Вопрос: Результат деятельности, работы, произведение
Ответ: Труд
Вопрос: Работа, занятие
Ответ: Труд
Вопрос: Целесообразная деятельность человека, направленная на создание с помощью орудий производства материальных и духовных ценностей
Ответ: Труд
Вопрос: Привитие умения и навыков в какой-нибудь профессиональной, хозяйственной деятельности как предмет школьного преподавания
Ответ: Труд
Вопрос: Усилие, направленное к достижению чего-нибудь
Ответ: Труд
Вопрос: Стихотворение Пушкина
Ответ: Труд
Вопрос: Стих Пушкина
Ответ: Труд
Вопрос: Бог
Ответ: Труд
Вопрос: Роман Э. Золя
Ответ: Труд
Вопрос: Советская газета
Ответ: Труд
Вопрос: Газета, награждавшая Блохина за результативность
Ответ: Труд
Вопрос: И сизифов, и мартышкин, нередко оба вместе
Вопрос: Ключ ко всем замочным скважинам
Ответ: Труд
Вопрос: Название школьного учебного предмета
Ответ: Труд
Вопрос: Он и терпение все перетрут
Ответ: Труд
Вопрос: Отступник бурных наслаждений, онегин дома заперся, зевая, за перо взялся, хотел писать- но... упорный ему был тошен. (а. пушкин, "евгений онегин")
Ответ: Труд
Вопрос: Производственная деятельность человека
Ответ: Труд
Вопрос: Работа, дело, занятие
Ответ: Труд
Вопрос: Работа, деятельность связанная с созданием чего- либо
Ответ: Труд
Вопрос: Результат деятельности, произведение, создание
Ответ: Труд
Вопрос: Синоним работа, занятие
Ответ: Труд
Вопрос: Слово, к которому в одинаковой степени подходят эпитеты "напрасный" и "мартышкин
Ответ: Труд
Вопрос: Усилие, старание, направленное на достижение чего-либо
Ответ: Труд
Вопрос: Целесообразная деятельность человека, направленная на создание материальных и духовных ценностей
Ответ: Труд
Вопрос: Целесообразная деятельность человека, работа, требующая умственного или физического напряжения, затраты физической или умственной энергии
Ответ: Труд
Вопрос: Центральная газета
Ответ: Труд
Вопрос: Человеческая деятельность, недолюбливаемая рыбкой в пруду (фольк.)
Ответ: Труд
Вопрос: Что, согласно распространенной материалистической теории эволюции, сыграло решающую роль в превращении обезьяны в человека
Ответ: Труд
Вопрос: Российская газета. Издаётся издательским домом «...», входящим в медиагруппу «Медиа3», управляющую медиаактивами группы «ПромСвязьКапитал»
Ответ: Труд
Вопрос: Целесообразная, формально материальная и нематериальная, орудийная деятельность человека, направленная на удовлетворение потребностей индивида и общества
Ответ: Труд
Вопрос: Великое лекарство от всех болезней и печалей человечества
Ответ: Труд
Вопрос: Спортивное общество
Ответ: Труд
Вопрос: Коммунистический создатель человека
Ответ: Труд
Вопрос: "Терпенье и ... всё перетрут"
Ответ: Труд
Вопрос: Один из школьных предметов
Ответ: Труд
Вопрос: Работа, измеряемая деньгами
Ответ: Труд
Вопрос: "Не пропадёт ваш скорбный ..." (стих.)
Ответ: Труд
Вопрос: То, что облагораживает человека
Ответ: Труд
Вопрос: Плод работы учёного
Ответ: Труд
Вопрос: Главная профсоюзная сов. газета
Ответ: Труд
Вопрос:
wordparts.ru
Авиационное двигателестроение началось в начале прошлого века. И зачинателями моды стали ротативные двигатели. Это звездообразные двигатели воздушного охлаждения. Охлаждению на малых скоростях полёта, типичных для авиации того времени, способствовало вращение цилиндров с картером относительно неподвижно закреплённого на моторной раме коленчатого вала. Почти всю Первую Мировую Войну такие двигатели превосходили по удельной массе двигатели водяного охлаждения, поэтому на большинстве истребителей и разведчиков стояли эти моторы.
У ротативных двигателей были крупные недостатки, главным из которых была практическая невозможность достижения мощности более 100 – 130 л.с. Препятствием служили трудности с увеличением размера и числа цилиндров, увеличением нагрузки от центробежных сил и гироскопического момента на картер при увеличении частоты или компоновке второго ряда цилиндров, большие потери мощности на вращение оребрённых цилиндров. Ротативные двигатели страдали очень большим расходом масла. Это было связано с тем, что откачать масло из вращающегося картера было невозможно и оно буквально вылетало в трубу.
Проблемы с ротативными двигателями привели к тому, что к концу ПМВ самыми популярными стали двигатели с водяным охлаждением. Которые хоть и не победили ротативных по удельной массе, но по мощности превзошли в несколько раз.
Как известно, в двигателестроении в период Второй Мировой Войны прижились два типа двигателей. Рядные, чаще всего V-образные, двигатели жидкостного охлаждения и звездообразные двигатели воздушного охлаждения. Каждый из этих типов двигателей имеет свои достоинства и недостатки. Конкуренция между двумя типами двигателей на протяжении всей их истории весьма занимательна.
Так "воздушники" проще конструктивно (нет рубашки охлаждения). Поэтому они дешевле в производстве, проще в обслуживании, надёжнее. Так же из-за воздушного охлаждения живучее. У «жидкостника» температура охлаждающей жидкости ограничена точкой кипения. И потому для отвода еденицы тепла через радиатор требуется больший объём воздуха, чем для отвода еденицы тепла от «воздушника». Ибо температура головок цилиндров «воздушника» раза в два выше, чем температура водорадиатора у «жидкостника».
"Жидкостники" имеют другие достоинства. Малый мидель даёт плюс в аэродинамике; из-за острого носа и потенциальной возможности применения мотор-пушки улучшается компоновка фюзеляжного вооружения. В минус «воздушникам» в 20-е гг. была и неотработка капотировки. Верхом аэродинамики считалось кольцо Таунеда.
При равной литровой мощности, из-за присутствия рубашки охлаждения и охлаждающей жидкости, "жидкостник" будет тяжелее воздушника. И самолёт с "воздушником" будет легче. Для манёвренных самолётов, и в горизонтальной и в вертикальных плоскостях, были оптимальней «воздушники», для скоростных «жидкостники».
Так что каждый из типов двигателей имеет свои достоинства, объясняющие их разнообраное применение. Пока моторы были слабомощные, в истребительной авиации на первое место выходил их вес. Поэтому в 30-е годы моторостроение вступило с большим распространением "воздушников". Тут правда сыграла и простота их производства.
В начале 30-х годов "жидкостники" сделали резкий скачок. А всему виной было принудительное охлаждение, позволяющее форсировать двигатель. Жидкостное охлаждение позволяло хорошо отводить тепло от двигателя. Двухрядные "воздушники" же столкнулись с проблемами отвода тепла от задней кромки поршней второго ряда. Сначала "жидкостники" обогнали "воздушников" в литровой мощности. А затем в удельной массе!
Правда надо учесть, что даётся сухой вес моторов. У жидкостников система охлаждения может прибавлять до 10% веса мотора. И если однорядные звёзды впряглись в гонку с "жидкостниками", то двухрядные звёзды резко просели.
Пока двигатели были слабосильными, а скорости самолётов относительно небольшими, вес мотора играл значительную роль. Так И-16 с "Циклоном" ещё выигрывал в Испании у Bf-109B. Но развязка наступала неизбежно. Во второй половине 30-х моторостроение сделало ещё один шаг и И-16 стало уже проблематично противостоять мессеру с DB-600.
Но не только увеличение мощности сыграло свою роль. Резкий скачок сделала и аэродинамика водорадиаторов. Водорадиаторы мигрировали в туннели. Туннели стали утапливаться в фюзеляж и крылья. Применение этиленгликоля и воды под давлением позволило уменьшить площадь водорадиаторов на 40-50% (и вес охлаждающей жидкости).
Неизбежно в моду вошли истребители с моторами жидкостного охлаждения. Мессершмитт и Спитфайр были первыми. За ними потянулись другие. СССР, Франция, США тут же бросились догонять Германию и Англию. Лишь Италия и Япония остались возиться с "воздушниками". Ибо... так и не сумели создать отечественный мотор жидкостного охлаждения, а с лицензионным производством чужого опоздали.
Но "воздушники" не исчезли. У них оставались определённые преимущества и они нашли свою нишу. Живучесть и надёжность позволила им закрепиться в бомбардировочной и штурмовой авиации. Из-за эксплуатационных преимуществ авианосная авиация США продолжала использовать только "воздушники". До следующего хода надо было подождать несколько лет... К тому же у набравших ход «жидкостников» был скрытый порог – малый литраж. Малый объём цилиндра позволял легче бороться с тепловым режимом и быстрее доводить двигатель. Но за высокие удельные характеристики пришлось заплатить малой мощностью.
Но в начале 40-х всё опять переменилось. И имя этим переменам было - мощные двухрядные звёзды.
К этому времени удалось справиться с тепловым режимом двухрядных звёзд. Справлялись с этим по разному. Раздвигали ряды звёзд, что выводило второй ряд из затенения первым, увеличивали мидель двигателя, вводили принудительное охлаждение вентилятором, увеличивали объём маслорадиатора (у "воздушников" бОльшая теплоотдача в масло), увеличивали оребрение цилиндров и оптимальнее подгоняли дефлекторы. Но так или иначе мощные звёзды получились во многих странах на этом рубеже. Решение теплового режима позволило звёздам если не сравняться, так догнать, сократить отставание от "жидкостников" в удельной массе. Хотя "жидкостники" и сохранили преимущество по запасу форсирования.
Но главным преимуществом звёзд была мощность. Что решилось банальным преимуществом в литраже - звёзды были просто объёмнее. Увеличить литраж двигателя без увеличение миделя позволил бывший "порок" - второй ряд поршней. Так М-105П выигрывал по удельной мощности у М-82А. Но Ла-5 c М-82А, выигрывал y ЛаГГ-3 c М-105П, даже несмотря на убогую аэродинамику!
Малолитражные "жидкостники" с этим смириться не могли и уже давно (заранее) бросились догонять. Самым простым решением было спарить два двигателя на один редуктор. Решение оказалось слишком сложным и потому тупиковым. Ни у кого так и не получилось.
Более продуктивным было собрать несколько блоков цилиндров на один коленвал (Н- и Х-образные двигатели). Но такой многоцилиндровый двигатель тоже получался слишком сложным и ненадёжным. И получился только у англичан! Тот самый Сейбр. За конструктивную сложность пришлось заплатить малым ресурсом. К тому же при таком решении "жидкостник" терял своё преимущество - малый мидель. Так что как только англичане довели свой мощный "воздушник" - Центариус, о Сейбре благополучно забыли.
Но не только одной мощностью брали "воздушники". Удалось улучшить аэродинамику звёзд за счёт исследований по капотам (капоты NACA) и применением длинного носка картера. На фоне таких успехов происходит реинкарнация истребителей с моторами воздушного охлаждение. Ла-5, ФВ-190, Р-47 и проч.
Отыграться "жидкостникам" удалось в самом конце Второй Мировой Войны. За увеличение литража стали бороться другим путём. Увеличили объём имеющихся 12-ти цилиндров путём увеличение площади поршня. В разным странах примерно синхронно появились "большие горшки": АМ-42, Гриффон, DB-603, Юмо-213.
Но появились эти двигатели поздновато, когда решающие воздушные сражения уже отыграли и шло уже добивание противника. И применение этих двигателей на имеющимся фоне любым из противников никак не меняло баланс сил. Припозднились.
К концу войны вдруг выяснилось, что увеличение мощности моторов приводит не к уменьшению, как раньше, а к увеличению удельной массы моторов. Форсаж не может продолжаться до бесконечности. В конце концов увеличение нагрузок на детали моторов привело к их усилениям, уже не компенсирующимся возрастанием мощности. Маятник качнулся назад…
Одним из простых способов увеличения мощности двигателя при сохранении его объёма, является повышение числа оборотов коленчатого вала. Например: мотор М-11 изначально при Частоте вращения коленчатого вала, 1650 об/мин достигал мощности 110 л.с.; после модернизации, Частота вращения поднялась до 1950 об/мин, а Мощность, до 180 л.с., т.е. Литровая мощность повысилась в 1,5 раза!
Онако, на пути увеличения мощности двигателя за счёт повышения числа оборотов коленчатого вала, встало снижение КПД Винто-Моторной Группы и пришлось применить понижающий редуктор, позволяющий оптимально подбирать характеристики пропеллеров в зависимости от назначения самолётов. Для ДВС с водянным охлаждением применение редуктора привело к смещению оси пропеллера ближе к центру двигателя, что позволило улучшить аэродинамику и разместить пушку в развале цилиндров для V-образных двигателей - как например ВК-105 на Яке.
Другая серьёзная проблема "раскрутки" двигателя - это повышение динамической нагрузки на кривошипно-шатунную группу и газораспределительный механизм, и как следствие - снижение эксплутационного ресурса мотора, что вынуждает применять более прочные материалы и усиливать его конструкцию.
Высотность моторов во Второй Мировой Войне оставалась краеугольным камнем боевого применения самолётов. Различные задачи перед авиацией требуют различных высот применения. В 20-е гг. проблему пытались решить путём создание т.н. «переразмеренных» моторов. В чём их сущность? Обычный маловысотный двигатель рассчитывается на выдачу максимальной мощности у земли. С ростом высоты, в связи с падением плотности воздуха, его мощность будет понижаться. Получается, что на высоте он излишне прочен. Можно сделать двигатель, рассчитанный на выдачу мощности на высоте. А что бы такой мотор не сломался из-за избыточной мощности у земли, подачу топлива на малой высоте ограничим.
В 30-е гг. на смену пришли нагнетатели. Т.н. ПЦН – приводной центробежный нагнетатель, мощность на работу которого отбиралась от двигателя. Нагнетатели позволяли не только поднять высотность двигателя, но и осуществить его форсирование. Как никак за единицу времени в цилиндр попадал больший заряд смеси. Правда без ложки дёгтя ничего не бывает. Экономичность таких моторов, по сравнению с атмосферными, снизилась. Сказались потеря мощности на привод нагнетателя, потери газа на трение в коллекторе двигателя, увеличение температуры смеси из-за сжатие газа в нагнетателе, а отсюда и работа на более богатой смеси для компенсации возросшей температуры.
Но остался вопрос с расчётной высотой для такого двигателя. Чем больше мощности передать от двигателя к ПЦН, тем большую работу нагнетатель выполнит, и тем выше будет расчётная высота двигателя. Но т.к. двигатель рассчитан на определённую степень форсирования, то до расчётной высоты давление наддува будет избыточным. Решается проблема дросселированием ПЦН. А раз передача мощности от двигателя к нагнетателю постоянна, то на высотах меньше расчётной, эта мощность будет пропадать в туне. Т.е. более высотный двигатель на малых высотах будет проигрывать менее высотному, ибо у последнего на привод нагнетателя тратится меньше мощности.
Проблему узкой заточенности под высоты двигателей с ПЦН конечно начали решать. Самым простым средством стало применение многоскоростных ПЦН. Сначала двухскоростных, а затем трёхскоростных.
Шагом вперед стало применение двухступенчатых нагнетателей. В таком нагнетателе две крыльчатки находятся друг за другом. Это решение позволило поднять высотность моторов, одновременно «срезав» провал мощности между двумя скоростями нагнетателя. Но и это решение оказалось не без отрицательных сторон. КПД двухступенчатого ПЦН стало ниже одноступенчатого (сказались потери мощности на привод второй ступени, нагрев газа из-за большого сжатия в нагнетателе). Что в основном выражалось в повышенном расходе топлива.
Другим направлением разработок являлись турбокомпрессоры. Главным отличием ТК от ПЦН является привод не от двигателя, а использование «дармовой» энергии выхлопных газов. Выхлоп по трубам попадает в турбину, сообщая ей свою энергию, а уже турбина осуществляет привод нагнетателя. Плюсов – куча. Прыгает вверх экономичность такой установки, повышается высотность мотора, исчезают «изломы» мощности по высоте двигателей с ПЦН. Но и минусов оказалось не мало, что обусловило доводку ТК до серии только в одной стране – США.
Необходимым условием удовлетворительного функционирования ТК являлись жаропрочные сплавы и высокооборотные подшипники. Но и это не всё. Серийные образцы имели одну особенность: от двигателя до ТК шла длинная жаропрочная труба, где газы охлаждались, а далее сам ТК оказывался немалых размеров. Данный факт выливался в большую массу и габариты установки. Что бомбардировщикам было сносно, но истребителям резко уже не оптимально. И если истребителя с ТК выигрывали у своих оппонентов с ПЦН на больших высотах, то на средних и малых высотах проигрывали из-за явного перетяжеления конструкции. Практика показала, что для высотного истребителя двухступенчатый ПЦН всё таки лучше. Стоит упомянуть ещё одну особенность ТК. В процессе эксплуатации оказалось, что на малых оборотах давления газов не хватает для штатного функционирования ТК. И двигатели часто глохнут. Выходом стало применение связки ПЦН-ТК, т.н. комбинированный наддув. Низковысотный ПЦН сообщал так нехватаемый наддув на низких оборотах.
Напоследок в этой теме стоит упомянуть о промежуточном охлаждении смеси за ПЦН. У высотных двигателей работа, осуществляемая нагнетателем над газом, настолько велика, что смесь весьма сильно нагревается. И по закону термодинамики расширяется, приводя к уменьшению заряда, попадаемого в цилиндры. Выходом стало применение промежуточного радиатора, охлаждающего смесь перед попаданием в двигатель. Но этот шаг приводит к увеличению аэродинамического сопротивления. Что выгодно только для высотных двигателей.
Во ВМВ дизели не завоевали особой славы. Но перед войной разработки широко велись во многих странах. Дизели фирм Паккард, Юнкерс, Клерже, Бристоль тому пример. Почему же тратилось столько труда? Перед карбюраторными моторами дизель имеет ряд преимуществ. Благодаря высокому КПД, дизель очень экономичен. Благодаря впрыску, дизель сохраняет номинальную мощность на более бедной смеси. И потому меньше теряет мощность с высотой. А бОльший крутящий момент позволяет лучше переносить изменение нагрузки и дольше сохранять неизменные обороты или угол атаки лопастей пропеллера.
Но имеется у дизелей один недостаток. Большая степень сжатия вынуждает делать более прочный, но потому и более тяжёлый мотор. Проигрыш перед карбюраторными в удельных параметрах становится уж больно большой. Но это ещё пол беды. Избыток в весе авиадизеля перекрывается экономией топлива через 2-3 часа полёта. Главная беда заключалась в увеличенных сроках доводки мотора в связи с большой сложностью конструкции. На момент доводки дизеля, он был уже никому не нужен из-за своих слабых удельных параметров и малой мощности.
Потому и получились серийные дизели, нашедшие применение на самолётах, только в двух странах. В Германии и СССР. Немцы пошли по пути доводки ресурса и получили надёжные, но маломощные авиадизели Юмо. Мы сделали ставку на высокие удельные параметры и мощность. Получив по циферкам неплохие, но ненадёжные дизели Чаромского и Яковлева. После войны наработки по авиадизелям нашли применение в танкостроении и на флоте.
Однако, дизелезация авиации всё-таки значительно повлияла на развитие авиационных ДВС. Это выразилось в применении впрыска топлива и повышении степени сжатия в камере сгорания с 5 до 7-9 единиц.
В инжекторной системе впрыск топлива в воздушный поток осуществляется специальными форсунками (инжектор - форсунка), расположенными либо на месте карбюратора (во впускном коллекторе) — «моновпрыск», либо недалеко от впускного клапана каждого цилиндра (как правило, конструктивно во впускном коллекторе) — «распределённый впрыск» (он же многоточечный "коллекторный"), либо в головке цилиндров, и впрыск происходит в камеру сгорания — «прямой впрыск».
К форсункам топливо подаётся под давлением, а количество впрыснутого топлива при этом определяется механическими устройствами управления. В наиболее общем случае идея управления таким впрыском заключается в дозировании количества топлива специальным клапаном. Клапан же, в свою очередь, управляется через систему рычагов воздушным потоком, воздействующим на легкую «тарелочку», стоящую на пути потока. В настоящее время впрыски с механическим управлением практически вытеснены впрысками с управлением электронным.
Основные достоинства инжекторных двигателей по сравнению с карбюраторными: уменьшенный расход топлива, улучшенная динамика разгона, уменьшение выбросов вредных веществ, стабильность работы. Первый мотор со впрыском был изготовлен в России в 1916 году Микулиным и Стечкиным. Это был первый авиационный двигатель, перешагнувший 300-сильный рубеж..
Впервые массово была применена во вторую мировую войну в основном на истребителях воюющих стран, как удобная альтернатива карбюраторной системе, т.к. инжекционной системе впрыска в силу конструкции безразлично рабочее положение( вверх ногами или как обычно). Карбюраторные системы для работы под углом к горизонту необходимо дополнять множеством устройств, либо применять специально спроектированные карбюраторы. Однако судьба систем была разной. Японская система на истребителях "Зеро" требовала промывки после каждого полета, и поэтому не пользовалась популярностью в войсках. Русская же система впервые была применена на двигателе АШ-82 (для истребителей Ла-5). Мотор со впрыском - АШ-82ФН оказался настолько удачным, что выпускалcя еще долгие десятилетия, использовался на вертолете Ми-4 и до сих пор используется на самолетах Ил-14.
Работа авиационного мотора проходит большую часть жизни далеко не на максимальных режимах. Режимов много и они предназначены для разных задач. Когда нужна максимальная дальность, когда максимальная мощность на взлёте.
Главным режимом является номинальный. Все остальные режимы двигателя отсчитываются от номинального в процентах. Режимы меньше номинального называются крейсерскими, а больше номинального, форсажными. На форсажных режимах ресурс двигателя уменьшается, а на крейсерских увеличивается. На форсажных режимах применяется богатый состав смеси что бы отодвинуть границу детонации при увеличившемся наддуве и облегчить тепловой режим двигателя. На крейсерских режимах применяется бедный состав смеси, что бы увеличить экономичность двигателя.
Рассмотрим режимы работы двигателя.Сами форсажные режимы получили наибольшее распространении в период Второй Мировой Войны и в основном на истребителях. Гонка за мощностью привела к применению высокооктанового топлива (позволяющего отодвинуть границу детонации) и форсажных жидкостей.
Одну группу форсажных жидкостей составляют вода и водоспиртовые смеси. Эти жидкости обеспечивают интенсивное охлаждение горючей смеси. Плюсом является увеличение заряда, попадающего в цилиндры двигателя, сдвигом границы детонации и охлаждение самого двигателя. Эта группа применяется для форсирования на малых высотах.
Вторую группу составляет закись азота. Плюсом закиси азота является принос в цилиндры двигателя «халявного» кислорода, которого так нахватает на больших высотах. Естественно закись азота применяется для форсирования на больших высотах. Минусами всех этих жидкостей является их вес и снижение ресурса двигателя.
Мощнейшую конкуренцию после войны двигателям внутреннего сгорания составили Турбо-Реактивные Двигатели. Проигрыш по удельным параметрам и КПД Винто-Моторной Группы на трансзвуке был непоправим. Двигатели внутреннего сгорания сохранились только для задач, связанных с дальностью. Ибо по КПД, а следовательно экономичности, выигрывали у ТРД почти в два раза.
В это время происходит развитие мощных многорядных воздушного и многоблочных жидкостного охлаждение моторов. Эволюция термодинамических процессов и нагрузки у этого типа моторов привела к тому, что «жидкостники» и «воздушники» сравнялись практически по своим параметрам. Так же эти моторы отличала т.н. «комбинированная схема», когда энергия выхлопных газов тратится ещё и на вращение турбины, мощность которой передаётся на вал мотора.
Но в 50-е с развитием Турбо-Винтовых Двигателей и Турбо-Реактивных Двигателей нового поколения и барьер экономичности тоже рухнул. Двигатели внутреннего сгорания ждала только лёгкая (и сверхлёгкая) авиация, где большим тепловым режимом в связи с малыми мощностями и не пахло. И "жидкостники" окончательно вымерли. Звёзды же остались в основном в спортивной авиации, в основной массе потеснённые рядными и оппозитными двигателями воздушного охлаждения. Правда в последнее время в сверхлёгкую авиацию стали возвращаться дизеля, но уже "автомобильного" происхождения.
Современные четырёхтактники достигли своего "физического" эволюционного предела и давно уже конструктивно не развиваются. Эволюция "чистых" ДВС завершилась. Наступает Эра комбинированных силовых установок, совмещающих преимущества ДВС и других двигателей, что обещает значительное повышение КПД.
Трагическое противостояние развитых технических цивилизаций во Второй Мировой войне послужило "катализатором" бурного развития военной техники и прежде всего авиации, которая в свою очередь крайне нуждалась в мощных, компактных и надёжных двигателях, создаваемых "на грани" существующих в то время технологий. Ресурс высокофорсированных двигателей был зачастую весьма ограничен и рассчитан всего на несколько вылетов, что впрочем в условиях "мировой бойни" вполне устраивало военных.
Другим путём пошло развитие автомобильного двигателестроения, где важнее всего были низкая стоимость массового производства и эксплуатации, ресурс и ремонтопригодность, дешёвые и доступные сорта топлива и масел. Тем не менее, хоть и с отставанием в 50 лет, но автомобильное двигателестроение, с точностью повторило путь развития авиационных ДВС и в конце концов упёрлость в тот-же эволюционный тупик....
Не верите?! Давайте тогда перечислим последние "достижения" автомобильного двигателестроения:
Шумные пиар-акции автопроизводителей, по поводу очередного "шедевра" высоких технологий, вызывают саркастическую усмешку - вот уж во-истину: "Всё новое, это хорошо забытое старое!" Приходиться лишь сожалеть, что весьма ограниченные ресурсы планеты и труд сотен тысяч инженеров тратяться на то, что-бы заново "открыть" то, что давно уже всем известно и массово применяется в других отраслях машиностроения!
russianengineering.narod.ru
Эволюция, прогресс … истоки.
Действительно ли история развития тепловых двигателей -это история прогресса?
Тепловые двигатели имеют исключительно важное значение в жизни человеческого общества, развитии техники, энергетики и транспорта. Изобретение паровой машины имело исключительно большое значение для перехода к машинному производству, сделало возможным изобретение парохода(1807), и паровоза (1814).Изобретение паровой турбины позволило резко увеличить мощности электростанций. В настоящее время паровая турбина—основной первичный двигатель на тепловых и атомных электростанциях.
Изобретение двигателя внутреннего сгорания вызвало к жизни автомобилестроение и авиацию. Тепловым двигателем называется устройство, способное превращать полученное количество теплоты в механическую работу. Механическая работа в тепловых двигателях производится в процессе расширения некоторого вещества, которое называется рабочим телом. В качестве рабочего тела обычно используются газообразные вещества (пары бензина, воздух, водяной пар). Рабочее тело получает (или отдает) тепловую энергию в процессе теплообмена с телами, имеющими большой запас внутренней энергии.
Однократный акт преобразования теплоты в работу не представляет интереса для техники. Реально существующие тепловые двигатели (паровые машины, двигатели внутреннего сгорания и т. д.) работают циклически. Процесс теплопередачи и преобразования полученного количества теплоты в работу периодически повторяется. Для этого рабочее тело должно совершать круговой процесс или термодинамический цикл, при котором периодически восстанавливается исходное состояние. Работа A, совершаемая рабочим телом за цикл, равна полученному за цикл количеству теплоты Q. Отношение работы A к количеству теплоты Q1, полученному рабочим телом за цикл от нагревателя, называется коэффициентом полезного действия η тепловой машины:
Коэффициент полезного действия указывает, какая часть тепловой энергии, полученной рабочим телом от «горячего» теплового резервуара, превратилась в полезную работу. Остальная часть (1 – η) была «бесполезно» передана холодильнику. Коэффициент полезного действия тепловой машины всегда меньше единицы (η
В применяемых в технике двигателях используются различные круговые процессы. История создания теплового двигателя Первым устройством для превращения теплоты в работу могла быть паровая пушка «Архитронито». Ее название можно перевести как сильный гром. Описание этого прибора имеется у Леонардо да Винчи, приписывающего его Архимеду.
Пообразом теплового двигателя считается созданный в I в. до н. э. выдающимся ученым и изобретателем того времени Героном Александрийским так называемый эолипил.
Этот эолипил представлял собой полый шар, который можно было заставить вращаться, разведя под ним огонь. Для этого в вертикальной плоскости шар был снабжен двумя выступающими диаметрально противоположными изогнутыми трубками и под ним был установлен сосуд, частично заполненной водой. Когда под сосудом разводили огонь, вода в нем закипала, выделявшийся пар поступал во внутреннюю полость шара по паропроводам и вытекал из нее по изогнутым трубкам, вызывая вращение шара.
По существу, эолипил - это не что иное, как паровая реактивная турбина. Конечно, эолипил не соответствует определению теплового двигателя, так как он ничего не приводит в движение, это просто красивая игрушка, но в нем, безусловно, теплота превращается в механическую работу, а идея использования энергии пара путем разгона его и подачи струй в окружном направлении была позднее использована при создании паровых турбин.
В алтайской глуши к шестидесятым годам XVIII в. сформировался замечательный человек. Изобретатель и конструктор, технолог ц машиностроитель, строитель пильных мельниц и рудотолчейно-промывальных предприятий, знаток руд и строительных материалов, опытный горняк и металлург, механик и математик, физик и метеоролог, мастер тонких опытов и искусник в приборостроении, педагог и график -- таким был этот выдающийся представитель русской технической мысли. - И.И.Ползунов.
Он поставил перед собой задачу создать
"огненную машину, способную по воле нашей, что будет потребно исправлять".
22 января 1765 г. колывано-воскресенское горное начальство приняло решение о машине Ползунова, подтверждавшее решение, принятое еще в прошлом году, но все еще не осуществленное. Началось строительство, но вести его пришлось в полном несоответствии с тем, как хотел изобретатель. Вместо небольшой опытной установки пришлось сразу приступить к сооружению огромной производственной "машины большого корпуса". Вопреки необходимости предварительно освоить новую технику и подготовить людей пришлось немедленно заняться грандиозным по тому времени строительством, сооружая машину, достигавшую высоты 11 метров. Основными помощниками Ползунова считались юные ученики, особенно Дмитрий Лезвин и Иван Черницын. 20 мая 1765 г. было уже готово сто десять частей установки, не считая котла с его арматурой и гарнитурой. Отдельные части весили более ста семидесяти пудов. Наибольший диаметр котла составлял 3,5 метра. Паровые цилиндры имели в высоту 2,8 метра. На исходе 1765 г. теплосиловая установка Ползунова была закончена. На берегу заводского пруда возвышалось машинное здание высотой более 18 метров. В условиях феодально-крепостнического производства паровая машина И. И. Ползунова не могла, конечно, получить всеобщего распространения. Однако использование отдельных машин и, во всяком случае, использование уже построенной машины было и возможным, и целесообразным. Это понимали передовые русские деятели. А. И. Порошин, уже престарелый и отходивший от дел, еще в 1767 г. настаивал на продолжении дела Ползунова. Однако его не поддержали ни Кабинет, в ведении которого находился Алтай, ни Академия наук. Определенную роль сыграло то, что видевшие в натуре эту машину и впервые описавшие ее в печати Паллас и Фальк все извратили, вплоть до самого имени творца новой машины. Начатое Палласом и Фальком завершили Ирман и Меллер, физически уничтожившие машину Ползунова. УАТТ (Watt) Джеймс (19.1.1736, Гринок, Шотландия, — 19.8.1819, Хитфилд, Англия), - английский изобретатель, создатель универсальной паровой машины, член Лондонского королевского общества (1785). С 1757 работал механиком в университете в Глазго, где познакомился со свойствами водяного пара и сам с большой точностью провёл, пользуясь котлом Д. Папена, исследование зависимости температуры насыщенного пара от давления. У. в 1765 построил экспериментальную машину с диаметром цилиндра 16 см, а в 1768 — первую большую паровую машину.
В 1774 постройка парового двигателя была завершена; дальнейшие испытания показали, что этот двигатель оказался более чем в 2 раза эффективнее лучших машин Ньюкомена. В 1782 получил английский патент на паровой двигатель с расширением. У. ввёл первую единицу мощности — лошадиную силу (позднее его именем была названа другая единица мощности — ватт). Паровая машина У. благодаря экономичности получила широкое распространение и сыграла огромную роль в переходе к машинному производству. КАРНО (Carnot) (Никола Леонар) Сади (1796-1832), французский физик и инженер, один из основателей термодинамики. Труд Карно был, по существу, первым серьезным теоретическим исследованием принципов работы тепловых машин. Хотя он пользовался уже в его время отвергавшимся многими физиками представлением о теплороде, приток которого вызывает нагревание, а отток — охлаждение вещества, ему удалось открыть целый ряд положений, играющих определяющую роль в работе этих машин.
Попытки Карно напрямую связать коэффициент полезного действия (КПД) тепловой машины (это — тоже его термин) с температурой нагревателя и холодильника не увенчалась успехом только потому, что в то время еще не была известна абсолютная шкала температур.
Но он понял очень многое. Так, он дал глубокий анализ того, водяной пар или воздух выгоднее использовать в качестве рабочего вещества в тепловой машине, доказал, что максимальный теоретически возможный КПД не зависит от конструкции тепловой машины, а определяется только температурой нагревателя и холодильника, и установил много других важнейших положений.
Двигатель внутреннего сгорания
Двигатель внутреннего сгорания, тепловой двигатель, в котором химическая энергия топлива, сгорающего в рабочей полости, преобразуется в механическую работу.
Первый практически пригодный газовый Д. в. с. был сконструирован французским механиком Э. Ленуаром (1860). В 1876 немецкий изобретатель Н. Отто построил более совершенный 4-тактный газовый Д. в. с. По сравнению с паромашинной установкой Д. в. с. принципиально более прост, т. к. устранено одно звено энергетического преобразования — парокотельный агрегат. Это усовершенствование обусловило большую компактность Д. в. с., меньшую массу на единицу мощности, более высокую экономичность, но для него потребовалось топливо лучшего качества (газ, нефть).
В 1880-х гг. О. С. Костович в России построил первый бензиновый карбюраторный двигатель. В 1897 нем. инженер Р. Дизель, работая над повышением эффективности Д. в. с., предложил двигатель с воспламенением от сжатия. Усовершенствование этого Д. в. с. на заводе Л. Нобеля в Петербурге (ныне «Русский дизель») в 1898—99 позволило применить в качестве топлива нефть. В результате этого Д. в. с. становится наиболее экономичным стационарным тепловым двигателем. В 1901 в США был разработан первый трактор с Д. в. с. Дальнейшее развитие автомобильных Д. в. с. позволило братьям О. и У. Райт построить первый самолёт с Д. в. с., начавший свои полёты в 1903. В том же 1903 рус. инженеры установили Д. в. с. на судне «Вандал», создав первый теплоход. В 1924 по проекту Я. М. Гаккеля в Ленинграде был создан первый удовлетворяющий практическим требованиям поездной тепловоз.
По роду топлива Д. в. с. разделяются на двигатели жидкого топлива и газовые. По способу заполнения цилиндра свежим зарядом — на 4-тактные и 2-тактные. По способу приготовления горючей смеси из топлива и воздуха — на двигатели с внешним и внутренним смесеобразованием. К двигателям с внешним смесеобразованием относятся карбюраторные, в которых горючая смесь из жидкого топлива и воздуха образуется в карбюраторе, и газосмесительные, в которых горючая смесь из газа и воздуха образуется в смесителе. В Д. в. с. с внешним смесеобразованием зажигание рабочей смеси в цилиндре производится электрической искрой. В двигателях с внутренним смесеобразованием (дизелях) топливо самовоспламеняется при впрыскивании его в сжатый воздух, нагретый до высокой температуры.
Газовые Д. в. с. работают большей частью па природном газе и газах, получаемых при производстве жидкого топлива. Газовые двигатели, использующие природные газы, применяются на стационарных электростанциях, компрессорных газоперекачивающих установках и т. п. Сжиженные бутано-пропановые смеси используются для автомобильного транспорта (см. Газобаллонный автомобиль).
Максимальный эффективный кпд наиболее совершенных Д. в. с. около 44%.
Основным преимуществом Д. в. с., так же как и др. тепловых двигателей (например, реактивных двигателей), перед двигателями гидравлическими и электрическими является независимость от постоянных источников энергии (водных ресурсов, электростанций и т. п.), в связи с чем установки, оборудованные Д. в. с., могут свободно перемещаться и располагаться в любом месте. Это обусловило широкое применение Д. в. с. на транспортных средствах (автомобилях, с.-х. и строительно-дорожных машинах, самоходной военной технике и т. п.).
Применение тепловых двигателей ЧЕРЕПАНОВЫ, российские изобретатели, крепостные заводчиков Демидовых: отец Ефим Алексеевич (1774-1842) и сын Мирон Ефимович (1803-49). Построили первый в России паровоз. В 1869 году во Франции братьями Пьером и Эрнестом Мишо был создан первый мотоцикл. Он представлял собой велосипед с маленьким одноцилиндровым паровым двигателем. Блок на двигателе соединялся с блоком на заднем колесе с помощью гибкого кожаного ремня. Автомобилестроение АВТОМОБИЛЬ (от авто... и лат. mobilis — подвижной, легко двигающийся), транспортная безрельсовая машина главным образом на колесном ходу, приводимая в движение собственным двигателем (внутреннего сгорания, электрическим или паровым). Первый автомобиль с паровым двигателем построен Ж. Кюньо (Франция) в 1769-70, с двигателем внутреннего сгорания — Г. Даймлером, К. Бенцем (Германия) в 1885-86. Различают автомобили пассажирские (легковые и автобусы), грузовые, специальные (пожарные, санитарные и др.) и гоночные. Скорость легковых автомобилей до 300 км/ч, гоночных до 1020 км/ч (1993), грузоподъемность грузовых автомобилей до 180 т.
Создателем первого автомобиля является немецкий инженер Карл Бенц. Но существуют более ранние модели самодвижущихся повозок, такие как мусколоход улитка Деметрия Фалернского, созданный около 2000 лет назад. Бенц, в 1885 году построил трехколесный автомобиль с двигателем внутреннего сгорания собственной конструкции, но за пределы фабрики на нем не выезжал. Когда 29 января 1886 года он оформил патент ДРП 37435 на самодвижущийся экипаж как таковой, стало возможным провести публичную демонстрацию своего детища. Выезд состоялся 3 июля 1886 года.
Десятилетие 1896 — 1905 гг. считается в истории автомобиля десятилетием первооткрывателей. Завод «Панар-Левассор» (Франция) в 1896 году построил и стал выпускать первые четырехцилиндровые моторы. Немецкая электротехническая фирма «Р. Бош» в 1897 году нашла практическое решение электрического зажигания с прерывателем. В 1901 увидел свет автомобиль «Мерседес», который явился для многих заводов образцом для подражания и стал на долгое время классической конструкцией. Механик-самоучка Иван Кулибин (1735—1818) родился в 1735 году в Нижнем Новгороде в семье мелкого торговца мукой. Его отец был старообрядцем, и сына воспитывал в строгих правилах, приучая к труду. Начав учиться, Иван уже не мог остановиться и, не имея другой возможности, стал самостоятельно изучать науки по книгам, в том числе и по сочинениям Михаила Ломоносова. Трехколесную "самокатку" Иван Кулибин изобрел в 1791 году. Самокатку приводили в движение «мускульной силой». Слуга, находившийся «на запятках», нажимал на педали, от которых шла передача через зубчатое колесо храпового механизма, насаженного на ось маховика, через коробку передач на одно из задних колес. Роль тормозов выполняли пружины. При наклоне дороги или после разгона слуга мог отдохнуть – «самокатка» ехала сама. Подшипники скольжения уменьшали трение. Модель «самокатки» не сохранилась, ее удалось восстановить по оставшимся чертежам, и теперь в Государственном политехническом музее в Москве можно посмотреть, как она работала.
Паровые машины оказались победителями среди тепловых машин. Они единственные служат и сейчас на тепловых и атомных электростанциях и мощных судах! Экологические проблемы тепловых двигателей ЭКОЛОГЧЕСКИЙ КРИЗИС, нарушение взаимосвязей внутри экосистемы или необратимые явления в биосфере, вызванные антропогенной деятельностью и угрожающие существованию человека как вида. По степени угрозы естественной жизни человека и развитию общества выделяются неблагоприятная экологическая ситуация, экологическое бедствие и экологическая катастрофа Загрязнения от тепловых двигателей:
Меры предотвращения загрязнений:
1.Снижение вредных выбросов. 2.Контроль за выхлопными газами, модификация фильтров. 3.Сравнение эффективности и экологической безвредности различных видов топлива, перевод транспорта на газовое топливо. Перспективы использования электрических двигателей, пневмокаров, транспорта на солнечных батареях.
konesh.ru
Эксперименты с вирусами Ф2 и их жертвами, бактериями Pseudomonas fluorescens, подтвердили классические представления, согласно которым эволюционная «гонка вооружений» резко ускоряет накопление генетических различий и способствует дивергенции (расхождению) эволюционирующих линий. Вирусы, вынужденные приспосабливаться к эволюции своих жертв, накапливали мутации быстрее и становились более разнообразными по сравнению с теми вирусами, которым исследователи позволили из поколения в поколение паразитировать на генетически идентичных (не эволюционирующих) бактериях.
Эволюционные «гонки вооружений» (evolutionary arms race), по-видимому, являются одним из самых мощных двигателей эволюции. Если бы среда обитания организмов оставалась строго постоянной, естественный отбор, скорее всего, привел бы их строение и физиологию к некому локальному оптимуму, после чего эволюционные изменения должны были бы замедлиться или вовсе прекратиться. Но среда обитания не может быть абсолютно неизменной хотя бы потому, что для большинства живых существ важнейшие параметры среды зависят от других живых организмов. Эволюция постоянно подстегивается положительными обратными связями, потому что изменения одних организмов меняют среду для других и вынуждают их приспосабливаться к этим изменениям, что, в свою очередь, опять меняет среду, и так далее, до бесконечности. «Гонка вооружений» может идти как между разными видами (например, когда газели и гепарды «соревнуются» друг с другом в скорости бега), так и внутри вида (той же газели, чтобы выжить, не так важно обогнать гепарда, как хотя бы одну другую газель), или, например, между самцами и самками (см.: П. Н. Петров. Самцы жуков-плавунцов насильники и убийцы; Sexual conflict).
Эти соображения легли в основу широко известной «гипотезы Черной королевы» (Red Queen’s hypothesis). Согласно этой гипотезе, организмам приходится постоянно эволюционировать, чтобы сохранить свою приспособленность (эффективность размножения) на прежнем уровне («бежать со всех ног, чтобы остаться на месте»).
Всё это кажется достаточно простым и очевидным, но получить прямое экспериментальное подтверждение этих моделей не так-то просто, потому что эволюция, как известно, процесс медленный. Впрочем, биологи уже наловчились ставить красивые эксперименты по «эволюции в пробирке», используя для этого модельные объекты с быстрой сменой поколений, такие как бактерии, вирусы, дрожжи, насекомые или круглые черви.
В новой статье, опубликованной на сайте журнала Nature, британские биологи сообщили о новом экспериментальном подтверждении теоретических представлений, согласно которым антагонистическая сопряженная эволюция паразитов и их хозяев ускоряет эволюционные изменения и способствует росту генетического разнообразия (что, в свою очередь, является важнейшей предпосылкой для видообразования). В качестве модельной системы «паразит–хозяин» использовали бактерию Pseudomonas fluorescens и вирус-бактериофаг Ф2. С этой системой удобно работать, потому что вирусов и зараженных ими бактерий можно в любой момент разделить: бактерий можно «вылечить» от вирусов при помощи специальных химических препаратов, не вредящих здоровью бактерии, а вирусные частицы в чистом виде могут быть выделены из культуры путем центрифугирования.
Схема строения бактериофага (слева) и электронная микрофотография фага Т4. Изображения с сайтов www.thenakedscientists.com и www.scienceclarified.com
Ранее авторы уже установили, что в этой системе действительно происходит эволюционная гонка вооружений: вирусы вырабатывают новые адаптации для заражения бактерий, а бактерии — новые средства защиты (Brockhurst et al. Experimental coevolution with bacteria and phage: the Pseudomonas fluorescens–Ф2 model system // Infect. Genet. Evol. 2007. V. 7. P. 547–552). До сих пор эти изменения анализировались только на уровне фенотипа (по способности вирусов заражать тех или иных бактерий и по способности бактерий защищаться). Оставались неизвестными молекулярные механизмы адаптации и скорость изменений на уровне ДНК (скорость молекулярной эволюции).
В эксперименте использовались бактерии, которые изначально были генетически идентичными, и исходно одинаковые вирусы. Всего было создано 12 подопытных популяций, каждая из которых изначально содержала 10 млн бактерий и 10 тыс. вирусных частиц. Популяции разделили на две группы (по шесть популяций в каждой), получившие условные названия «эволюция» (E) и «коэволюция» ©.
В популяциях группы E было позволено эволюционировать только вирусам, а бактерий при каждом переносе культуры в свежую питательную среду (это делалось раз в двое суток) заменяли исходными, «наивными» микробами. В группе C экспериментаторы позволяли эволюционировать как вирусам, так и их жертвам. Эволюционный эксперимент продолжался 24 дня. После этого были отсеквенированы (прочтены) геномы вирусов в каждой из 12 подопытных популяций. Эти геномы затем сравнивались с геномом исходного вируса и между собой. Геномы бактерий не секвенировали (они примерно в 100 раз больше, чем у фагов).
Оказалось, что у вирусов из группы C в ходе эксперимента закрепилось вдвое больше мутаций (в среднем по 23 мутации), чем у их коллег из группы E (в среднем 11 мутаций). Чем «появление» мутации отличается от ее «закрепления», см. в заметке Подведены итоги эволюционного эксперимента длиной в 40 000 поколений («Элементы», 02.11.2009). Таким образом, антагонистическая коэволюция действительно ускоряет накопление изменений на уровне ДНК (молекулярную эволюцию).
Популяции из группы C не только накопили больше отличий от исходного вируса. Они и друг от друга стали отличаться намного сильнее, чем популяции из группы E. Иными словами, вирусы из группы C значительно ближе подошли к превращению в шесть разных вирусов. Это значит, что антагонистическая коэволюция, по-видимому, действительно способствует генетической дивергенции и, в конечном счете, видообразованию.
Соответствует ли генетическая дивергенция фагов из шести популяций группы C дивергенции по фенотипу, то есть по способности заражать тех или иных бактерий? В поисках ответа авторы пытались заразить этими вирусами каждую из шести популяций бактерий, коэволюционировавших вместе с вирусами, и подсчитывали число «удачных» заражений. Оказалось, что шесть вирусных популяций различаются по своей способности заражать тех или иных бактерий, то есть имеют разные «спектры инфекционности». При этом чем выше генетическое сходство вирусов, тем более сходны и их спектры инфекционности. Характерно, что ни один из вирусов группы E не смог заразить ни одну из шести популяций бактерий из группы C. Получается, что за 24 дня эксперимента бактерии сильно продвинулись в выработке средств защиты от подобных вирусов, и те паразиты, которые не эволюционировали вместе с ними, безнадежно отстали от них в эволюционной гонке.
Длины ветвей на этой дендрограмме отражают величину генетических различий между исходным вирусным геномом (ref) и популяциями из групп C и E. Видно, что популяции C сильнее отличаются и от исходного вируса, и друг от друга, чем популяции E. Параллельное независимое закрепление ряда мутаций в разных популяциях привело к тому, что на этой схеме 12 ветвей, соответствующих 12 экспериментальным популяциям, не расходятся в виде звездочки от своего общего предка (ref), что в точности отражало бы их эволюционную историю, а образуют древовидную фигуру. Это, между прочим, лишний раз подчеркивает низкую достоверность эволюционных реконструкций, основанных на небольшом числе адаптивных признаков. Рис. из обсуждаемой статьи в Nature
Авторы также заметили, что все вирусные гены, в которых вирусы из группы C накопили больше мутаций, чем вирусы из группы E (таких генов было выявлено четыре), участвуют в прикреплении фага к бактериальной клетке. От успешности этой процедуры зависит, сумеет ли фаг заразить бактерию. По-видимому, именно эти четыре гена являются для вирусов теми «вооружениями», на которые они делают ставку в «гонке».
Еще один интересный результат состоит в том, что в шести популяциях группы E многие эволюционные изменения оказались одинаковыми, то есть под действием одинаковых факторов отбора в разных популяциях закрепились одни и те же мутации. В популяциях группы C доля таких параллелизмов была ниже (см.: Пути эволюции предопределены на молекулярном уровне, «Элементы», 12.04.2006).
Данная работа интересна прежде всего как хороший пример прямого экспериментального подтверждения теоретических моделей, давно уже ставших общепринятыми, но до сих пор опиравшихся в основном на косвенные данные.
www.nanonewsnet.ru
Эволюция развития автомобильных двигателей с начала 90-х годов
Основой современного автомобиля является его двигатель внутреннего сгорания(ДВС), и несмотря на развитие альтернативных источников энергии, традиционный ДВС сохраняет свое превосходство из-за культурных,экономических и социальных причин. За период с 1994 по 2008 года автомобильные двигатели претерпели множество изменений и усовершенствований, что положительно сказалось на его экономических и экологических показателях. Понять логику развития ДВС можно на основе тенденций и закономерностей общемирового масштаба за определенный период времени. С начала 90-х в автомобилестроении происходили радикальные изменения конструкции за счет новых материалов, и новых требований к "общемировому" автомобилю.
Изменение соотношения дизельных моделей к бензиновым за период 15-ти лет, способствовало увеличению использования дизельных автомобилей в мире, хотя этот процесс происходит неодинаково, и в основном сильно отразился на Западной Европе, где автопарк дизельных автомобилей в некоторых странах вырос с 25% до 70%. Дизель, обладая более высокой топливной экономичностью по сравнению с бензиновыми двигателями, имеет и известные недостатки: пониженную удельную мощность, относительно высокий уровень шума, трудно снижаемую токсичность отработавших газов, более высокую стоимость производства. Поэтому окончательный выбор между бензиновым и дизельным двигателем для легкового автомобиля является все еще спорным. Вполне возможно, что влияние экологических стандартов и требований к топливной экономичности автомобильных двигателей в ближайшие 10-15 лет приведет к сближению в техническом плане бензиновых двигателей и дизелей с одновременным уменьшение разницы в расходах топлива и стоимости производства этих типов двигателей. Об этом говорят разработки DaimlerChycler в концепте Mersedes Benz F700 с двигателем, в котором реализовано воспламенение бензина от сжатия, как на дизельном двигателе, что приближает его по экономичности к дизелям, из-за использования более совершенного термодинамического цикла. В этом двигателе реализованы все современные технологии десятилетия: непосредственный впрыск, управляемый турбонаддув, изменяемая степень сжатия и другие последние разработки, обеспечивающие расход топлива 5л/100км для относительно немаленького автомобиля. Изучением технологии воспламенения от сжатия бензина сейчас занялись многие автоконцерны, это сближает технологии дизельных и бензиновых моторов и создает условия для создания многотопливного автомобиля.
За период 15-ти лет в современном двигателестроении укрепилась философия Downsizing, которая говорит о том что, лучше получить большую мощность с меньшего объема, чем с большего, так как это открывает перспективы снижения массы и размеров силового агрегата, а также повыситься топливная экономичность на режимах холостого хода и частичных нагрузок. Это современное мышление запустило процесс уменьшения объемов и количества цилиндров двигателей, и теперь даже основа автомобильных двигателей - 4-х цилиндровые ДВС стали уменьшать рабочий объем и подвергаться модернизации в сторону технологии "рабочий объем по требованию", которая по сути превращает эти двигатели в 2-х цилиндровые. Двигатели последних лет стали более многообразны по числу компоновок в моторном отсеке: появились схемы W, VR и V-образные с различным углом развала блока, а также рядные двигатели с нечетным количеством цилиндров, но все эти схемы в общем никак не повлияли на основную массу компоновок и только разнообразили двигателестроение. Основой ДВС по прежнему остается двигатель R компоновки.
Система топливоподачи также сильно изменилась. Эпоха карбюраторных систем и двигателей с центральным впрыском прошла, а на смену ей приходит распределенный впрыск и непосредственный. На рубеже веков начался новый новый виток развития систем впрыскивания топлива, основанный на применении принципиально новых электронных схем непосредственного впрыска топлива, и их использование нарастает, несмотря на сложность и требовательность к качеству топлива у этих моторов. У большинства ДВС современной конструкции все же используется распределенный впрыск, который и в дальнейшем будут усовершенствовать, улучшая регулирование вихреобразования на впуске и качество распыления топлива, так как возможности в этом есть немалые с учетом развития технологий.
Дизельная система топливоподачи так же эволюционировала в последнее время. Для дизелей важнейшим фактором, определяющим показатели рабочего процесса, является применяемая схема смесеобразования. Использование дизелей на легковых автомобилях начиналось с предкамерных и вихрекамерных конструкций(разделенные камеры сгорания). Однако в следствие ряда принципиальных недостатков этих схем смесеобразования, а также благодаря развитию в области дизелей с неразделенными камерами, в последние годы наметилась тенденция к использованию непосредственного впрыска топлива. На развитие непосредственного впрыска повлияло развитие системы топливоподачи Common Rail, которая позволила расширить гамму модификаций и моделей двигателей с дизельным двигателем. Дальнейшее развитие системы Common Rail связано с дальнейшим повышением давления топлива в топливной рейке(180...200МПа), оптимизацией процесса впрыскивания топлива, снижением уровня шума и токсичности выхлопных газов.
Под влиянием угрозы истощения нефтяных ресурсов и ужесточения экологических норм к ДВС, большинство автоконцернов при разработке новых моделей ставят приоритетной задачу высокой топливной экономичности и экологичности. Мощностные показатели теперь занимают третье место в списке приоритетов(исключение только для спортивных моделей). Именно поэтому мощность массовых автомобилей растет не так сильно как до начала 90-х. Изменения в системе газораспределения за последние годы показывает, что 4-х клапанная схема становится стандартом для автомобилей из-за ее очевидных преимуществ, а 3-х и 5-ти клапанные остаются редким исключением из правил.Так же растет количество автомобилей использующих наддув двигателей. Основой современного наддува являются турбонаддув в различных вариациях а также в комбинации с механическим наддувом. Следует заметить, что практически все двигатели с распределенным впрыском бензина имеют настроенные впускные трубопроводы, обеспечивающие газодинамический наддув. При этом все шире применяются трубопроводы с изменяемой геометрией, позволяющие добиться оптимальной настройки впуска на различных эксплуатационных режимах. Применение турбонаддува особенно ярко отразилось на дизельных двигателях, и с развитием технологии наддува для повышения эффективности стали применяться применяться охладители наддувного воздуха(интеркуллеры). Сейчас применение интеркуллеров стало правилом для большинства наддувных моторов.
Потенциал ДВС за период с 90-х годов до нашего времени в основном пытаются расширить за счет увеличения эффективности на режимах холостого хода и частичных нагрузках, которые составляют основную часть времени использования современного автомобиля. Нашла широкое применение система регулирования фаз газораспределения которая регулирует фазы открытия и закрытия впускных и выпускных клапанов с помощью установленных на распредвалах фазовращателей. Первые модели фазовращателей в основном были гидравлические, и регулировали работу впускных клапанов, но последние модели уже электрические, что увеличивает быстродействие и эффективность, а также они уже регулируют как впускные так и выпускные клапана. Недостатком регулирования фаз с помощью фазовращателей установленых на распредвалу было ступенчатое изменение фаз газораспределения что послужило поводом для разработки систем плавного регулирования фаз газораспределения. Первой такой системой стала Valvetronic от BMW, которая регулировала фазы за счет плавного регулирования изменения высоты подъема впускных клапанов(благодаря этой системе впервые удалось создать бензиновый ДВС без дроссельной заслонки!). Вскоре аналогичные технологии освоили Nissan(VVEL) и Toyota(Valvematic). Но наиболее совершенную разработку представил FIAT под названием MultiAir. В системе MultiAir используется один распредвал на впускные и выпускные клапаны, причем на впускные воздействие кулачков происходит через специальную электрогидравлическую систему, которая позволяет управлять впуском каждого клапана индивидуально. Развитие технологий газораспределения позволило развить идеи модульного объема двигателя, впервые появившемся на автомобилях с большим объемом и количеством цилиндров - эта система давала экономию топлива за счет отключения части цилиндров из работы при неполной нагрузке, а теперь стало возможно применение этой технологии на двигателях с малым объемом и количеством цилиндров.
Современные автомобильные двигатели сейчас стали более совершенны благодаря новым материалам при их изготовлении и более глубокому просчету и изучению процессов происходящих в ДВС, что дало результат в снижении потерь на трение и насосных потерь внутри двигателя. Внедрение принципа изменения мощности приводных агрегатов двигателя в зависимости от необходимости позволило уменьшить энергетические затраты на привод маслонасоса и водяной помпы ДВС, а также отключать генератор при разгоне и включать при торможении в зависимости от возможности и необходимости в этом.
Период с начала 90-х до наших дней по праву можно назвать периодом перехода от сложных механических конструкций симбиоза различных технологий к электрификации всех возможных вспомогательных агрегатов в автомобиле для достижения наибольшей энергоэффективности.
oksauto.ucoz.com
Ведущий исследователь эволюции рода человеческого утверждает, что секс с кем попало, это и есть секрет успеха современного человека. Эксперты давно спорят, как именно человек разумный стал единственным выжившим " видом человека" среди нескольких человеческих предков. Теперь ведущий эволюционист утверждает, что беспорядочное скрещивание дало людям преимущество.
"Совсем недавно, примерно 40 000 лет назад, хомо сапиенс жили бок о бок с несколькими родственными формами жизни, включая неандертальцев и Homo floresiensism», говорит профессор Роберт Хаммер из Университета Аризоны, написавший доклад в журнале Scientific American.
Одна из ключевых теорий основанная на генетических исследованиях проведенных в 1980-х, гласит, что анатомически современные люди возникли в Африке и распространились по всей остальной части Старого Света, полностью заменив существующие архаичные группы человекоподобных видов.
Вот именно эта новая форма стала доминирующим человеческим видом на Земле, - говорит профессор Хаммер. Исследование 2011 года пришло к такому же выводу, и исследователи утверждают, что первые современные люди защищали себя от болезней скрещиваясь с неандертальцами.
Хотя было известно, что гомо сапиенс разошелся с неандертальцами после выхода из Африки, исследование пришло к выводу, что при этом они приобрели от неандертальцев гены, которые защищали их, что в конечном итоге помогло им заселить планету.
Карта миграции человека"Учитывая сложность африканских окаменелостей, которые указывают, что различные переходные человеческих группы, имеющие архаичные и современные черты, жили на обширной географической области от Марокко до Южной Африки, примерно между 200 000 и 35 000 лет назад и моя модель, включает в себя межвидовое спаривание, что привело к переходу от архаичных к современному виду", - пишет профессор."Иногда этот период еще называют африканской Межрегиональной эволюцией, этот сценарий допускает возможность, что некоторые из черт, которые делают нас анатомически современным человеком разумным, были унаследованы от переходных форм, прежде чем они вымерли.
Хоббит"На мой взгляд, африканская Межрегиональная Эволюция, в сочетании с моделью Гибридизации Брауэра, лучше всего объясняет генетические и ископаемые данные на сегодняшний день", - уверяет профессор Хаммер.Тем не менее, признает профессор - необходимы дополнительные исследования, чтобы доказать теорию.
earth-chronicles.ru