из пластин, проходящих в осевом направлении.
Наружные поверхности каждой пары кольцевых магнитопроводов статора, между которыми расположена фаза, выполняются коническими. Конические поверхности кольцевых магнитопроводов фазы сопрягаются с коническими боковыми поверхностями цилиндрического магнитопровода, намотанного из ленты. Аналогичным образом выполняется и магнитопровод ротора: из шихтованных кольцевых магнитопроводов с коническими внутренними поверхностями, которые сопряжены с цилиндрическими магнитопроводами, намотанными из ленты и имеющими конические боковые поверхности.
Кольцевые обмотки каждой фазы предлагаемого электродвигателя разделены на несколько кольцевых секций с чередующимися направлениями намагничивающих сил. Кольцевые секции фазы располагаются между кольцевыми магнитопроводами, число которых для каждой фазы должно быть на единицу больше числа секций. При этом зубцы на нечетных и четных кольцевых магнитопроводах фазы смещены по углу на π/z.
Применение в низкооборотном асинхронном электродвигателе магнитопровода статора, состоящего из кольцевых шихтованных магнитопроводов и сопряженных с ними пакетов магнитопроводов, расположенных в осевом направлении, а также размещение во внутренней полости магнитопровода ротора пакетов магнитопроводов, набранных из пластин, проходящих в осевом направлении, позволяет получить большое число пар полюсов статора и выполнить фазы двигателя в виде простейших кольцевых обмоток, расположенных соосно с ротором. Трудоемкость и стоимость изготовления такого асинхронного двигателя намного ниже, чем электродвигателя с уложенной в пазы магнитопровода статора обмоткой. Причем при увеличении числа пар полюсов двигателя преимущества предлагаемого асинхронного двигателя становятся более очевидными.
Масса и габариты предлагаемого низкооборотного асинхронного электродвигателя уменьшаются при использовании для магнитопроводов в осевых направлениях цилиндрических магнитопроводов, намотанных из ленты, с коническими боковыми поверхностями. Цилиндрические шихтованные магнитопроводы заменяют в предлагаемом двигателе пакеты магнитопроводов из пластин, расположенные в осевом направлении. Контакт между цилиндрическими магнитопроводами, намотанными из ленты, и кольцевыми магнитопроводами обеспечивается по всей окружности кольцевых магнитопроводов, в то время как пакеты осевых магнитопроводов сопряжены с кольцевыми магнитопроводами в ограниченной угловой зоне. Поэтому для получения магнитной цепи одного и того сечения необходима меньшая толщина цилиндрических магнитопроводов, чем осевых пакетов. Значит двигатель с цилиндрическими шихтованными магнитопроводами будет иметь меньшие габариты и массу, чем, двигатель с пакетами осевых магнитопроводов.
Масса и габариты предлагаемого электродвигателя также уменьшаются за счет разделения кольцевых обмоток каждой фазы на несколько кольцевых секций с чередующимися направлениями намагничивающих сил. Секции фазы располагаются между кольцевыми магнитопроводами, число которых для каждой фазы должно быть на единицу больше числа секций. Такое выполнение статора позволяет разделить магнитный поток, созданный каждой фазой на несколько потоков, число которых равно числу кольцевых секций фазы. Магнитные потоки, проходящие в осевом направлении, при этом уменьшаются в число раз, равное числу секций фаз. Значит и необходимое сечение осевых пакетов магнитопроводов или цилиндрических шихтованных магнитопроводов также уменьшается в число раз, равное числу секций фаз. За счет этого уменьшаются масса и габариты двигателя.
На фиг.1 показано осевое сечение низкооборотного асинхронного электродвигателя в трехфазном исполнении. На фиг.2 - несколько диаметральных сечений предлагаемого асинхронного двигателя. На фиг.3 - осевое сечение двигателя, в котором магнитные потоки в осевом направлении проходят по цилиндрическим магнитопроводам. На фиг.4 показано осевое сечение асинхронного двигателя с разделенными на секции фазами. На фиг.5 - несколько диаметральных сечений двигателя с разделенными на секции фазами.
В изображенном на фиг.1 трехфазном низкооборотном асинхронном электродвигателе в корпусе 1 размещен статор, магнитопровод которого состоит из шести одинаковых кольцевых магнитопроводов 2, 3, 4, 5, 6, 7 и нескольких пакетов 8, 9 и 10 магнитопроводов из пластин, расположенных вдоль оси электродвигателя. Между парами кольцевых магнитопроводов 2-3, 4-5 и 6-7 размещены кольцевые обмотки трех фаз 11, 12 и 13 статора.
Ротор электродвигателя закреплен на валу 14 и состоит из шихтованного магнитопровода 15, в пазах которого размещены стержни короткозамкнутой обмотки 16, замкнутые по торцам ротора кольцами 17, и пакетов пластин 18, проходящих вдоль оси двигателя во внутренней полости магнитопровода 15. Вал 14 установлен в подшипниках 19, помещенных в корпусе 1 и крышке 20.
На фиг.2 показаны шесть диаметральных сечений предлагаемого электродвигателя, сделанных через кольцевые магнитопроводы 2, 3, 4, 5, 6, 7. Каждый из кольцевых магнитопроводов 2, 3, 4, 5, 6, 7 во внутренней полости имеет зубцы. Магнитопровод 2 имеет зубцы 21, магнитопровод 3 имеет зубцы 22, магнитопровод 4 - зубцы 23, магнитопровод 5 - зубцы 24, магнитопровод 6 - зубцы 25, магнитопровод 7 - зубцы 26. Ширина зубцов 21, 22, 23, 24, 25 и 26 и пазов между ними примерно равна. Магнитопроводы 2 и 3 (4 и 5; 6 и 7), между которыми находится кольцевая обмотка фазы 11 (12; 13), установлены так, что их зубцы 21 и 22 (23 и 24; 25 и 26) смещены друг относительно друга на π/z. А пары магнитопроводов 2-3, 4-5 и 6-7 развернуты относительно друг друга на 2π/3z.
Электродвигатель работает следующим образом. На фазы 11, 12 и 13 электродвигателя подается обычное трехфазное синусоидальное напряжение, у которого фазные напряжения имеют равную амплитуду, частоту и смещены во времени на треть периода. Первая фаза 11 создает пульсирующий магнитный поток, который проходит в радиальном направлении через кольцевой магнитопровод 2, зубцы 21 кольцевого магнитопровода 2, воздушный зазор между зубцами 21 и магнитопроводом 15 ротора, через магнитопровод 15, затем проходит в осевом направлении по пакетам магнитопровода 18, снова - в радиальном направлении через магнитопровод 15, через зазор между магнитопроводом 15 и зубцами 22 кольцевого магнитопровода 3, кольцевой магнитопровод 3 и в осевом направлении через пакеты 8 от магнитопровода 3 к магнитопроводу 2. Зубцы 21 магнитопровода 2 и зубцы 22 магнитопровода 3 являются полюсами магнитного поля, созданного первой фазой 11 статора, при этом зубцы 21 и 22 смещены в тангенциальном направлении на угол, равный π/z, где z - число зубцов кольцевых магнитопроводов 2-7. Таким образом, фаза 11 создает пульсирующее магнитное поле, число пар полюсов которого равно числу зубцов z кольцевых магнитопроводов 2-7.
Аналогичное пульсирующее магнитное поле создает вторая фаза 12. Но так как кольцевые магнитопроводы фаз развернуты относительно друг друга на 2π/z·m, то полюсы магнитного поля второй фазы 12 смещены относительно полюсов первой фазы 11 на угол 2π/3z. А полюсы пульсирующего магнитного поля третьей фазы 13 смещены относительно полюсов первой фазы 11, соответственно, на угол 4π/3z. Каждое пульсирующее магнитное поле создает в стержнях 16 короткозамкнутой обмотки ротора э.д.с. Суммарная э.д.с. в стержнях 16 короткозамкнутой обмотки предлагаемого двигателя будет аналогична э.д.с., создаваемой вращающимся магнитным полем в асинхронных электродвигателях традиционного исполнения. Под действием суммарной э.д.с. в стержнях 16 короткозамкнутой обмотки ротора возникают токи, при взаимодействии которых с магнитными полями, созданными фазами 11, 12 и 13 статора, появляется электромагнитный момент, вращающий ротор.
Предлагаемую электрическую машину можно использовать также в режиме низкооборотного асинхронного генератора.
Конструкция предлагаемого асинхронного электродвигателя позволяет получить значительно более низкие частоты вращения ротора, чем конструкция прототипа. В предлагаемом асинхронном электродвигателе число зубцов кольцевых магнитопроводов равно числу пар полюсов магнитного поля z=р. В прототипе, то есть в асинхронных электродвигателях традиционного исполнения, минимальное число зубцов и пазов магнитопровода статора равно z=2р·m. При одном и том же числе пар полюсов р необходимое число зубцов в предлагаемом двигателе в 2m раз меньше, чем в прототипе (для трехфазного электродвигателя - меньше в шесть раз). Так как по технологическим соображениям минимальная ширина зубца магнитопровода статора ограничена, то при одинаковом диаметре расточки статора в предлагаемом трехфазном асинхронном двигателе можно получить частоты вращения магнитного поля и ротора в шесть раз меньше, чем в прототипе. Снижение частот вращения обеспечивается тем, что в предлагаемом электродвигателе полюсы магнитного поля различных фаз и разноименные полюсы одной фазы размещены в разных диаметральных плоскостях двигателя. Кроме того, так как в предлагаемом электродвигателе в пазах между зубцами кольцевых магнитопроводов не располагаются витки обмотки статора, а используются кольцевые сосредоточенные обмотки, то выполнить предлагаемый двигатель с большим числом пар полюсов и получить низкие частоты вращения ротора намного проще и дешевле, чем в прототипе.
На фиг.3 - осевое сечение двигателя, в котором магнитные потоки в осевом направлении проходят по цилиндрическим магнитопроводам. Как и в двигателе, изображенном на фиг.1, фазы двигателя на фиг.3 выполнены в виде кольцевых обмоток 11, 12 и 13, которые размещены между парами кольцевых шихтованных магнитопроводов 2 и 3, 4 и 5, 6 и 7. Кольцевые шихтованные магнитопроводы 2 и 3, 4 и 5, 6 и 7 в двигателе на фиг.3 имеют конические наружные поверхности. Конические поверхности каждой пары кольцевых магнитопроводов 2 и 3, 4 и 5, 6 и 7 сопрягаются с цилиндрическим магнитопроводом соответственно 27, 28 и 29, намотанным из ленты и имеющим конические боковые поверхности.
Магнитопровод ротора на фиг.3 также состоит из кольцевых шихтованных магнитопроводов 30, 31, 32 и 33, имеющих внутренние конические поверхности и сопряженных с намотанными из ленты цилиндрическими магнитопроводами 34, 35 и 36, имеющими конические боковые поверхности.
В двигателе на фиг.3 магнитные потоки, созданные обмотками 11, 12 и 13, в осевых направлениях проходят в статоре по цилиндрическим магнитопроводам 27, 28 и 29, а в роторе по цилиндрическим магнитопроводам 34, 35 и 36. Например, магнитный поток обмотки 11 первой фазы проходит в радиальном направлении по кольцевому шихтованному магнитопроводу 2, в осевом - по цилиндрическому магнитопроводу 27, снова в радиальном направлении - по кольцевому магнитопроводу 3, затем через воздушный зазор в кольцевой магнитопровод 31 ротора, в осевом направлении - через цилиндрический магнитопровод 34, кольцевой магнитопровод 30 и через зазор снова в магнитопровод 2 статора. В остальном работа электродвигателя, изображенного на фиг.3, аналогична работе двигателя, приведенного на фиг.1.
В двигателе на фиг.3 цилиндрические магнитопроводы 27, 28 и 29 заменяют в статоре показанные на фиг.1 пакеты пластин 8, 9 и 10, расположенные в осевом направлении. На фиг.3 контакт между цилиндрическими магнитопроводами 27, 28 и 29 и парами кольцевых магнитопроводов 2 и 3, 4 и 5, 6 и 7 обеспечивается по всей окружности кольцевых магнитопроводов 2, 3, 4, 5, 6 и 7. В то время как на фиг.1 и Фиг.2 контакт между пакетами пластин 8, 9 и 10 и парами кольцевых магнитопроводов 2 и 3, 4 и 5, 6 и 7 обеспечивается в ограниченной угловой зоне. Поэтому для получения магнитной цепи одинакового сечения необходима меньшая толщина цилиндрических магнитопроводов 27, 28 и 29, чем пакетов пластин 8, 9 и 10. За счет этого масса и габариты статора могут быть уменьшены.
В магнитопроводе ротора на фиг.3 цилиндрические магнитопроводы 34, 35 и 36 заменяют показанные на фиг.1 пакеты пластин 18. На фиг.3 площадь контакта кольцевых магнитопроводов 30, 31, 32 и 33 и цилиндрических магнитопроводов 34, 35 и 36 больше, чем на фиг.1 площадь контакта шихтованного магнитопровода 15 и пакетов пластин 18. Поэтому при той же площади магнитной цепи толщина цилиндрического магнитопровода необходима меньше, чем толщина пакетов пластин 18. За счет этого также уменьшаются масса и габариты двигателя.
Массу и габариты предлагаемого двигателя можно также уменьшить за счет разделения кольцевых обмоток фаз на секции. На фиг.4 показано осевое сечение предлагаемой электрической машины, у которой каждая из фаз разделена на две секции. Первая фаза состоит из кольцевых секций 37 и 38, вторая фаза - из секций 39 и 40, третья фаза - из секций 41 и 42. Число кольцевых магнитопроводов одной фазы должно быть на единицу больше числа секций фазы. При двух секциях в фазе число кольцевых магнитопроводов одной фазы равно трем. Секции первой фазы 37 и 38 расположены между кольцевыми магнитопроводами 43, 44 и 45. Секции второй фазы 39 и 40 расположены между кольцевыми магнитопроводами 46, 47 и 48. Секции третьей фазы 41 и 42 расположены между кольцевыми магнитопроводами 49, 50 и 51.
На фиг.5 показаны диаметральные сечения электродвигателя, изображенного на фиг.4, сделанные по кольцевым магнитопроводам 43, 44 и 45 первой фазы. Угловое положение зубцов 52 и 54 на нечетных кольцевых магнитопроводах 43 и 45 первой фазы совпадает. А зубцы 53 на четном кольцевом магнитопроводе 44 данной фазы смещены относительно зубцов 52 и 54 на угол π/z. Секции фазы 37 и 38 могут быть соединены параллельно или последовательно, но так, чтобы знак намагничивающих сил секций 37 и 38 был различным. (При числе секций в фазе больше двух знак намагничивающих сил секций должен чередоваться в осевом направлении.) Тогда при включении секций 37 и 38 первой фазы возникают два пульсирующих магнитных потока Ф1 и Ф2, показанные на фиг.4 для фиксированного момента времени. При этом полярность зубцов 52 и 54 нечетных кольцевых магнитопроводах 43 и 45 первой фазы совпадает, а зубцов 53 на четном кольцевом магнитопроводе 44 противоположная.
Аналогичным образом выполнен магнитопровод и обмотки двух других фаз, причем, как было отмечено выше, кольцевые магнитопроводы фаз развернуты относительно друг друга на угол 2π/z·m.
Работа двигателя, изображенного на фиг.4, при подаче на обмотку статора двигателя трехфазного напряжения аналогична работе двигателя, изображенного на фиг.1.
По сравнению с двигателем, изображенным на фиг.1 и на фиг.3, в двигателе, изображенном на фиг.4, магнитный поток каждой фазы разделен на несколько потоков, число которых равно числу секций фаз, в данном примере на два потока. Поэтому магнитный поток, проходящий через любое поперечное сечение пакетов магнитопроводов 8, 9, 10 и 18, уменьшается в два раза. Значит и сечение пакетов магнитопроводов 8, 9, 10 и 18 в предлагаемом двигателе по сравнению с прототипом можно уменьшить в число раз, равное числу секций фаз. За счет этого уменьшается масса и габариты двигателя.
1. Низкооборотный асинхронный электродвигатель, содержащий статор с многофазной обмоткой и ротор с короткозамкнутой обмоткой, отличающийся тем, что для получения большого числа пар полюсов магнитного поля и низкой частоты вращения ротора, а также для уменьшения трудоемкости и стоимости двигателя каждая фаза статора выполнена в виде кольцевой обмотки, соосной с ротором, и размещена между шихтованными кольцевыми магнитопроводами, которые сопряжены по наружной поверхности с пакетами шихтованных магнитопроводов, расположенных в осевом направлении, кольцевые магнитопроводы во внутренней полости имеют зубцы, число которых равно числу пар полюсов двигателя, и кольцевые магнитопроводы, между которыми размещена любая фаза двигателя, смещены относительно друг друга на угол π, деленный на число зубцов кольцевого магнитопровода, а кольцевые магнитопроводы разных фаз смещены относительно друг друга на угол 2π, деленный на произведение числа зубцов кольцевого магнитопровода на число фаз, при этом во внутренней полости шихтованного магнитопровода ротора расположены пакеты магнитопроводов, набранные из пластин, проходящие в осевом направлении.
2. Низкооборотный асинхронный электродвигатель по п.1, отличающийся тем, что для уменьшения массы и габаритов двигателя кольцевые магнитопроводы статора имеют конические наружные поверхности, которые сопряжены с цилиндрическими магнитопроводами, имеющими конические боковые поверхности, а магнитопровод ротора также выполнен из шихтованных кольцевых магнитопроводов, имеющих конические внутренние поверхности, которые сопряжены с цилиндрическими магнитопроводами, имеющими конические боковые поверхности.
3. Низкооборотный асинхронный электродвигатель по п.1 или 2, отличающийся тем, что для уменьшения массы и габаритов двигателя каждая фаза разделена на несколько секций с чередующимися направлениями намагничивающей силы, расположенных между кольцевыми магнитопроводами, число которых на единицу больше числа секций фазы, при этом угловое положение зубцов на четных и нечетных кольцевых магнитопроводах данной фазы отличается на угол, равный π, деленный на число зубцов кольцевого магнитопровода.
www.findpatent.ru
Сфера применения Электродвигатель с дисковым якорем имеет компактную конструкцию и широко используется в случаях с недостатка свободного места для установки и с малогабаритным передающим оборудованием.
Тип и модель двигателя Низкооборотный синхронный дисковый двигатель переменного тока серии TYD с постоянными магнитами Низкооборотный высокоэффективный дисковый двигатель переменного тока серии DL с постоянными магнитами Низкооборотный трёхфазный асинхронный дисковый двигатель переменного тока серии DLY Низкооборотный дисковый двигатель постоянного тока серии DWT с постоянными магнитами с частотным управлением Бесколлектроный дисковый двигатель постоянного тока серии BL
Спецификация моторной базы Серия TYD: D90TYD, D120TYD, D140TYD, D170TYD Серия DL: D-DL120, D-DL140, D-DL170 Серия DLY: D-DLY120, D-DLY140, D-DLY170 Серия DWT: D90DWT, D120DWT, 140DWT, D170DWT Серия BL: D-BL120, D-BL140, D-BL170
Входное напряжение Серия TYD: 1 Ф 110 В, 220 В. 3 Ф 200 В, 220 В, 240 В, 380 В, 440 В, Частота 50 Гц, 60 Гц. Серия DL: 3 Ф 220 В, 240 В, 380 В, 440 В, Частота 50 Гц, 60 Гц. Серия DLY: 3 Ф 220 В, 240 В, 380 В, 440 В, Частота 50 Гц, 60 Гц. Серия DWT: 24 В, 48 В (постоянный ток). Серия BL: 24 В, 48 В (постоянный ток) 220 В (переменный ток).
Крутящий момент или мощность Серия TYD: 2.8~60 Нм. Серия DL: 60~400 Вт. Серия DLY: 40~400 Вт. Серия DWT: 2.8~20 Нм. Серия BL: 150~1000 Вт.
Скорость вращения Серия TYD: 60, 115 об / мин Серия DL: 300, 375, 500, 600, 750, 1000 об / мин Серия DLY: 450, 700, 920, 1400 об / мин Серия DWT: 60, 90, 120 об / мин Серия BL: 500, 750, 1000, 1500, 3000 об / мин
Технические характеристики Допустимое колебание напряжения: ±10% Нагрев двигателя: <60℃ Класс изоляции: F Класс защиты: IP44 IP54 Режим охлаждения: IC410 Система работы: S1 Уровень шума: 30~55 ДБ Защитная обработка корпуса: Распылительная окраска, электрофорез или окислительная обработка. Стандарт удлинения вала: Круглый вал со шпоночным пазом, ось отверстия, сквозной вал со шпоночным пазом.
Dongling является сертифицированным производителем асинхронных двигателей в Китае. Наша компания в основном занимается производством и продажей Трехфазных асинхронных двигателей с короткозамкнутым ротором,Трехфазных асинхронных двигателей с фазным ротором,Однофазных электродвигателей с экранированными полюсами,Однофазных электродвигателей с асимметричным магнитопроводом статора и т.д. Если вы хотите узнать больше о наших продуктах и услугах, свяжитесь с нами. Мы надеемся на сотрудничество с вами. Спасибо!.
dlacmotors.ru
Конструкция Низкооборотный двигатель в сборе с микро-редуктором.
Производительность 1. Низкооборотный двигатель заменяет традиционные комбинации асинхронного микромотора переменного тока, промежуточной коробки передач и редуктора, а также комбинации традиционной щёточного двигателя постоянного тока или бесколлекторного двигателя, промежуточной коробки передач, редуктора и привода. 2. Низкая скорость вращения, высокая износостойкость механизмов, высокая несущая способность выходного вала, длительный срок службы. 3. Двигатель и редуктор имеют низкий уровень шума, высокую стабильность работы, плавный ход и практически не нуждаются в техническом обслуживании. 4. Двигатель практически не нагревается, имеет небольшой объем, но при этом имеет высокий КПД и обеспечивает отличные показатели энергосбережения.
Сфера применения Механическая трансмиссия со сверхнизкой скоростью и большим крутящим моментом, бесшумное оборудование для работы при низкой температуре, энергосберегающее и экологическое оборудование.
Технические характеристики Модель двигателя: 70TYD, 90TYD Модель редуктора: 4GN, 5GN, 5GU, 6GU Коэффициент скорости редуктора: 1:3~200 Частота вращения двигателя: 30, 60, 115 об / мин Скорость вращения выходного вала: 0.15~20 об / мин Крутящий момент на выходе: 4~40 Нм Нагрев двигателя: <45℃ Класс изоляции: B Класс защиты: IP54, IP56 Режим охлаждения: IC410 Система работы: S1 Уровень шума: 30~50 ДБ
В качестве производители электродвигателя в Китае, мы также производим червячный мотор-редуктор постоянного тока с редкоземельными магнитами ,одноступенчатый червячный мотор-редуктор ,двухступенчатый червячный мотор-редуктор ,Цилиндро-червячный мотор-редуктор Производительный червячный мотор-редуктор и т. д.Для удовлетворения самых разнообразных потребностей.Кроме того, мы можем производить мотор-редуктор в соответствии с требованиями клиентов.
dlacmotors.ru
Характеристика | Единицы | SY 3424 (0110) | SY 3424 (0110) | SY 3424 (0240) | SY 3424 (0240) |
Частота | Гц | 50 | 60 | 50 | 60 |
Скорость | об./мин | 60 | 72 | 60 | 72 |
Напряжение | В | 220 | 220 | 120 | 120 |
Номинальный фазный ток | А | 0,11 | 0,11 | 0,24 | 0,24 |
Синхронный крутящиймомент | унция-дюйм Нсм | 141 100 | 141 100 | 141 100 | 141 100 |
Резистор | Ом Вт | 750 25 | 910 25 | 270 25 | 470 25 |
Конденсатор | мкФ В | 0,80 400 | 0,62 400 | 2,5 250 | 2,0 250 |
Масса двигателя | кг | 1,3 | 1,3 | 1,3 | 1,3 |
Стандартноеколичество выводов | - | 3 | 3 | 3 | 3 |
wexon.ru