ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

атомный газотурбинный авиационный двигатель. Авиационный газотурбинный двигатель


Авиационный газотурбинный двигатель

 

Авиационный газотурбинный двигатель содержит встроенный электрогенератор, включающий в себя статор и ротор, соединенный с валом трансмиссии двигателя, размещенным в ее внутренней полости. Внутренняя полость образована корпусом опор трансмиссии и передней крышкой. Электрогенератор выполнен с комбинированным возбуждением, снабжен индуктором. Статор и индуктор размещены во внутренней полости трансмиссии. Индуктор установлен на передней крышке под статором. Статор запрессован в тонкостенную цилиндрическую гильзу с фланцем, прикрепленным к корпусу опор трансмиссии двигателя в плоскости, перпендикулярной оси вращения ротора со стороны передней крышки, и с кольцевой проточкой по ее наружной поверхности с образованием со стенкой упомянутого корпуса канала охлаждения статора. Ротор установлен на приводном валу трансмиссии коаксиально статору и индуктору. Изобретение позволяет уменьшить габариты двигателя и повысить надежность работы. 2 ил.

Изобретение относится к области авиационного двигателестроения, конкретно к авиационным двигателям со встроенными электрогенераторами, приводящимися во вращение без промежуточного редуктора.

Известен газотурбинный двигатель, содержащий встроенный электрогенератор, состоящий из статора и ротора, соединенного с валом трансмиссии, размещенным в ее внутренней полости, образованной корпусом и передней крышкой (см. патент США 3214908, МПК 7 F 02 C 7/32 от 02.11.1965 г.) В известной конструкции электрогенератор выполнен магнитоэлектрического типа. Помимо крайне нежелательного увеличения аэродинамического сопротивления на входе и сложности охлаждения электрогенератора, в данной конструкции достаточно сложна аппаратура регулирования системы генерирования электроэнергии и низкий коэффициент полезного действия из-за трудности стабилизации выходного напряжения магнитоэлектрического генератора (в данном случае невозможно регулировать рабочий магнитный поток генератора в требуемых пределах). Кроме того, в известной конструкции за счет ослабления посадки статора в корпус двигателя существует опасность появления значительной неравномерности воздушного зазора генератора и, как следствие, появления дополнительных потерь в роторе и повышения опасности цепляния. Известен также газотурбинный двигатель, содержащий встроенный электрогенератор, состоящий из статора и ротора, соединенного с валом трансмиссии, размещенным в ее внутренней полости, образованной корпусом опор трансмиссии и передней крышкой (см. патент Российской Федерации 2168024 С 1, МПК 7 F 02 C 7/32 от 23.12.1998 г.). В данном газотурбинном двигателе электрогенератор выполнен также магнитоэлектрического типа, что влечет за собой сложность аппаратуры регулирования системы генерирования электроэнергии и пониженный коэффициент полезного действия. В частности, для ГТД с системой генерирования постоянного тока эти недостатки обусловлены широким диапазоном изменения частоты вращения авиационного двигателя, а также изменением токовой нагрузки во время работы. Это влечет за собой необходимость применения силового управляемого выпрямителя на полную мощность для обеспечения стабилизации выходного напряжения, который по сравнению с неуправляемым выпрямителем имеет большую массу и повышенные тепловые потери и, следовательно, требует большую поверхность охлаждения. Последнее приводит к увеличению габаритов и массы. Задача изобретения - сокращение габаритов и повышение надежности работы. Указанный технический результат достигается тем, что авиационный газотурбинный двигатель содержит встроенный электрогенератор, включающий в себя ротор и статор, соединенный с валом трансмиссии двигателя, размещенным в ее внутренней полости. Полость образована корпусом опор трансмиссии и передней крышкой. Электрогенератор выполнен с комбинированным (смешанным) возбуждением и снабжен индуктором. Статор и индуктор размещены во внутренней полости трансмиссии, индуктор установлен на передней крышке под статором. Статор запрессован в тонкостенную цилиндрическую гильзу с фланцем, прикрепленным к корпусу опор трансмиссии двигателя в плоскости, перпендикулярной оси вращения ротора со стороны передней крышки, и с кольцевой проточкой по ее наружной поверхности с образованием со стенкой корпуса опор трансмиссии канала охлаждения статора. Ротор установлен на приводном валу трансмиссии коаксиально статору и индуктору. На фиг.1 представлен продольный разрез газотурбинного двигателя, показывающий размещение электрогенератора в полости трансмиссии. На фиг.2 представлена система охлаждения электрогенератора в увеличенном масштабе. Авиационный газотурбинный двигатель содержит встроенный электрогенератор, включающий в себя статор 1 и ротор 2, соединенный с валом 3 трансмиссии двигателя. Вал 3 размещен во внутренней полости 4 трансмиссии, образованной корпусом 5 опор трансмиссии и передней крышкой 6. Электрогенератор выполнен с комбинированным возбуждением и снабжен индуктором 7. Статор 1 и индуктор 7 размещены во внутренней полости 4 трансмиссии. Индуктор 7 установлен на передней крышке 6 под статором 1. Статор 1 запрессован в тонкостенную цилиндрическую гильзу 8 с фланцем 9, прикрепленным к корпусу 5 опор трансмиссии двигателя в плоскости, перпендикулярной оси вращения ротора 2 со стороны передней крышки 6, и с кольцевой проточкой по ее наружной поверхности и с образованием со стенкой упомянутого корпуса 5 канала 10 охлаждения статора 1. Ротор 2 установлен на приводном валу 3 трансмиссии коаксиально статору 1 и индуктору 7. Канал 10 подключен каналом 11 к системе смазки и каналом 12 на слив. Такое расположение узлов электрогенератора позволяет производить его сборку одновременно со сборкой узлов двигателя, что упрощает технический процесс. При работе авиационного газотурбинного двигателя вал 3 трансмиссии вращает соединенный с ним ротор 2 электрогенератора. При этом в результате в обмотке статора возникает электрический ток. Такое конструктивное выполнение позволяет стабилизировать в требуемых пределах величину воздушного зазора встроенного электрогенератора в широком диапазоне изменения температур узлов электрогенератора и двигателя, изготовляемых, как правило, из материалов с существенно различными коэффициентами теплового расширения. Предлагаемое крепление узлов электрогенератора повышает надежность работы двигателя в целом и снижает потери за счет обеспечения равномерных гарантируемых зазоров. Монтаж и демонтаж статора электрогенератора происходит одновременно со сборкой узлов двигателя осевыми перемещениями этих узлов, а коаксиальность в расположении статора и ротора электрогенератора обеспечивается в результате использования посадочных баз двигателя для крепления узлов электрогенератора, что позволяет иметь минимальные радиальные зазоры между рабочими поверхностями узлов электрогенератора. Выполнение проточки и подключение ее к каналу 11 системы смазки позволит произвести охлаждение статора 1, что даст возможность увеличить нагрузку электрогенератора.

Формула изобретения

Авиационный газотурбинный двигатель, содержащий встроенный электрогенератор, включающий в себя статор и ротор, соединенный с валом трансмиссии двигателя, размещенным в ее внутренней полости, образованной корпусом опор трансмиссии и передней крышкой, при этом электрогенератор выполнен с комбинированным возбуждением, снабжен индуктором, причем статор и индуктор размещены во внутренней полости трансмиссии, индуктор установлен на передней крышке под статором, статор запрессован в тонкостенную цилиндрическую гильзу с фланцем, прикрепленным к корпусу опор трансмиссии двигателя в плоскости, перпендикулярной оси вращения ротора со стороны передней крышки, и с кольцевой проточкой по ее наружной поверхности с образованием со стенкой упомянутого корпуса канала охлаждения статора, а ротор установлен на приводном валу трансмиссии коаксиально статору и индуктору.

РИСУНКИ

Рисунок 1, Рисунок 2

www.findpatent.ru

Авиационный газотурбинный двигатель

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Авиационный газотурбинный двигатель содержит корпус, турбокомпрессорную группу, камеру сгорания, реактивное сопло, систему автоматического управления и снабженные насосными группами топливную и масляную гидравлические системы. Насосная группа включает, по меньшей мере, один нагнетающий насос и блок откачивающих насосов, магистрали всасывания и нагнетания масла. Нагнетающий насос выполнен осевым героторным и содержит приводной вал с эксцентричными шестернями, торцевыми дисками, элементами осевой фиксации вала в виде стопорного кольца в кольцевой проточке на поверхности вала. Двигатель содержит масляные полости подшипниковых опор ротора с точками смазки узлов трения и установленный в магистрали нагнетания масла сифонный затвор с устройством стравливания воздуха в петле сифонного затвора, причем устройство для стравливания воздуха выполнено в виде струйной форсунки, установленной в воздушной части одной из масляных полостей в любой одной из ее точек смазки и сообщенной маслопроводом с петлей сифонного затвора. Технический результат - повышение надежности и ресурса работы двигателя. 7 з.п. ф-лы, 4 ил.

 

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям.

Известен авиационный газотурбинный двигатель, включающий масляную систему, содержащую масляные полости подшипниковых опор ротора и коробки приводных агрегатов с точками смазки узлов трения, и установленный в магистрали подачи масла сифонный затвор с устройством стравливания воздуха в петле сифонного затвора. Устройство для стравливания воздуха выполнено в виде струйной форсунки, установленной в воздушной части одной из масляных полостей в любой одной из ее точек смазки и сообщенной маслопроводом с петлей сифонного затвора. (RU 2353786 С1, опубл. 27.04.2009).

Недостатком известного решения является то, что нагнетающий насос масляной системы имеет повышенную массивность и относительно невысокую мощность на единицу массы насоса и относительно ограниченный ресурс эксплуатации.

Задача изобретения заключается в разработке газотурбинного двигателя с улучшенной масляной системой, позволяющей избежать непроизводительных потерь смазки при одновременном снижении массы, увеличении мощности и надежности работы нагнетающего насоса и надежности работы узлов трения двигателя.

Поставленная задача решается за счет того, что авиационный газотурбинный двигатель, согласно изобретению, содержит корпус, турбокомпрессорную группу, включающую установленный в опорных и опорно-упорных подшипниках ротор не менее чем с одной турбиной, соосно соединенной с компрессором с возможностью передачи крутящего момента, по меньшей мере, одну камеру сгорания, реактивное сопло, систему автоматического управления, по меньшей мере, с одним командным блоком и исполнительными механизмами агрегатов двигателя, а также подчиненные ей системы подачи воздуха и охлаждения двигателя, и снабженные насосными группами топливную и масляную гидравлические системы, при этом насосная группа включает, по меньшей мере, один нагнетающий насос и блок откачивающих насосов, соединенных с упомянутыми агрегатами двигателя и между собой магистралями всасывания и нагнетания масла, причем, по меньшей мере, один из указанных насосов выполнен осевым героторным и содержит приводной вал, установленную на нем по меньшей мере одну пару эксцентрично расположенных шестерен, размещенные по их торцам диски, элементы осевой фиксации вала и приводную рессору вала, при этом приводной вал установлен в опорных отверстиях, выполненных в дисках, а элементы фиксации вала выполнены в виде стопорного кольца, установленного в кольцевой проточке, размещенной на наружной поверхности вала между внутренней шестерней и одним из дисков, и заведенного в кольцевой паз, выполненный в торце внутренней шестерни, контактирующей с этим диском, причем глубина паза больше толщины стопорного кольца, а между торцом вала и приводной рессорой установлена пружина сжатия, кроме того, двигатель содержит масляные полости подшипниковых опор ротора и коробки приводных агрегатов с точками смазки узлов трения и установленный в магистрали нагнетания масла сифонный затвор с устройством стравливания воздуха в петле сифонного затвора, причем устройство для стравливания воздуха выполнено в виде струйной форсунки, установленной в воздушной части одной из масляных полостей в любой одной из ее точек смазки и сообщенной маслопроводом с петлей сифонного затвора.

При этом стопорное кольцо осевого героторного насоса может быть выполнено разрезным.

Масляная система может быть наделена топливомасляным теплообменником, установленным в магистрали нагнетания.

Масляная система может быть наделена маслобаком, сообщенным с магистралью всасывания посредством маслозаборника, и может быть снабжена воздухоотделителем, установленным в верхней части маслобака.

Система автоматического управления двигателя может быть снабжена датчиками контроля рабочих параметров агрегатов и рабочих тел гидравлических и аэродинамических систем, включая датчики контроля, температуры, давления, частоты вращения, вибрации и смещения элементов агрегатов, блоком сбора, обработки информации, выдачи команд и исполнительными механизмами.

Масляная система может быть снабжена стояночным клапаном, установленным на магистрали нагнетания после нагнетающего насоса по ходу движения масляного потока.

Масляная система может быть снабжена, по меньшей мере, одним масляным фильтром, установленным на магистрали нагнетания перед топливомасляным теплообменником.

Устройство для стравливания воздуха может содержать жиклер, размещенный в воздушной части любой из масляных полостей и выполненный в форме сопла струйной форсунки, направленной в любую из точек смазки.

Технический результат, обеспечиваемый приведенной совокупностью признаков, состоит в разработке авиационного газотурбинного двигателя с улучшенной масляной системой, в которой снижены непроизводительные потери и сведена к минимуму или исключена паразитная циркуляция масла в масляной системе, повышены надежность и ресурс работы двигателя, в том числе улучшена циркуляция смазки в узлах трения двигателя, и включении в изобретение, по меньшей мере, одного осевого героторного нагнетающего насоса, что позволило снизить массу и увеличить мощность на единицу массы, ресурс и надежность работы насоса, что в совокупности улучшает эксплуатационные качества двигателя.

Сущность изобретения поясняется чертежами, где:

на фиг.1 изображена принципиальная схема авиационного газотурбинного двигателя с основными агрегатами и масляной системой;

на фиг.2 - элемент А со струйной форсункой;

на фиг.3 - осевой героторный насос, продольный разрез;

на фиг.4 - разрез по Б-Б на фиг.3.

Авиационный газотурбинный двигатель содержит корпус 1, турбокомпрессорную группу, включающую установленный в опорных и опорно-упорных подшипниках 2 ротор не менее чем с одной турбиной 3, соосно соединенной с компрессором 4 (условно показана одна пара турбина-компрессор) с возможностью передачи крутящего момента; по меньшей мере, одну камеру сгорания 5, реактивное сопло 6, систему автоматического управления, по меньшей мере, с одним командным блоком и исполнительными механизмами агрегатов двигателя, а также подчиненные ей системы подачи воздуха и охлаждения двигателя, и снабженные насосными группами топливную и масляную гидравлические системы.

Насосная группа масляной системы включает, по меньшей мере, один нагнетающий насос 7 и блок 8 откачивающих насосов, соединенных с упомянутыми агрегатами двигателя и между собой магистралями 9 и 10 соответственно всасывания и нагнетания масла.

По меньшей мере, один из указанных насосов, предпочтительно нагнетающий насос 7, выполнен осевым героторным и содержит корпус 11, в котором размещены приводной вал 12, установленная на нем по меньшей мере одна пара эксцентрично расположенных шестерен 13, 14, размещенные по их торцам диски 15, элементы осевой фиксации вала и приводная рессора 16 вала, при этом приводной вал 12 установлен в опорных отверстиях, выполненных в дисках 15, а элементы фиксации вала выполнены в виде стопорного кольца 17, установленного в кольцевой проточке 18, размещенной на наружной поверхности вала 12 между внутренней шестерней 13 и одним из дисков 15, и заведенного в кольцевой паз 19, выполненный в торце внутренней шестерни 13, контактирующей с этим диском 15, причем глубина паза 19 больше толщины стопорного кольца 17, а между торцом вала 12 и приводной рессорой 16 установлена пружина 20 сжатия.

Двигатель содержит масляные полости 21 подшипниковых опор ротора и коробки приводных агрегатов с точками смазки узлов трения и установленный в магистрали 10 нагнетания масла сифонный затвор 22 с устройством стравливания воздуха в петле 23 сифонного затвора 22. Устройство для стравливания воздуха выполнено в виде струйной форсунки 24, установленной в воздушной части одной из масляных полостей 21 в любой одной из ее точек смазки и сообщенной маслопроводом 25 с петлей 23 сифонного затвора 22.

Стопорное кольцо 17 осевого героторного насоса выполнено разрезным.

Масляная система наделена топливомасляным теплообменником 26, установленным в магистрали 10 нагнетания.

Масляная система наделена маслобаком 27, сообщенным с магистралью 9 всасывания посредством маслозаборника 28, и снабжена воздухоотделителем 29, установленным в верхней части маслобака.

Система автоматического управления двигателя снабжена датчиками контроля рабочих параметров агрегатов и рабочих тел гидравлических и аэродинамических систем, включая датчики контроля, температуры, давления, частоты вращения, вибрации и смещения элементов агрегатов, блоком сбора, обработки информации, выдачи команд и исполнительными механизмами.

Масляная система снабжена стояночным клапаном 30, установленным на магистрали 10 нагнетания после нагнетающего насоса 7 по ходу движения масляного потока.

Масляная система снабжена, по меньшей мере, одним масляным фильтром 31, установленным на магистрали 10 нагнетания перед топливомасляным теплообменником 26.

Устройство для стравливания воздуха содержит жиклер 32, размещенный в воздушной части любой из масляных полостей 21 и выполненный в форме сопла струйной форсунки, направленной в любую из точек смазки.

Работает двигатель следующим образом.

В процессе работы двигателя масло из маслобака 27 попадает на вход нагнетающего насоса 7, который переправляет масло под давлением через восходящую ветвь 33 сифонного затвора 22 в петлю 23. Из петли 23 масло в масляные полости 21 попадает двумя путями: через ниспадающую ветвь 34 к форсункам 35 и через маслопровод - магистраль 25 к жиклеру 32 стравливания воздуха, выполняющего функцию форсунки 24 подачи масла. Отработанное масло возвращается в маслобак 27 блоком откачивающих насосов 8 для повторного использования.

При останове двигателя давление масла за нагнетающим насосом 7 падает и прекращается движение масла вверх по восходящей ветви 33, при этом оставшееся в ниспадающей ветви 34 сифонного затвора 22 и в магистрали 25 масло стекает вниз под действием силы тяжести через форсунки 24 и жиклер 32 в поддоны масляных полостей. Из магистрали 25 масло стечет в поддон масляной полости 21 в первую очередь, так как проходное сечение жиклера значительно больше, чем проходное сечение масляных форсунок 35, а магистраль 25 короче ниспадающей ветви 34 сифонного затвора 22. Стекающее вниз из ниспадающей ветви 34 масло стремится образовать за собой разрежение, однако воздух, поступающий из воздушной части масляной полости 21 через жиклер 32 стравливания через магистраль 25 внутрь петли 23, устранит его и разорвет струю масла в колене сифонного затвора 22, что предотвратит перетекание масла из маслобака 27 в поддоны масляных полостей 21 после останова двигателя.

Таким образом, за счет найденного в изобретении решения масляной гидравлической системы, обеспечивающей улучшение циркуляции смазки в узлах трения двигателя, и включения осевого героторного насоса, имеющего уменьшенную массу, повышенную мощность и надежность работы, увеличивается ресурс работы и улучшаются эксплуатационные качества двигателя.

1. Авиационный газотурбинный двигатель, характеризующийся тем, что содержит корпус, турбокомпрессорную группу, включающую установленный в опорных и опорно-упорных подшипниках ротор не менее чем с одной турбиной, соосно соединенной с компрессором с возможностью передачи крутящего момента, по меньшей мере, одну камеру сгорания, реактивное сопло, систему автоматического управления, по меньшей мере, с одним командным блоком и исполнительными механизмами агрегатов двигателя, а также подчиненные ей системы подачи воздуха и охлаждения двигателя и снабженные насосными группами топливную и масляную гидравлические системы, при этом насосная группа включает, по меньшей мере, один нагнетающий насос и блок откачивающих насосов, соединенных с упомянутыми агрегатами двигателя и между собой магистралями всасывания и нагнетания масла, причем, по меньшей мере, один из указанных насосов выполнен осевым героторным и содержит приводной вал, установленную на нем, по меньшей мере, одну пару эксцентрично расположенных шестерен, размещенные по их торцам диски, элементы осевой фиксации вала и приводную рессору вала, при этом приводной вал установлен в опорных отверстиях, выполненных в дисках, а элементы фиксации вала выполнены в виде стопорного кольца, установленного в кольцевой проточке, размещенной на наружной поверхности вала между внутренней шестерней и одним из дисков, и заведенного в кольцевой паз, выполненный в торце внутренней шестерни, контактирующей с этим диском, причем глубина паза больше толщины стопорного кольца, а между торцом вала и приводной рессорой установлена пружина сжатия, кроме того, двигатель содержит масляные полости подшипниковых опор ротора и коробки приводных агрегатов с точками смазки узлов трения и установленный в магистрали нагнетания масла сифонный затвор с устройством стравливания воздуха в петле сифонного затвора, причем устройство для стравливания воздуха выполнено в виде струйной форсунки, установленной в воздушной части одной из масляных полостей в любой одной из ее точек смазки и сообщенной маслопроводом с петлей сифонного затвора.

2. Авиационный газотурбинный двигатель по п.1, отличающийся тем, что стопорное кольцо осевого героторного насоса выполнено разрезным.

3. Авиационный газотурбинный двигатель по п.1, отличающийся тем, что масляная система наделена топливомасляным теплообменником, установленным в магистрали нагнетания.

4. Авиационный газотурбинный двигатель по п.1, отличающийся тем, что масляная система наделена маслобаком, сообщенным с магистралью всасывания посредством маслозаборника, и снабжена воздухоотделителем, установленным в верхней части маслобака.

5. Авиационный газотурбинный двигатель по п.1, отличающийся тем, что система автоматического управления двигателя снабжена датчиками контроля рабочих параметров агрегатов и рабочих тел гидравлических и аэродинамических систем, включая датчики контроля, температуры, давления, частоты вращения, вибрации и смещения элементов агрегатов, блоком сбора, обработки информации, выдачи команд и исполнительными механизмами.

6. Авиационный газотурбинный двигатель по п.1, отличающийся тем, что масляная система снабжена стояночным клапаном, установленным на магистрали нагнетания после нагнетающего насоса по ходу движения масляного потока.

7. Авиационный газотурбинный двигатель по п.1, отличающийся тем, что масляная система снабжена, по меньшей мере, одним масляным фильтром, установленным на магистрали нагнетания перед топливомасляным теплообменником.

8. Авиационный газотурбинный двигатель по п.1, отличающийся тем, что устройство для стравливания воздуха содержит жиклер, размещенный в воздушной части любой из масляных полостей и выполненный в форме сопла струйной форсунки, направленной в любую из точек смазки.

www.findpatent.ru

Атомный газотурбинный авиационный двигатель

Атомный газотурбинный авиационный двигатель содержит первый и второй контуры, внешний и внутренний валы с вентилятором, установленным на внутреннем валу, и компрессор, установленный на внешнем валу, а также, по меньшей мере, одно рабочее колесо турбины, установленное на внешнем валу, камеру сгорания между компрессором и турбиной, воздухозаборник, турбину и реактивное сопло с центральным обтекателем. За турбиной в центральном обтекателе реактивного сопла установлен двигатель Стирлинга, соединенный с внутренним валом и трубопроводами циркуляции теплоносителя с ядерным реактором, а воздушным каналом между валами - с полостью за вентилятором. Перед камерой сгорания и во втором контуре установлены теплообменники, соединенные трубопроводами рециркуляции с ядерным реактором. Двигатель Стирлинга выполнен из двух групп цилиндров: рабочих и расширительных, при этом рабочие цилиндры размещены в первом контуре, а расширительные - во втором. Изобретение направлено на повышение КПД и надежности двигателя. 2 з.п. ф-лы, 4 ил.

 

Изобретение относится к двигателестроению, в том числе к авиационным и стационарным газотурбинным двигателям ГТД, и может найти применение в авиастроении, судостроении, на газоперекачивающих станциях и для пиковых энергетических установок в качестве привода для электрогенератора, предназначенного для выработки электроэнергии.

Известен ядерный синтезный двигатель по заявке РФ на изобретение №94036369, опубл. 10.07.1996 г. Этот двигатель содержит компрессор, турбину, ядерный реактор и теплообменник вместо камеры сгорания, соединенный с ядерным реактором.

Недостатки: длительное время запуска двигателя и плохая приемистость на переходных режимах, которая объясняется инерционностью теплообменника, контура рециркуляции теплоносителя и самого ядерного реактора.

Известен авиационный комбинированный двигатель по заявке РФ на изобретение №2002115896, содержащий ГТД и ракетный двигатель.

Недостаток: очень большой расход топлива, потребляемого ракетным двигателем.

Известен авиационный ГТД по патенту РФ №2211935, прототип, содержащий компрессор, камеру сгорания, турбину и реактивное сопло.

Недостатки: повышенный расход топлива, плохая приемистость на переходных режимах и низкая надежность

Задачи создания изобретения: повышение КПД и надежности двигателя.

Решение указанных задач достигнуто в атомном газотурбинном авиационном двигателе, содержащем первый и второй контуры, внешний и внутренний валы с вентилятором, установленным на внутреннем валу, и компрессор, установленный на внешнем валу, а также, по меньшей мере, одно рабочее колесо турбины, установленное на внешнем валу, камеру сгорания между компрессором и турбиной, воздухозаборник, турбину и реактивное сопло с центральным обтекателем, тем, что за турбиной в центральном обтекателе реактивного сопла установлен двигатель Стирлинга, соединенный с внутренним валом и трубопроводами циркуляции теплоносителя с реактором, а воздушным каналом между валами - с полостью за вентилятором. Перед камерой сгорания и во втором контуре могут быть установлены теплообменники, соединенные трубопроводами рециркуляции с ядерным реактором. Двигатель Стирлинга может быть выполнен из двух групп цилиндров: рабочих и расширительных, при этом рабочие цилиндры размещены в первом контуре, а расширительные - во втором.

Сущность изобретения поясняется на фиг.1…4, где

на фиг.1 приведена схема двигателя,

на фиг.2 приведена схема охлаждения двигателя Стирлинга,

на фиг.3 приведена схема двигателя Стирлинга,

на фиг.4 показано сечение А-А фиг.3.

Предложенное техническое решение (фиг.1) содержит два контура: первый 1 и второй 2, соответственно два вала: внутренний 3 и наружный 4, т.е. двигатель выполнен двухконтурным по двухвальной схеме. Кроме того, двигатель содержит воздухозаборник 5, вентилятор 6, компрессор 7, камеру сгорания 8 и турбину 9. Турбина 9 может содержать одну или несколько ступеней. Далее конструкция двигателя описывается на примере одноступенчатой турбины. Турбина 9 содержит рабочее колесо 10. На выходе из обоих контуров 1 и 2 выполнено реактивное сопло 11, внутри которого установлен внутренний обтекатель 12.

Атомный газотурбинный авиационный двигатель содержит систему топливоподачи с топливопроводом низкого давления 13, подключенным к входу в топливный насос 14, имеющий привод 15, топливопровод высокого давления 16, вход которого соединен с топливным насосом 14, а выход соединен с кольцевым коллектором 17, кольцевой коллектор 17 соединен с форсунками 18 камеры сгорания 8.

Компрессор 7 содержит ротор компрессора 19 с внешним валом 4. На внешнем валу 4 установлено рабочее колесо турбины 10.

Внутренний вал 3 проходит внутри внешнего вала и установлен на опорах 20, внешний вал 4 установлен на опорах 21. Внутренний вал 3 соединен с одной стороны с вентилятором 6, а с другой с двигателем Стирлинга 22. Двигатель Стирлинга 22 установлен внутри внутреннего обтекателя 12, что позволяет уменьшить его диаметральные габариты и центробежные нагрузки на детали двигателя Стирлинга, а также уменьшить загромождение газодинамического тракта ГТД за турбиной, что повысит КПД двигателя в целом. К двигателю Стирлинга 22 подсоединен воздушный канал 23, другой конец которого выходит в полость «Б» за вентилятором 6. Выхлопные патрубки 24 предназначены для выброса подогретого воздуха из двигателя Стирлинга 22 и выходят внутрь реактивного сопла 11 в полость «В» через осевое отверстие «Г», выполненное вдоль оси внутреннего обтекателя 12.

Отличительной особенностью двигателя является наличие двигателя Стирлинга 22 за турбиной 9, конкретно за рабочим колесом турбины 10 и его размещение внутри внутреннего обтекателя 12, чтобы не загромождать затурбинный газодинамический тракт.

Двигатель Стирлинга 22 состоит из двух частей: группы рабочих цилиндров 25 и группы расширительных цилиндров 26, которые соединены трубопроводами 27. Число рабочих цилиндров 25 равно числу расширительных цилиндров 26. По объему расширительные цилиндры 26 больше, чем рабочие цилиндры 25.

Атомный газотурбинный двигатель содержит (фиг.1) ядерный реактор 28, соединенный трубопроводами рециркуляции теплоносителя: соответственно подводящим 29 и отводящим 30, с двигателем Стирлинга 22, точнее с полостями нагрева «Г» рабочих цилиндров 25 (фиг.2). Над подводящим трубопроводом рециркуляции теплоносителя 29 установлен насос теплоносителя 31 с приводом 32, а отводящий трубопровод рециркуляции теплоносителя 30 соединяет двигатель Стирлинга 22 с ядерным реактором 28 для отвода теплоносителя. В качестве теплоносителя предпочтительно использовать жидкий натрий.

Перед камерой сгорания 8 установлен теплообменник 33, а во втором контуре 2 - теплообменник 34, подключенные к подводящему и отводящему трубопроводам рециркуляции: соответственно 29 и 30.

На фиг.3 и 4 приведена схема одного из вариантов исполнения двигателя Стирлинга 22, который содержит группу рабочих цилиндров 25, имеющих оребрение и заключенных в рабочие кожухи 35, имеющих наружное оребрение 36 с образованием между ними полости нагрева «Д», заполненной теплоносителем. Внутри каждого рабочего цилиндра 25 установлен рабочий поршень 37, который шатуном 38 соединен с внутренним валом двигателя 3. Между рабочим цилиндром 25 и рабочим поршнем 37 образуется рабочая полсть «Е», заполненная рабочим телом, например гелием.

Также двигатель Стирлинга 22 содержит группу расширительных цилиндров 26, которые могут быть установлены в кожухи охлаждения 39. Между кожухом охлаждения 39 и расширительным цилиндром 26 образуется полость охлаждения «Ж». При установке расширительных цилиндров 26 во втором контуре 2 кожух охлаждения 39 не нужен.

Внутри каждого расширительного цилиндра в полости «И» установлен расширительный поршень 40. Расширительный поршень 40 соединен шатуном 41 с внутренним валом двигателя 3. Трубопровод(ы) 27 соединяет(ют) полости «Е» и «И» для перетекания рабочего тела из рабочих цилиндров 25 в расширительные цилиндры 26. К полости «Д» подсоединены воздушные патрубки 23, а выхлопные трубы 24 соединяют полость «Д» с внутренней полостью «В» реактивного сопла 11 (фиг.1).

При работе ГТД осуществляют его запуск стартером (не показан). Потом включают привод топливного насоса 15, и топливный насос 14 подает топливо в камеру сгорания 8 к форсункам 28, где оно воспламеняется при помощи электрозапальника (не показано). В результате продукты сгорания проходят через рабочее колесо турбины 10 и раскручивают его и внешний вал 4, а также ротор компрессора 18. Через 5…7 мин тепло выхлопных газов и одновременно теплоноситель, подаваемый по подводящим трубопроводам рециркуляции теплоносителя 29, прогревает рабочие цилиндры 25 двигателя Стирлинга 22. В результате двигатель запущен и готов к работе. Отключение двигателя производится в обратном порядке. Управление двигателем по режимам не отличается от управления традиционными ГТД.

При работе атомного авиационного газотурбинного двигателя по его контурам температуры распределяются следующим образом:

- Т0 - температура воздуха на входе в двигатель,

- T1 - температура воздуха во втором контуре,

- Т2 - температура воздуха во втором контуре после расширительных цилиндров,

- Т3 - температура продуктов сгорания на выходе из камеры сгорания,

- Т4 - температура продуктов сгорания на выходе из теплообменника,

- Т5 - температура продуктов сгорания на выходе из двигателя Стирлинга,

- Т6 - температура смеси на выходе из реактивного сопла.

Применение изобретения позволило:

1. Улучшить запуск и приемистость двигателя на переходных режимах за счет применения углеводородного топлива и тепловой энергии, вырабатываемой ядерным реактором одновременно.

2. Повысить надежность двигателя за счет того, что при отказе одной энергетической системы: ядерной или углеводородной, двигатель может продолжать работу, не снижая своей мощности или тяги, что особенно важно в авиации.

3. Повысить КПД газотурбинного двигателя за счет более рациональной компоновки двигателя, второго контура, дающего дополнительную тягу, отсутствия жесткой кинематической связи между двумя валами. Это позволило спроектировать оптимальные компрессор и турбину и двигатель Стирлинга с вентилятором.

4. Улучшить надежность силовой установки за счет уменьшения числа ступеней турбины и распределения большей части нагрузки на двигатель Стирлинга.

5. Создать благоприятные условия для работы вентилятора и двигателя Стерлинга, согласовав оптимальные расчетные угловые скорости вращения вентилятора. Кроме того, применение двухвальной схемы двигателя позволит развязать механически рабочее колесо и ротор турбины и компрессора с одной стороны от вентилятора и двигателя Стирлинга, работа которых при запуске и на переходных режимах значительно различается, например, по частоте вращения валов и по приемистости.

6. Обеспечить оптимальную работу двигателя на переходных режимах вследствие того, что основная составляющая тяги на взлете, если двигатель используется в авиации, создается углеводородным топливом, а ядерный реактор вступает в работу на крейсерском режиме и может обеспечить нахождение самолета в воздухе до одного года непрерывно. Несмотря на плохую приемистость двигателя Стерлинга при резком изменении расхода топлива через камеру сгорания суммарная тяга двигателя будет изменяться практически мгновенно за счет реактивной составляющей. Через 5…7 мин мощности, развиваемые вентилятором и газогенератором, перераспределятся, например, при форсировании основную тяговую нагрузку будет нести вентилятор, имеющий хороший КПД на дозвуковых скоростях, в результате экономичность двигателя на крейсерском режиме полета значительно возрастет.

7. Значительно уменьшить расход топлива при эксплуатации самолета. Это имеет важное значение в связи с исчерпанием ресурсов углеводородного топлива, его удорожанием и отсутствием альтернативы этому виду топлива. Применение водорода, имеющего стоимость в сотни раз большую, чем стоимость керосина, в ближайшие 100 лет бесперспективно, а использование сжиженного природного газа из-за его плохих энергетических характеристик и сложности в эксплуатации криогенной техники пока весьма ограничено.

8. Облегчить условия работы вентилятора за счет его нежесткой связи с валом компрессора и возможности их взаимного проскальзывания и рассогласования оборотов ротора компрессора и ротора вентилятора.

9. Облегчить запуск и останов двигателя за счет применения двухвальной схемы.

10. Уменьшить вес и габариты двигателя и общий вес энергетической установки или самолета за счет компактности ядерного топлива.

11. Снизить стоимость двигателя за счет отказа от дорогостоящих материалов, используемых при изготовлении турбины, и решить проблему охлаждения турбины, во-первых, снизив температуру перед ней, во-вторых, направив весь охлаждающий воздух на охлаждение только одной ступени турбины вместо 4…5 ступеней, применяемых ранее на мощных газотурбинных двигателях.

1. Атомный газотурбинный авиационный двигатель, содержащий первый и второй контуры, внешний и внутренний валы с вентилятором, установленным на внутреннем валу, и компрессор, установленный на внешнем валу, а также, по меньшей мере, одно рабочее колесо турбины, установленное на внешнем валу, камеру сгорания между компрессором и турбиной, воздухозаборник, турбину и реактивное сопло с центральным обтекателем, отличающийся тем, что за турбиной в центральном обтекателе реактивного сопла установлен двигатель Стерлинга, соединенный с внутренним валом и трубопроводами циркуляции теплоносителя с ядерным реактором, а воздушным каналом между валами - с полостью за вентилятором.

2. Атомный газотурбинный авиационный двигатель по п.1, отличающийся тем, что перед камерой сгорания и во втором контуре установлены теплообменники, соединенные трубопроводами рециркуляции с ядерным реактором.

3. Атомный газотурбинный авиационный двигатель по п.1 или 2, отличающийся тем, что двигатель Стерлинга выполнен из двух групп цилиндров - рабочих и расширительных, при этом рабочие цилиндры размещены в первом контуре, а расширительные - во втором.

www.findpatent.ru

атомный газотурбинный авиационный двигатель - патент РФ 2349775

Изобретение относится к газотурбинным двигателям. Атомный газотурбинный авиационный двигатель содержит первый и второй контуры, воздухозаборник, внешний и внутренний валы с вентилятором, установленным на внутреннем валу, и компрессор, установленный на внешнем валу, по меньшей мере, одно рабочее колесо турбины, установленное на внешнем валу, а также реактивное сопло. Камера сгорания расположена между компрессором и турбиной. За турбиной установлен двигатель Стирлинга, связанный кинематически с внутренним валом и соединенный трубопроводами циркуляции теплоносителя с ядерным реактором. Перед камерой сгорания и во втором контуре установлены теплообменники, соединенные трубопроводами рециркуляции с ядерным реактором. Двигатель Стирлинга выполнен из двух групп цилиндров: рабочих и поршневых, при этом рабочие цилиндры размещены в первом контуре, а расширительные - во втором. К двигателю Стирлинга присоединены воздушные патрубки. Концы воздушных патрубков выходят в атмосферу, или подсоединены к воздухозаборнику, или присоединены к выходу из первых ступеней компрессора. Изобретение позволяет повысить КПД и надежность двигателя. 5 з.п. ф-лы, 6 ил. атомный газотурбинный авиационный двигатель, патент № 2349775

Изобретение относится к двигателестроению, в том числе к авиационным и стационарным газотурбинным двигателям ГТД, и может найти применение в авиастроении, судостроении, на газоперекачивающих станциях и для пиковых энергетических установок в качестве привода для электрогенератора, предназначенного для выработки электроэнергии.

Известен ядерный синтезный двигатель по заявке РФ на изобретение №94036369, опубл. 10.07.1996 г. Этот двигатель содержит компрессор, турбину, ядерный реактор и теплообменник вместо камеры сгорания, соединенный с ядерным реактором.

Недостатки: длительное время запуска двигателя и плохая приемистоть на переходных режимах, которая объясняется инерционностью теплообменника, контура рециркуляции теплоносителя и самого ядерного реактора.

Известен авиационный комбинированный двигатель по заявке РФ на изобретение №2002115896, содержащий ГТД и ракетный двигатель.

Недостаток: очень большой расход топлива, потребляемый ракетным двигателем.

Известен авиационный ГТД по патенту РФ №2211935, прототип, содержащий компрессор, камеру сгорания, турбину и реактивное сопло.

Недостатки: повышенный расход топлива, плохая приемистость на переходных режимах и низкая надежность

Задачи создания изобретения: повышение КПД и надежности двигателя. Атомный газотурбинный авиационный двигатель, содержащий винт, воздухозаборник, компрессор, камеру сгорания, турбину и реактивное сопло, отличается тем, что двигатель выполнен по двухвальной схеме, за турбиной установлен двигатель Стирлинга, соединенный внутренним валом через редуктор или мультипликатор с винтом, а перед камерой сгорания и во втором контуре установлены теплообменники, соединенные трубопроводами рециркуляции с ядерным реактором. К двигателю Стирлинга присоединены воздушные патрубки. Концы патрубков выходят в атмосферу. Концы патрубков подсоединены к воздухозаборнику или к выходу из первых ступеней компрессора.

Предложенное техническое решение обладает новизной, изобретательским уровнем и промышленной применимостью, что подтверждается проведенными патентными исследованиями. Для реализации изобретения достаточно применения известных узлов и деталей, ранее разработанных и реализованных в конструкции газотурбинных двигателей и в машиностроении.

Сущность изобретения поясняется на фиг.1...6, где:

на фиг.1 приведена схема двигателя,

на фиг.2 - схема охлаждения двигателя Стирлинга,

на фиг.3 и 4 - схема двигателя Стирлинга,

на фиг.5 и 6 - схема двигателя с вытеснительным цилиндром внутри второго контура.

Предложенное техническое решение (фиг.1) содержит два контура: первый (наружный) 1 и второй 2, соответственно два вала: внутренний 3 и наружный 4, т.е. двигатель выполнен двухконтурным по двухвальной схеме. Кроме того, двигатель содержит воздухозаборник 5, вентилятор 6, компрессор 7, камеру сгорания 8 и турбину 9. Турбина 8 может содержать одну или несколько ступеней. Далее конструкция двигателя описывается на примере одноступенчатой турбины. Турбина 9 содержит рабочее колесо 10. На выходе из обоих контуров 1 и 2 выполнено реактивное сопло 11, внутри которого установлен смеситель 12 для перемешивания потоков первого и второго контуров.

Атомный газотурбинный авиационный двигатель содержит систему топливоподачи с топливопроводом низкого давления 13, подключенным к входу в топливный насос 14, имеющий привод 15, топливопровод высокого давления 16, вход которого соединен с топливным насосом 14, а выход соединен с кольцевым коллектором 17, кольцевой коллектор 17 соединен с форсунками 18 камеры сгорания 8.

Компрессор 7 содержит ротор компрессора 19 с внешним валом 4. На внешнем валу 4 установлено рабочее колесо турбины 10.

Внутренний вал 3 проходит внутри внешнего вала и установлен на опорах 20, внутренний вал 3 установлен на опорах 21. Внутренний вал 3 соединен с одной стороны с вентилятором 6, а с другой - с двигателем Стирлинга 22. К двигателю Стирлинга 22 подсоединен воздушный патрубок 23 (или несколько воздушных патрубков 23), другой конец которого выходит либо в атмосферу, либо в воздухозаборник 5, либо к первым ступеням компрессора 7, либо выходит во второй контур 2. Выхлопные патрубки 24 предназначены для выброса подогретого воздуха из двигателя Стирлинга 22 и выходят внутрь реактивного сопла 11 в полость «В».

Отличительной особенностью двигателя является наличие двигателя Стирлинга 22 за турбиной 9, конкретно за рабочим колесом турбины 10.

Двигатель Стирлинга 22 состоит из двух частей: группы рабочих цилиндров 25 и группы вытеснительных цилиндров 26, которые соединены трубопроводами 27. Группу вытеснительных цилиндров 26 предпочтительно теплоизолировать от газового тракта газотурбинного двигателя ГТД. Число рабочих цилиндров 25 равно числу вытеснительных цилиндров 26. По объему вытеснительные цилиндры 26 больше, чем рабочие цилиндры 25.

Атомный газотурбинный двигатель содержит (фиг.1) ядерный реактор 28 и два теплообменника 29, один из которых установлен перед камерой сгорания 8, а другой - теплообменник 29 установлен во втором контуре 2. Ядерный реактор 28 соединен трубопроводами рециркуляции теплоносителя 30 с двигателем Стирлинга 22, точнее с полостями нагрева «Г» рабочих цилиндров 25 и с теплообменниками 29 (фиг.2). Между ядерным реактором 28 и подводящим трубопроводом рециркуляции теплоносителя 29 установлен насос теплоносителя 31 с приводом 32, а отводящий трубопровод рециркуляции теплоносителя 30 соединяет двигатель Стирлинга 22 с ядерным реактором 28, для отвода теплоносителя. В качестве теплоносителя предпочтительно использовать жидкий натрий.

В одном из вариантов исполнения возможно подсоединение воздушного патрубка 23 (воздушных патрубков 23) к воздухозаборнику 5 или к первым ступеням компрессора 6 посредством одного или нескольких трубопроводов 33 (фиг.2).

Возможна установка расширительных цилиндров 26 во втором контуре 2 (фиг.5 и 6), в этом случае охлаждение производится воздухом второго контура, имеющим температуру около 100°С, что значительно ниже температуры теплоносителя ядерного реактора.

На фиг.3 и 4 приведена схема одного из вариантов исполнения двигателя Стирлинга 22, который содержит группу рабочих цилиндров 25, имеющих оребрение и заключенных в рабочие кожуха 35, имеющие наружное оребрение 36 с образованием между ними полости нагрева «Г», заполненной теплоносителем. Внутри каждого рабочего цилиндра 25 установлен рабочий поршень 37, который шатуном 38 соединен с внутренним валом двигателя 3. Между рабочим цилиндром 25 и рабочим поршнем 37 образуется рабочая полсть «Д», заполненная рабочим телом, например гелием.

Также двигатель Стирлинга 22 содержит группу вытеснительных цилиндров 26, которые могут быть установлены в кожуха охлаждения 39 или установлены без них во втором контуре 2 двигателя (фиг.5 и 6). Между кожухом охлаждения 39 и вытеснительным цилиндром 26 образуется полость охлаждения «Е». При установке вытеснительных цилиндров 26 во втором контуре 2 кожух охлаждения 39 не нужен.

Внутри каждого вытеснительного цилиндра в полости «Ж» установлен вытеснительный поршень 40. Вытеснительный поршень 40 соединен шатуном 41 с внутренним валом двигателя 3. Трубопровод (ы) 27 соединяет (ют) полости «Д» и «Ж» для перетекания рабочего тела из рабочих цилиндров 25 в вытеснительные цилиндры 26. К полости «Г» подсоединены воздушные патрубки 23, а выхлопные трубы 24 соединяют полость «Г» с внутренней полостью «В» реактивного сопла 11 (фиг.1).

При работе ГТД осуществляют его запуск стартером (стартер на фиг.1...4 не показан). Потом включают привод топливного насоса 15, и топливный насос 14 подает топливо в камеру сгорания 8 к форсункам 28, где оно воспламеняется при помощи электрозапальника (на фиг.1 не показано). В результате продукты сгорания проходят через рабочее колесо турбины 10 и раскручивают его и внешний вал 4, а также ротор компрессора 18. Через 5...7 мин тепло выхлопных газов и одновременно теплоноситель, подаваемый по подводящим трубопроводом рециркуляции теплоносителя 29, прогревает рабочие цилиндры 25 двигателя Стирлинга 22. Двигатель Стирлинга 22 приводится в действие и через внутренний вал 3 и редуктор 3 раскручивает винт 1. Подогретое рабочее тело расширяется в расширительных цилиндрах 26. В результате двигатель запущен и готов к работе. Отключение двигателя производится в обратном порядке. Управление двигателем по режимам не отличается от управления традиционными ГТД.

Особенностью двигателя является то, что:

1. Благодаря наличию теплообменника 29 перед камерой сгорания он может работать только на ядерном реакторе 28, при этом камера сгорания 18 не работает.

2. Благодаря наличию теплообменника 29 во втором контуре 2 на выходе из второго контура можно получить температуру воздуха, практически одинаковую с температурой газов на выходе из первого контура, а это увеличит тягу двигателя.

При работе атомного авиационного газотурбинного двигателя по его контурам температуры распределяются следующим образом:

Т0 - температура воздуха на входе в двигатель,

Т1 - температура воздуха во втором контуре,

Т2 - температура воздуха во втором контуре после вытеснительных цилиндров,

Т3 - температура продуктов сгорания на выходе из камеры сгорания,

Т4 - температура продуктов сгорания на выходе из теплообменника,

Т5 - температура продуктов сгорания на выходе из двигателя Стирлинга,

Т6 - температура смеси на выходе из реактивного сопла.

Применение изобретения позволило:

1) улучшить запуск и приемистость двигателя на переходных режимах за счет применения углеводородного топлива и тепловой энергии, вырабатываемой ядерным реактором одновременно;

2) повысить надежность двигателя за счет того, что при отказе одной энергетической системы: ядерной или углеводородной, двигатель может продолжать работу, не снижая своей мощности или тяги, что особенно важно в авиации;

3) повысить КПД газотурбинного двигателя за счет более рациональной компоновки двигателя, второго контура, дающего дополнительную тягу, отсутствия жесткой кинематической связи между двумя валами. Это позволило спроектировать оптимальные компрессор, турбину и двигатель Стерлинга с вентилятором;

4) улучшить надежность силовой установки за счет уменьшения числа ступеней турбины до одной ступени и распределения большей части нагрузки на двигатель Стирлинга;

5) создать благоприятные условия для работы вентилятора и двигателя Стирлинга, согласовав их оптимальные расчетные угловые скорости вращения вентилятора. Кроме того, применение двухвальной схемы двигателя позволит развязать механически рабочее колесо и ротор турбины и компрессора с одной стороны от вентилятора и двигателя Стирлинга, работа которых при запуске и на переходных режимах значительно различаются, например, по частоте вращения валов и по приемистоти;

6) обеспечить оптимальную работу двигателя на переходных режимах, вследствие того что основная составляющая тяги на взлете, если двигатель используется в авиации, создается углеводородным топливом, а ядерный реактор вступает в работу на крейсерском режиме и может обеспечить нахождение самолета в воздухе до одного года непрерывно. Несмотря на плохую приемистость двигателя Стирлинга при резком изменении расхода топлива через камеру сгорания суммарная тяга двигателя будет изменяться практически мгновенно за счет реактивной составляющей. Через 5...7 мин мощности, развиваемые винтом и газогенератором, перераспределятся, например, при форсировании основную тяговую нагрузку будет нести вентилятор, имеющий хороший КПД на дозвуковых скоростях, в результате экономичность двигателя на крейсерском режиме полета значительно возрастет;

7) значительно уменьшить расход топлива при эксплуатации самолета. Это имеет важное значение в связи с исчерпанием ресурсов углеводородного топлива, его удорожанием и отсутствием альтернативы этому виду топлива. Применение водорода, имеющего стоимость, в сотни раз большую, чем керосин, в ближайшие 100 лет бесперспективно, а использование сжиженного природного газа из-за его плохих энергетических характеристик и сложности в эксплуатации криогенной техники пока весьма ограничено;

8) облегчить условия работы вентилятора за счет его нежесткой связи с валом компрессора и возможности их взаимного проскальзывания и рассогласования оборотов ротора компрессора и ротора вентилятора;

9) облегчить запуск и останов двигателя за счет применения двухвальной схемы;

10) уменьшить вес и габариты двигателя и общий вес энергетической установки или самолета за счет компактности ядерного топлива;

11) снизить стоимость двигателя за счет отказа от дорогостоящих материалов, используемых при изготовлении турбины и решить проблему охлаждения турбины, во-первых, снизив температуру перед ней; во-вторых, направив весь охлаждающий воздух на охлаждение только одной ступени турбины, вместо 4-х... 5-ти ступеней, применяемых ранее на мощных газотурбинных двигателях;

12) обеспечить работу двигателя только на углеводородном топливе или на ядерном реакторе или одновременно с использованием энергии ядерного реактора и химической энергии углеводородного топлива;

13) значительно увеличить тягу двигателя за счет размещения теплообменника во втором контуре.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Атомный газотурбинный авиационный двигатель, содержащий первый и второй контуры, внешний и внутренний валы с вентилятором, установленным на внутреннем валу, и компрессор, установленный на внешнем валу, а также, по меньшей мере, одно рабочее колесо турбины, установленное на внешнем валу, и камеру сгорания между компрессором и турбиной, воздухозаборник, турбину и реактивное сопло, отличающийся тем, что за турбиной установлен двигатель Стирлинга, соединенный кинематически с внутренним валом и трубопроводами циркуляции теплоносителя с ядерным реактором, перед камерой сгорания и во втором контуре установлены теплообменники, соединенные трубопроводами рециркуляции с ядерным реактором.

2. Атомный газотурбинный авиационный двигатель по п.1, отличающийся тем, что двигатель Стирлинга выполнен из двух групп цилиндров: рабочих и поршневых, при этом рабочие цилиндры размещены в первом контуре, а расширительные - во втором.

3. Атомный газотурбинный авиационный двигатель по п.1 или 2, отличающийся тем, что к двигателю Стирлинга присоединены воздушные патрубки.

4. Атомный газотурбинный авиационный двигатель по п.3, отличающийся тем. что концы воздушных патрубков выходят в атмосферу.

5. Атомный газотурбинный авиационный двигатель по п.3, отличающийся тем, что концы воздушных патрубков подсоединены к воздухозаборнику.

6. Атомный газотурбинный авиационный двигатель по п.3, отличающийся тем, что концы воздушных патрубков присоединены к выходу из первых ступеней компрессора.

www.freepatent.ru

Атомный газотурбинный авиационный двигатель

Изобретение относится к газотурбинным двигателям. Атомный газотурбинный авиационный двигатель содержит первый и второй контуры, воздухозаборник, внешний и внутренний валы с вентилятором, установленным на внутреннем валу, и компрессор, установленный на внешнем валу, по меньшей мере, одно рабочее колесо турбины, установленное на внешнем валу, а также реактивное сопло. Камера сгорания расположена между компрессором и турбиной. За турбиной установлен двигатель Стирлинга, связанный кинематически с внутренним валом и соединенный трубопроводами циркуляции теплоносителя с ядерным реактором. Перед камерой сгорания и во втором контуре установлены теплообменники, соединенные трубопроводами рециркуляции с ядерным реактором. Двигатель Стирлинга выполнен из двух групп цилиндров: рабочих и поршневых, при этом рабочие цилиндры размещены в первом контуре, а расширительные - во втором. К двигателю Стирлинга присоединены воздушные патрубки. Концы воздушных патрубков выходят в атмосферу, или подсоединены к воздухозаборнику, или присоединены к выходу из первых ступеней компрессора. Изобретение позволяет повысить КПД и надежность двигателя. 5 з.п. ф-лы, 6 ил.

 

Изобретение относится к двигателестроению, в том числе к авиационным и стационарным газотурбинным двигателям ГТД, и может найти применение в авиастроении, судостроении, на газоперекачивающих станциях и для пиковых энергетических установок в качестве привода для электрогенератора, предназначенного для выработки электроэнергии.

Известен ядерный синтезный двигатель по заявке РФ на изобретение №94036369, опубл. 10.07.1996 г. Этот двигатель содержит компрессор, турбину, ядерный реактор и теплообменник вместо камеры сгорания, соединенный с ядерным реактором.

Недостатки: длительное время запуска двигателя и плохая приемистоть на переходных режимах, которая объясняется инерционностью теплообменника, контура рециркуляции теплоносителя и самого ядерного реактора.

Известен авиационный комбинированный двигатель по заявке РФ на изобретение №2002115896, содержащий ГТД и ракетный двигатель.

Недостаток: очень большой расход топлива, потребляемый ракетным двигателем.

Известен авиационный ГТД по патенту РФ №2211935, прототип, содержащий компрессор, камеру сгорания, турбину и реактивное сопло.

Недостатки: повышенный расход топлива, плохая приемистость на переходных режимах и низкая надежность

Задачи создания изобретения: повышение КПД и надежности двигателя. Атомный газотурбинный авиационный двигатель, содержащий винт, воздухозаборник, компрессор, камеру сгорания, турбину и реактивное сопло, отличается тем, что двигатель выполнен по двухвальной схеме, за турбиной установлен двигатель Стирлинга, соединенный внутренним валом через редуктор или мультипликатор с винтом, а перед камерой сгорания и во втором контуре установлены теплообменники, соединенные трубопроводами рециркуляции с ядерным реактором. К двигателю Стирлинга присоединены воздушные патрубки. Концы патрубков выходят в атмосферу. Концы патрубков подсоединены к воздухозаборнику или к выходу из первых ступеней компрессора.

Предложенное техническое решение обладает новизной, изобретательским уровнем и промышленной применимостью, что подтверждается проведенными патентными исследованиями. Для реализации изобретения достаточно применения известных узлов и деталей, ранее разработанных и реализованных в конструкции газотурбинных двигателей и в машиностроении.

Сущность изобретения поясняется на фиг.1...6, где:

на фиг.1 приведена схема двигателя,

на фиг.2 - схема охлаждения двигателя Стирлинга,

на фиг.3 и 4 - схема двигателя Стирлинга,

на фиг.5 и 6 - схема двигателя с вытеснительным цилиндром внутри второго контура.

Предложенное техническое решение (фиг.1) содержит два контура: первый (наружный) 1 и второй 2, соответственно два вала: внутренний 3 и наружный 4, т.е. двигатель выполнен двухконтурным по двухвальной схеме. Кроме того, двигатель содержит воздухозаборник 5, вентилятор 6, компрессор 7, камеру сгорания 8 и турбину 9. Турбина 8 может содержать одну или несколько ступеней. Далее конструкция двигателя описывается на примере одноступенчатой турбины. Турбина 9 содержит рабочее колесо 10. На выходе из обоих контуров 1 и 2 выполнено реактивное сопло 11, внутри которого установлен смеситель 12 для перемешивания потоков первого и второго контуров.

Атомный газотурбинный авиационный двигатель содержит систему топливоподачи с топливопроводом низкого давления 13, подключенным к входу в топливный насос 14, имеющий привод 15, топливопровод высокого давления 16, вход которого соединен с топливным насосом 14, а выход соединен с кольцевым коллектором 17, кольцевой коллектор 17 соединен с форсунками 18 камеры сгорания 8.

Компрессор 7 содержит ротор компрессора 19 с внешним валом 4. На внешнем валу 4 установлено рабочее колесо турбины 10.

Внутренний вал 3 проходит внутри внешнего вала и установлен на опорах 20, внутренний вал 3 установлен на опорах 21. Внутренний вал 3 соединен с одной стороны с вентилятором 6, а с другой - с двигателем Стирлинга 22. К двигателю Стирлинга 22 подсоединен воздушный патрубок 23 (или несколько воздушных патрубков 23), другой конец которого выходит либо в атмосферу, либо в воздухозаборник 5, либо к первым ступеням компрессора 7, либо выходит во второй контур 2. Выхлопные патрубки 24 предназначены для выброса подогретого воздуха из двигателя Стирлинга 22 и выходят внутрь реактивного сопла 11 в полость «В».

Отличительной особенностью двигателя является наличие двигателя Стирлинга 22 за турбиной 9, конкретно за рабочим колесом турбины 10.

Двигатель Стирлинга 22 состоит из двух частей: группы рабочих цилиндров 25 и группы вытеснительных цилиндров 26, которые соединены трубопроводами 27. Группу вытеснительных цилиндров 26 предпочтительно теплоизолировать от газового тракта газотурбинного двигателя ГТД. Число рабочих цилиндров 25 равно числу вытеснительных цилиндров 26. По объему вытеснительные цилиндры 26 больше, чем рабочие цилиндры 25.

Атомный газотурбинный двигатель содержит (фиг.1) ядерный реактор 28 и два теплообменника 29, один из которых установлен перед камерой сгорания 8, а другой - теплообменник 29 установлен во втором контуре 2. Ядерный реактор 28 соединен трубопроводами рециркуляции теплоносителя 30 с двигателем Стирлинга 22, точнее с полостями нагрева «Г» рабочих цилиндров 25 и с теплообменниками 29 (фиг.2). Между ядерным реактором 28 и подводящим трубопроводом рециркуляции теплоносителя 29 установлен насос теплоносителя 31 с приводом 32, а отводящий трубопровод рециркуляции теплоносителя 30 соединяет двигатель Стирлинга 22 с ядерным реактором 28, для отвода теплоносителя. В качестве теплоносителя предпочтительно использовать жидкий натрий.

В одном из вариантов исполнения возможно подсоединение воздушного патрубка 23 (воздушных патрубков 23) к воздухозаборнику 5 или к первым ступеням компрессора 6 посредством одного или нескольких трубопроводов 33 (фиг.2).

Возможна установка расширительных цилиндров 26 во втором контуре 2 (фиг.5 и 6), в этом случае охлаждение производится воздухом второго контура, имеющим температуру около 100°С, что значительно ниже температуры теплоносителя ядерного реактора.

На фиг.3 и 4 приведена схема одного из вариантов исполнения двигателя Стирлинга 22, который содержит группу рабочих цилиндров 25, имеющих оребрение и заключенных в рабочие кожуха 35, имеющие наружное оребрение 36 с образованием между ними полости нагрева «Г», заполненной теплоносителем. Внутри каждого рабочего цилиндра 25 установлен рабочий поршень 37, который шатуном 38 соединен с внутренним валом двигателя 3. Между рабочим цилиндром 25 и рабочим поршнем 37 образуется рабочая полсть «Д», заполненная рабочим телом, например гелием.

Также двигатель Стирлинга 22 содержит группу вытеснительных цилиндров 26, которые могут быть установлены в кожуха охлаждения 39 или установлены без них во втором контуре 2 двигателя (фиг.5 и 6). Между кожухом охлаждения 39 и вытеснительным цилиндром 26 образуется полость охлаждения «Е». При установке вытеснительных цилиндров 26 во втором контуре 2 кожух охлаждения 39 не нужен.

Внутри каждого вытеснительного цилиндра в полости «Ж» установлен вытеснительный поршень 40. Вытеснительный поршень 40 соединен шатуном 41 с внутренним валом двигателя 3. Трубопровод (ы) 27 соединяет (ют) полости «Д» и «Ж» для перетекания рабочего тела из рабочих цилиндров 25 в вытеснительные цилиндры 26. К полости «Г» подсоединены воздушные патрубки 23, а выхлопные трубы 24 соединяют полость «Г» с внутренней полостью «В» реактивного сопла 11 (фиг.1).

При работе ГТД осуществляют его запуск стартером (стартер на фиг.1...4 не показан). Потом включают привод топливного насоса 15, и топливный насос 14 подает топливо в камеру сгорания 8 к форсункам 28, где оно воспламеняется при помощи электрозапальника (на фиг.1 не показано). В результате продукты сгорания проходят через рабочее колесо турбины 10 и раскручивают его и внешний вал 4, а также ротор компрессора 18. Через 5...7 мин тепло выхлопных газов и одновременно теплоноситель, подаваемый по подводящим трубопроводом рециркуляции теплоносителя 29, прогревает рабочие цилиндры 25 двигателя Стирлинга 22. Двигатель Стирлинга 22 приводится в действие и через внутренний вал 3 и редуктор 3 раскручивает винт 1. Подогретое рабочее тело расширяется в расширительных цилиндрах 26. В результате двигатель запущен и готов к работе. Отключение двигателя производится в обратном порядке. Управление двигателем по режимам не отличается от управления традиционными ГТД.

Особенностью двигателя является то, что:

1. Благодаря наличию теплообменника 29 перед камерой сгорания он может работать только на ядерном реакторе 28, при этом камера сгорания 18 не работает.

2. Благодаря наличию теплообменника 29 во втором контуре 2 на выходе из второго контура можно получить температуру воздуха, практически одинаковую с температурой газов на выходе из первого контура, а это увеличит тягу двигателя.

При работе атомного авиационного газотурбинного двигателя по его контурам температуры распределяются следующим образом:

Т0 - температура воздуха на входе в двигатель,

Т1 - температура воздуха во втором контуре,

Т2 - температура воздуха во втором контуре после вытеснительных цилиндров,

Т3 - температура продуктов сгорания на выходе из камеры сгорания,

Т4 - температура продуктов сгорания на выходе из теплообменника,

Т5 - температура продуктов сгорания на выходе из двигателя Стирлинга,

Т6 - температура смеси на выходе из реактивного сопла.

Применение изобретения позволило:

1) улучшить запуск и приемистость двигателя на переходных режимах за счет применения углеводородного топлива и тепловой энергии, вырабатываемой ядерным реактором одновременно;

2) повысить надежность двигателя за счет того, что при отказе одной энергетической системы: ядерной или углеводородной, двигатель может продолжать работу, не снижая своей мощности или тяги, что особенно важно в авиации;

3) повысить КПД газотурбинного двигателя за счет более рациональной компоновки двигателя, второго контура, дающего дополнительную тягу, отсутствия жесткой кинематической связи между двумя валами. Это позволило спроектировать оптимальные компрессор, турбину и двигатель Стерлинга с вентилятором;

4) улучшить надежность силовой установки за счет уменьшения числа ступеней турбины до одной ступени и распределения большей части нагрузки на двигатель Стирлинга;

5) создать благоприятные условия для работы вентилятора и двигателя Стирлинга, согласовав их оптимальные расчетные угловые скорости вращения вентилятора. Кроме того, применение двухвальной схемы двигателя позволит развязать механически рабочее колесо и ротор турбины и компрессора с одной стороны от вентилятора и двигателя Стирлинга, работа которых при запуске и на переходных режимах значительно различаются, например, по частоте вращения валов и по приемистоти;

6) обеспечить оптимальную работу двигателя на переходных режимах, вследствие того что основная составляющая тяги на взлете, если двигатель используется в авиации, создается углеводородным топливом, а ядерный реактор вступает в работу на крейсерском режиме и может обеспечить нахождение самолета в воздухе до одного года непрерывно. Несмотря на плохую приемистость двигателя Стирлинга при резком изменении расхода топлива через камеру сгорания суммарная тяга двигателя будет изменяться практически мгновенно за счет реактивной составляющей. Через 5...7 мин мощности, развиваемые винтом и газогенератором, перераспределятся, например, при форсировании основную тяговую нагрузку будет нести вентилятор, имеющий хороший КПД на дозвуковых скоростях, в результате экономичность двигателя на крейсерском режиме полета значительно возрастет;

7) значительно уменьшить расход топлива при эксплуатации самолета. Это имеет важное значение в связи с исчерпанием ресурсов углеводородного топлива, его удорожанием и отсутствием альтернативы этому виду топлива. Применение водорода, имеющего стоимость, в сотни раз большую, чем керосин, в ближайшие 100 лет бесперспективно, а использование сжиженного природного газа из-за его плохих энергетических характеристик и сложности в эксплуатации криогенной техники пока весьма ограничено;

8) облегчить условия работы вентилятора за счет его нежесткой связи с валом компрессора и возможности их взаимного проскальзывания и рассогласования оборотов ротора компрессора и ротора вентилятора;

9) облегчить запуск и останов двигателя за счет применения двухвальной схемы;

10) уменьшить вес и габариты двигателя и общий вес энергетической установки или самолета за счет компактности ядерного топлива;

11) снизить стоимость двигателя за счет отказа от дорогостоящих материалов, используемых при изготовлении турбины и решить проблему охлаждения турбины, во-первых, снизив температуру перед ней; во-вторых, направив весь охлаждающий воздух на охлаждение только одной ступени турбины, вместо 4-х... 5-ти ступеней, применяемых ранее на мощных газотурбинных двигателях;

12) обеспечить работу двигателя только на углеводородном топливе или на ядерном реакторе или одновременно с использованием энергии ядерного реактора и химической энергии углеводородного топлива;

13) значительно увеличить тягу двигателя за счет размещения теплообменника во втором контуре.

1. Атомный газотурбинный авиационный двигатель, содержащий первый и второй контуры, внешний и внутренний валы с вентилятором, установленным на внутреннем валу, и компрессор, установленный на внешнем валу, а также, по меньшей мере, одно рабочее колесо турбины, установленное на внешнем валу, и камеру сгорания между компрессором и турбиной, воздухозаборник, турбину и реактивное сопло, отличающийся тем, что за турбиной установлен двигатель Стирлинга, соединенный кинематически с внутренним валом и трубопроводами циркуляции теплоносителя с ядерным реактором, перед камерой сгорания и во втором контуре установлены теплообменники, соединенные трубопроводами рециркуляции с ядерным реактором.

2. Атомный газотурбинный авиационный двигатель по п.1, отличающийся тем, что двигатель Стирлинга выполнен из двух групп цилиндров: рабочих и поршневых, при этом рабочие цилиндры размещены в первом контуре, а расширительные - во втором.

3. Атомный газотурбинный авиационный двигатель по п.1 или 2, отличающийся тем, что к двигателю Стирлинга присоединены воздушные патрубки.

4. Атомный газотурбинный авиационный двигатель по п.3, отличающийся тем. что концы воздушных патрубков выходят в атмосферу.

5. Атомный газотурбинный авиационный двигатель по п.3, отличающийся тем, что концы воздушных патрубков подсоединены к воздухозаборнику.

6. Атомный газотурбинный авиационный двигатель по п.3, отличающийся тем, что концы воздушных патрубков присоединены к выходу из первых ступеней компрессора.

www.findpatent.ru

Авиационный газотурбинный двигатель - Большая Энциклопедия Нефти и Газа, статья, страница 2

Авиационный газотурбинный двигатель

Cтраница 2

Рассмотрим типичный для авиационных газотурбинных двигателей ротор диско-барабанной конструкции ( рис. 1), собранный из рабочих колес, валов и вставок.  [17]

Основными типами компрессоров авиационных газотурбинных двигателей являются многоступенчатые осевые или осецентробеж-ные компрессоры. Другие типы компрессоров применяются реже.  [18]

Узлы и элементы авиационных газотурбинных двигателей достигли очень высокой степени аэродинамического и конструктивного совершенства, поэтому рассчитывать на значительное улучшение их аэродинамических характеристик нельзя и основные усилия следует направлять на расширение диапазона эффективной работы, уменьшение размеров и массы этих узлов и элементов.  [19]

О Турбовинтовой двигатель - авиационный газотурбинный двигатель, в котором основная тяга создается воздушным винтом, приводимым во вращение газовой турбиной, а дополнительная тяга - струей газов, вытекающих из реактивного сопла двигателя.  [20]

О Турбокомпрессорный двигатель - авиационный газотурбинный двигатель, в котором сжатие поступающего в камеру сгорания воздуха осуществляется компрессором.  [21]

О Турбореактивный двигатель - авиационный газотурбинный двигатель, в котором тяга создается струей газов, вытекающих ив реактивного сопла.  [22]

Особенностью циркуляционных масляных систем авиационных газотурбинных двигателей является то, что эти системы могут быть одно - или двухконтурными. Из всех типов очистителей в авиационных системах применяют исключительно фильтры, места установки которых зависят от конструкции масляной системы.  [24]

Таким образом, у авиационных газотурбинных двигателей имеются достаточно хорошие перспективы совершенствования термодинамических параметров рабочего процесса и повышения эффективности узлов. Кроме того, в силовых установках перспективных летательных аппаратов наряду с традиционными типами и схемами двигателей могут применяться новые типы двигателей и новые компоновочные конструктивные схемы их.  [25]

Масла для смазки редукторов авиационных газотурбинных двигателей выпускают в соответствии с военными спецификациями различных стран либо со спецификациями фирм, производящих двигатели. То, что данное масло допущено к применению, еще не означает, что при работе на нем не может возникнуть каких-либо затруднений. При этом лишь уменьшается вероятность их появления.  [26]

Аналогичное соревнование шло между авиационными газотурбинными двигателями с осевыми и радиальными компрессорами; в настоящее время из-за необходимости экономить горючее победу одержал вентиляторный осевой компрессор. Еще один пример - мартеновский и бессемеровский способы производства стали. Примерно до 1950 года для массового производства стали предпочтение отдавалось мартеновским печам, однако сейчас конвертерный метод применяется шире, так как он имеет гораздо большую производительность. Наконец, можно вспомнить карбюраторный и дизельный двигатели: каждый из них имеет свою сферу применения, однако растущая нехватка нефти и загрязнение окружающей среды свинцом приведут, вероятно, к тому, что дизель получит более широкое распространение.  [27]

Реактивное топливо используют в авиационных газотурбинных двигателях.  [29]

Реактивное топливо используется в авиационных газотурбинных двигателях. Характерным для них требованием является высокая теплота сгорания, небольшое содержание ареновых углеводородов ( 10 - 22 %), так как они увеличивают нагарообразующую способность топлива, а содержание алканов должно обусловливать температуру кристаллизации топлива от 50 до 60 С.  [30]

Страницы:      1    2    3    4

www.ngpedia.ru

Авиационный газотурбинный двигатель

Авиационный газотурбинный двигатель содержит размещенный в его внутренней полости электрогенератор с комбинированным возбуждением, включающий в себя индуктор, статор и ротор. Ротор соединен с установленным в переднем и заднем подшипниках валом, соединенным с осевым компрессором. Статор с рабочими обмотками запрессован в тонкостенную цилиндрическую гильзу с фланцем. Индуктор включает в себя обмотку регулирования, размещенную на внутренней цилиндрической части кольцевого магнитопровода, имеющего также наружную цилиндрическую и торцевую стенки. Внутренняя полость, в которой размещен электрогенератор, образована внутренней поверхностью корпуса направляющего аппарата и щитами передней и задней опор, входящих в состав осевого компрессора. Торцевая стенка кольцевого магнитопровода индуктора закреплена на торцевой стенке задней опоры, а его наружная цилиндрическая стенка либо ее часть размещена внутри обоймы ротора. Фланец цилиндрической гильзы прикреплен к торцевой части кольцевого выступа, выполненного на внутренней поверхности корпуса направляющего аппарата со стороны задней опоры. Изобретение позволяет обеспечить минимальное аэродинамическое сопротивление внутреннего воздушного тракта устройства, минимизировать его наружный объем и улучшить аэродинамические характеристики. 3 з.п. ф-лы, 1 ил.

 

Изобретение относится к электротехнике, в частности к области авиационного двигателестроения, и может быть использовано при проектировании авиационных двигателей с встроенными электрогенераторами, приводимыми во вращение без промежуточных редукторов.

Известен газотурбинный авиадвигатель, содержащий встроенный электрогенератор, включающий в себя статор и ротор, соединенный с валом трансмиссии. Генератор размещен во внутренней полости трансмиссии, образованной ее опорами и крышкой [1]. Известное устройство имеет сложную конструкцию узла регулирования системы генерирования энергии. Это объясняется тем, что для обеспечения стабилизации выходного напряжения необходимо использование силового управляемого выпрямителя, характеризующегося большой массой и, следовательно, высокими тепловыми потерями, что ведет к снижению КПД и увеличению габаритов всего устройства.

Наиболее близким к изобретению техническим решением является газотурбинный авиадвигатель, содержащий размещенный в его внутренней полости электрогенератор с комбинированным возбуждением. Электрогенератор включает в себя индуктор с обмоткой регулирования, размещенной на магнитопроводе, статор с рабочими обмотками и ротор. Ротор соединен с установленным в переднем и заднем подшипниках валом, на котором закреплен осевой компрессор. В данном устройстве внутренняя полость, в которой установлен электрогенератор, образована опорами и передней крышкой трансмиссии. Охлаждение статора производится маслом, которое поступает через предусмотренный в корпусе опор трансмиссии канал. Недостатком известного устройства [2] является сложность конструкции и сложность его сборки, а так же низкие аэродинамические характеристики, обусловленные значительными размерами поперечного сечения двигателя.

Техническим результатом, которого можно достичь при использовании данного изобретения, является упрощение конструкции и ее сборки, а также улучшение аэродинамических характеристик устройства.

Технический результат достигается тем, что в авиационном газотурбинном двигателе, содержащем размещенный в его внутренней полости электрогенератор с комбинированным возбуждением, включающий в себя индуктор, статор и ротор, при этом ротор соединен с установленным в переднем и заднем подшипниках валом, соединенным с осевым компрессором, статор с рабочими обмотками запрессован в тонкостенную цилиндрическую гильзу с фланцем, а индуктор включает в себя обмотку регулирования, размещенную на внутренней цилиндрической части кольцевого магнитопровода, имеющего также наружную цилиндрическую и торцевую стенки [2], внутренняя полость, в которой размещен электрогенератор, образована внутренней поверхностью корпуса направляющего аппарата и щитами передней и задней опор, входящих в состав осевого компрессора, причем торцевая стенка кольцевого магнитопровода индуктора закреплена на торцевой стенке задней опоры, а его наружная цилиндрическая стенка либо ее часть размещена внутри обоймы ротора, при этом фланец цилиндрической гильзы прикреплен к торцевой части кольцевого выступа, выполненного на внутренней поверхности корпуса направляющего аппарата со стороны задней опоры. Кроме того, в торцевой стенке кольцевого магнитопровода индуктора выполнен канал, обеспечивающий подачу хладагента через задний подшипник на обмотку регулирования индуктора и заднюю торцевую поверхность ротора. Межкатушечные соединения и выводы рабочих обмоток статора могут быть выполнены в виде кольца, расположенного со стороны задней опоры. Концы каждой из рабочих обмоток статора могут быть выведены на соответствующий им разъем, на который также выведен соответствующий ему конец обмотки регулирования индуктора. При анализе известных аналогов данного изобретения не обнаружена подобная модификация размещения генератора внутри авиадвигателя, что позволяет сделать вывод о соответствии данного технического решения критерию «изобретательский уровень».

На чертеже изображен продольный разрез авиационного газотурбинного двигателя.

Устройство содержит электрогенератор с комбинированным возбуждением, включающий в себя индуктор 1, статор 2 и ротор 3, размещенные во внутренней полости 4 авиадвигателя, образованной внутренней поверхностью осевого компрессора, установленного на валу 5. Осевой компрессор включает в себя переднюю и заднюю опоры 6, 7 и направляющий аппарат 8. Вал 5, установленный в переднем 9 и заднем 10 подшипниках, размещен между щитами передней 6 и задней 7 опор. Статор 2 с рабочими обмотками запрессован в тонкостенную цилиндрическую гильзу 11 с фланцем 12, который прикреплен к торцевой части кольцевого выступа 13, выполненного на внутренней поверхности корпуса направляющего аппарата 8 со стороны задней опоры 7. Ротор 3 состоит из передней и задней стенок, а также обоймы, выполненных заодно. Индуктор 1 включает в себя обмотку регулирования, размещенную на внутренней цилиндрической части кольцевого магнитопровода, имеющего так же наружную цилиндрическую и торцевую стенки. Торцевая стенка кольцевого магнитопровода индуктора 1 закреплена на торцевой стенке задней опоры 7. Наружная кольцевая стенка магнитопровода индуктора либо ее часть размещена внутри обоймы ротора. В торцевой стенке кольцевого магнитопровода индуктора 1 выполнен канал 14, обеспечивающий подачу хладагента через задний подшипник 9 на обмотку регулирования индуктора 1 и заднюю торцевую поверхность ротора 3. Выводы рабочих обмоток статора 2 размещены со стороны задней опоры 7. Межкатушечные соединения и выводы рабочих обмоток статора 2 выполнены в виде кольца 15, расположенного со стороны задней опоры 7. Концы каждой из рабочих обмоток статора 2 выведены на соответствующий им разъем, на который также выведен соответствующий ему конец обмотки регулирования индуктора 1. Разъемы установлены на наружной поверхности двигателя.

При работе авиадвигателя вал 5 осевого компрессора вращает установленный на нем ротор 3 генератора, в результате чего в обмотках статора 2 возникает электрический ток. При изменении частоты вращения вала 5 и электрической нагрузки выходное напряжение генератора стабилизируется путем изменения тока в обмотке регулирования.

Хладагент, в качестве которого используется топливо, поступает через предусмотренные каналы в форсунку переднего подшипника 9. Через подшипник 9 хладагент попадает на переднюю торцевую стенку ротора 3, его обойму и на лобовые части рабочих обмоток статора 2. Благодаря выполненному в торцевой стенке кольцевого магнитопровода индуктора каналу 14 охлаждающее топливо через задний подшипник 10 поступает на обмотку регулирования индуктора 1 и заднюю торцевую поверхность ротора 3. В устройстве охлаждению подвергаются все узлы генератора, что значительно повышает надежность их работы, при этом использование топлива в качестве хладагента позволяет упростить весь процесс отвода тепла.

В случае работы энергосистемы на мостовой выпрямитель наиболее оптимальный режим регулирования, обеспечивающий минимальные массу и габариты выходного фильтра, достигается за счет использования шестифазной двенадцатизонной обмотки, формирующей на выходе выпрямителя напряжение с двенадцатикратной пульсацией.

Шестифазная обмотка может быть выполнена в виде двух трехфазных обмоток, одноименные фазы которых сдвинуты на 30 эл.град.

Каждая из рабочих обмоток статора выведена на свой электрический разъем, на который также выведен соответствующий конец обмотки регулирования. Размещение выводов рабочих обмоток статора 2 в зоне задней опоры 7 осевого компрессора и установка индуктора внутри обоймы ротора позволяет обеспечить минимальное аэродинамическое сопротивление внутреннего воздушного тракта устройства.

Таким образом, указанное размещение узлов электрогенератора внутри авиадвигателя позволяет минимизировать его наружный объем, что способствует улучшению аэродинамических характеристик.

Оптимальные аэродинамические и массогабаритные показатели двигателя позволяют ему быть наиболее предпочтительным для использования в классе двигателей с встроенными электрогенераторами.

Источники информации:

1. RU 2168024, С F02С 7/32, 1998 г.

2. RU 2211348, C1 F02С 7/32, 2002 г.

1. Авиационный газотурбинный двигатель, содержащий размещенный в его внутренней полости электрогенератор с комбинированным возбуждением, включающий в себя индуктор, статор и ротор, при этом ротор соединен с установленным в переднем и заднем подшипниках валом, соединенным с осевым компрессором, статор с рабочими обмотками запрессован в тонкостенную цилиндрическую гильзу с фланцем, а индуктор включает в себя обмотку регулирования, размещенную на внутренней цилиндрической части кольцевого магнитопровода, имеющего так же наружную цилиндрическую и торцевую стенки, отличающийся тем, что внутренняя полость, в которой размещен электрогенератор, образована внутренней поверхностью корпуса направляющего аппарата и щитами передней и задней опор, входящих в состав осевого компрессора, причем торцевая стенка кольцевого магнитопровода индуктора закреплена на торцевой стенке задней опоры, а его наружная цилиндрическая стенка либо ее часть размещена внутри обоймы ротора, при этом фланец цилиндрической гильзы прикреплен к торцевой части кольцевого выступа, выполненного на внутренней поверхности корпуса направляющего аппарата со стороны задней опоры.

2. Авиационный газотурбинный двигатель по п.1, отличающийся тем, что в торцевой стенке кольцевого магнитопровода индуктора выполнен канал, обеспечивающий подачу хладагента через задний подшипник на обмотку регулирования индуктора и заднюю торцевую поверхность ротора.

3. Авиационный газотурбинный двигатель по п.1 или 2, отличающийся тем, что межкатушечные соединения и выводы рабочих обмоток статора выполнены в виде кольца, расположенного со стороны задней опоры.

4. Авиационный газотурбинный двигатель по п.1, отличающийся тем, что концы каждой из рабочих обмоток статора выведены на соответствующий им разъем, на который так же выведен соответствующий ему конец обмотки регулирования индуктора.

www.findpatent.ru