ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Ветрогенератор на базе асинхронного двигателя. Ветрогенератор из асинхронного двигателя


Ветрогенератор из асинхронника от Сергея из Украины

Первый этап, переделка асинхронного двигателя на магниты и перемотка статора. Сборка, калибровка и установка анемометра.

Описание этой конструкции я нашел на форуме по ветрогенератором, вот страничка Сергей"АИР90L4 + Винт 2,3м". Данный уже даже не просто ветрогенератор, а целую ветро электростанцию сделал пользователь под ником Сергей, сам судя по профилю из Украины г. Запорожье. он кстати по совместительству еще и модератор того форума. Ниже я описал его конструкцию, все сделано довольно профессионально и умно.

Как сказал Сергей - Вот наконец-то и у меня что-то завертелось. Приехав на новое место жительства он первым делом решил построить ветрогенератор и начал с анемометра (прибор слежения за скоростью ветра). В качестве датчика скорости ветра был использован вольтметр со шкалой до сто вольт, из которого было удалено сопротивление. Анемометр был сделан если не ошибаюсь из моторчика от магнитолы, к которому были приделаны лопасти в виде чашечек.

Самодельный анемометр был откалиброван с помощью скутера, показания вольтметра были сняты на четырех скоростях движения. Хоть ветра и не было, вернее был еле ощутимый, но показания при езде в одну и другую сторону разнились, так-же показания спидометра могут быть не точными, но будем считать что показания верны, так-как пока более точно откалибровать не получается.

После поднял анемометр на 12-ти метровую мачту, а внизу подключил датчик, который сделан из вольтметра, теперь он показывает скорость ветра в м/с.

анемометр своими руками>

Генератор для ветряка был сделан из асинхронного двигателя мощностью 2,2Кв. АИР90L4. На огороде была сделана небольшая печка для отливки алюминиевых болванок, из которых будет сделана "шуба" под магниты. Обычно шубу делают на основе бинтов, пропитанных эпоксидной смолой, ноя решил сделать по надежнее и прочнее.

 отливаем алюминиевые болванки>

Ротор асинхронного двигателя был проточен на толщину магнитов, потом из алюминиевой болванки была выточена "шуба", в которой просверлены дырки под магниты, ротор делался на шесть полюсов под магниты шайбы 10*13мм. К сожалению при попытке насадить на ротор первая заготовка треснула и пришлось делать новую, наверно слишком плотно сделал и не смог насадить.

как переделать асинхронный двигатель на магниты>

Статор был перемотан на шесть полюсов проводом 1,12 мм, получилось по 24 витка в катушках, больше просто впихнуть некуда. Сопротивление фазы 1 ом, после перемотки уже готовый генератор был прокручен с помощью дрели и вот что накрутилось на нагрузку 5Ом., 300об/м =16вольт 3,5А, 400об/м=21вольт 5А, 500об/м= 27вольт 6А, 600об/м= 32вольта 7А, 700об/м= 38вольт 8,1А. Показания были сняты с одной фазы генератора, то-есть каждая фаза по отдельности выдает такие параметры.

Перематывался статор вот так, было сделано приспособление для намотки катушек, потом каждая катушка заправлялась в пазы и утрамбовывалась.

перемотка статора асинхронного двигателя>

перемотка асинхронного двигателя>

как перематывать электродвигатель>

После сборки генератора и подготовки всех элементов был сделан стенд для сборки и тестирования ветрогенератора. Только после этого к генератору был подсоединен диодный мост, датчик оборотов, и с помощью перфоратора были сняты нагрузочные характеристики генератора.

Продолжение изготовления ветрогенератора на следующей странице, где данные генератора, и процесс сборки, лопасти, и т.д.

вы на первой странице

Страница 2 - Испытательный стенд, пареметры генератора. Страница 3 - Изготовление лопастей и балансировка винта. Страница 4 - Поднятие мачты и монтаж ветрогенератора. Страница 5 - Доводка ветрогенератора, электроника, акб.

e-veterok.ru

Ветрогенератор на базе асинхронного двигателя

Конструкция этого ветрогенератора, достаточно простая и надежная. Это первая попытка переделки асинхронного двигателя в генератор на постоянных магнитах. Как то разбираясь в подвале нашел движок старый, но совсем не пользованный. Решил на нем и потренироваться. Мощности большой с него не ждал, так как двигатель четырех полюсной. Но опыт и практика иногда важнее Киловатт. Разобрал я его, все внутренности в приличном состоянии оказались, что порадовало. Рассчитал какие магниты подходят (точнее какие доступнее из возможных), проточку ротора. Отдал ротор токарю, тот поколдовал над ним полчасика, и вот я обладатель заготовки. Не торопясь рассчитал скос магнитного полюса. Если клеить магниты без скоса, то залипания будут сильные, и сдвинуть вал генератора ветер не сможет. Напечатал шаблон наклейки магнитов. Пробил отверстия. Наклеил на заготовку и начал клеить магниты.
Больших проблем не было. Все магниты наклеил за два вечера (по два часа с перерывами на пиво и прочие неотложные дела). Утром обмотал ротор прозрачным скочем, начиная снизу, герметично, вверху немного оставил зазор. Залил не торопясь эпоксидку. Все получилось нормально. Запас при проточке ротора взял больше расчетного, и все равно оказалось мало. Ротор не захотел входить. Переклеивать магниты залитые смолой я не стал. Просто обточил аккуратно на наждаке на малых оборотах с водой (не рекомендую этого делать без крайней нужды, так как неодимовые магниты не терпят перегрева). Собрал генератор. Залипаний практически нет (двумя пальцами легко страгивается). Генератор готов. Снимаем характеристики. Это первый замер, который я делал сразу после сборки. Гарантировать точность оборотов не могу, не было чем фиксировать точно.Перед испытаниями
А эти замеры делал не так давно. Соединение -фазы выпрямлены и последовательно.Теперь нужно было делать лопасти. Рассчитал их не я. Вот что вышло.Диаметр турбины 1.7 метра, быстроходность Z 5.Собрал головку, но проверить как? А руки чешутся. Взял генератор с установленными лопастями и полез на крышу не высокую. Ветра почти нет. Покрутился вместо флюгера, а ветерок возьми да дунь слегка. Кто нибудь держал генератор при вращающимся винте? И не надо. Отвернуться от ветра совсем не просто. В общем был похож на настоящего Карлсона (который живет на крыше wink ). Все кто наблюдал эту картину от души посмеялись, а мне было немного не по себе (и это мягко сказано).В общем эта модель благополучно отработала несколько месяцев, потом демонтирована на реконструкцию. Ни каких повреждений не обнаружил.
Ну а сейчас он вот такой

Здесь небольшой видеоролик про этот Вертяк:

Ну а я продолжаю искать, испытывать и строить другие варианты, и остановиться уже не могу. Наверно еще опишу другие конструкции.

Николай (507)

Россия, Московская область, Солнечногорск.

Просто человек. Мне сорок один год. Работаю. Люблю рыбалку. Живу в подмосковье. Делаю на досуге ветряки, поэтому и паяльник приходится держать. Возможно мой опыт в этом направлении может кому то пригодиться.

 

datagor.ru

Ветрогенератор из асинхронного двигателя

Энергетический кризис часто сопровождается перебоями в энергоснабжении, особенно, если проблема касается сельской местности. Иметь резервный генератор не всегда возможно по ряду причин, поэтому можно воспользоваться «дармовым» источником энергии ветра. Для этого необходим ветрогенератор, который проще всего соорудить из обычного асинхронного двигателя.

Принцип действия такого генератора весьма прост: энергия ветра будет передаваться на ротор, который начёт вращаться в том же  направлении, что и создаваемое при этом магнитное поле. Поскольку скольжение ротора при этом становится отрицательным, то на валу ротора возникает тормозной момент, а образующаяся электроэнергия будет передана потребителю. Таким образом, намагниченность ротора становится причиной возбуждения эдс в выходной цепи машины.

Преимущества асинхронного генератора:

  1. Конструктивно такой генератор проще, чем синхронный, и к тому же некритичен к внешним неблагоприятным воздействиям: например, к попаданию на него пыли и грязи (что вполне вероятно в условиях сильного ветра).
  2. Напряжение на выходе имеет меньшую степень нелинейных искажений, а потому к такому генератору можно подключать различную нагрузку – от сварочного преобразователя до компьютера.
  3. Коэффициент неравномерности вращения для асинхронных генераторов не опускается ниже 0,98 , что исключает его перегрев в условиях длительной работы.
  4. Вследствие отсутствия вращающихся обмоток долговечность асинхронного генератора ожидается достаточно высокой.

Таким образом изготовить ветрогенератор из асинхронного двигателя не только принципиально возможно, но и практически целесообразно.

Рассмотрим основные этапы переделки

Вначале подбирается необходимый электродвигатель:  он должен быть низкооборотистым ( не более 1300 мин-1), имеющим 3 или 4 пары полюсов.

Проточка ротора двигателя под установку магнитов

ротор асинхронного двигателя stronews.ru

рис. 1

Заключается в уменьшении диаметра ротора под высоту устанавливаемых магнитов. Здесь возможны варианты: если имеющиеся в распоряжении магниты – недостаточно сильные, то дополнительно необходимо выточить и одеть на ротор переходную металлическую втулку, с помощью которой значение наводимой магнитной индукции окажется достаточным для того, чтобы не допустить рассеивания магнитного поля. В ином случае никаких других работ по переделке ротора производить не нужно. Проточенный под установку магнитов (при наличии  втулки) ротор имеет вид, представленный на рис.1.

Расчёт необходимого количества магнитов и их монтаж

Для этого сначала определяется длина окружности ротора после его переточки, которая будет соответствовать высоте втулки:

L=πD , где D – диаметр ротора.

Требуемая толщина магнитов t должна быть в пределах t=(0.1...0.15)D. Далее рассчитывается количество секций n, в каждой из которых магниты будут устанавливаться  с одинаковым полюсом:

n=L/p, где p – количество полюсов электродвигателя.

Ротор асинхронного двигателя с постоянными магнитами stronews.ru

рис. 2

Для окончательного решения вопроса определяют количество магнитов, которое сможет уместиться в одном полюсе, чтобы потом равномерно и с наибольшей плотностью  распределить их по всей высоте втулки. Смещение магнитов при их наклейке принимается равным толщине одного магнита. Для приклеивания лучше всего применять эпоксидный клей. Внешний вид втулки с магнитами в сборе, одетой на ротор, представлен на рис.2.

Проверка работоспособности генератора

После сборки ветрогенератора из асинхронного двигателя необходимо проверить на фактически развиваемую выходную мощность, поскольку после наклейки магнитов, а также вследствие увеличения массы ротора, параметры электромашины изменяются. С этой целью ротор генератора необходимо привести во вращение со скоростью, соответствующей номинальной скорости вращения переделанного электродвигателя.

асинхронный двигатель в сборе stronews.ru

рис. 3

Для этого можно использовать обычную электродрель, а на выходе подключить любую доступную нагрузку, например, электролампочку. Изменяя мощность подключаемых ламп, а также число оборотов дрели, можно установить практическую работоспособность ветрогенератора и зависимость вырабатываемого напряжения от количества оборотов ротора. Контрольная установка в различных вариантах её подключения представлена на рис.3.

 

Изготовление исполнительной части ветрогенератора

Она должна состоять из лопастей винтов, поворотной оси и стойки, на которой закрепляется вся конструкция. Лопасти (см. рис.4) можно изготавливать из полихлорвиниловой трубы диаметром 150…200 мм. Далее под готовый ветрогенератор из асинхронного двигателя изготавливается стойка, которая должна иметь поворотную ось, собранную на подшипниках качения. Готовая конструкция исполнительной части ветрогенератора с винтом диаметром 1,7 м представлена на рис. 5.

Лопасти ветряка из асинхронного двигателя stronews.ru

рис. 4

Ветряк из асинхронного двигателя stronews.ru

рис. 5

Апробация ветрогенератора из асинхронного двигателя

Заключается в экспериментальном определении мощности готовой установки.  Данный параметр будет определяться множеством факторов, причём большинство из них весьма неопределённо:  в расчёт следует принимать и высоту мачты, и диапазон изменения скорости ветра и влажность воздуха. Тем не менее принцип остаётся тем же: подключается нагрузка заранее известной мощности, после чего по падению числа оборотов можно сделать вывод о мощности ветрогенератора.

Повысить мощность машины можно, дополнительно осуществив перемотку статора двигателя проводом с большим сечением. Это уменьшает собственное сопротивление генератора, и , соответственно, увеличивает напряжение на выходе.  Общий вид переделанного таким образом статора двигателя  представлен на рис. 6. Таким путём удаётся увеличить выходную мощность ветрогенератора в несколько раз.

Статор асинхронного двигателя stronews.ru

рис. 6

А вот и видео по переделке и показательным запуском:

stronews.ru

Ветрогенератор на базе асинхронного двигателя

Ветрогенератор является довольно простой и надежной конструкцией в плане источника автономной электрический энергии. Описанный в данной статье, тип генератора работает на постоянных магнитах и является переделанной моделью из асинхронного двигателя. Генератор сделан из старого четырех полюсного двигателя. Так как тут попытка такого преобразования – первая, то здесь не имела значения мощность двигателя, скорее дело в практическом применении и чистого интереса. Первым делом необходимо было разобрать двигатель. Удивило состояние деталей внутри конструкции – они были практически новые, что не могло не радовать.

1261479387_v-razobrannom

Теперь необходимо было проточить ротор. Зачастую такую работу необходимо производить только, если имеются навыки токарного дела.Так как, таких навыков не имеется, пришлось обращаться за помощью к знакомому токарю.

1261480372_protochennyjj-rotor-000

Далее нужно было подобрать магниты и  рассчитать скос магнитного полюса. Скос делается для того, чтобы не происходило залипание. Как только все расчеты были проведены,  тут же распечатал шаблон и пробил отверстия.

1261480794_shalon-magnitov

Данный шаблон нужен для того, что бы показать места, где именно нужно клеить магниты. Если правильно рассчитать угол скоса, то проблем при проклейке магнита не должно возникать. В основном, такая работа займет не более двух часов.

1261480958_pervyjj-rjad-000

1261481063_obkleenyjj-rotor-000

Далее плотно обмотал ротор скотчем. Делать это следует снизу, плавно двигаясь вверх. И только на самом верху оставить зазор. Следом спокойно залил все это эпоксидной смолой, для достижения большей герметичности и надежности. Когда производится процесс проточки ротора, то необходимо брать запас раза в 1,5 – 2 больше расчетного. Все дело в том, что если мало сточить, что ротор просто не сможет войти. Можно, конечно сточить магниты, но в дальнейшем это может быть чревато перегревом генератора, так что лучше заранее позаботиться обо всех нюансах.

Теперь следует собрать генератор воедино и проверить возможность его оборотов. Достаточно просто провернуть ротор двумя пальцами. Обороты должны проходить легко, без залипания и трения. Теперь, когда конструкция полностью готова, можно приступать к процессу съема характеристик.

1261481382_pered-ispytanijami-000

1261481502_ispytanija-na-treugolnik1

Естественно, при первых замерах нельзя гарантировать точные характеристики генератора, но все же примерно прикинуть достаточно. После того, как все характеристики сняты, можно приступать к изготовлению лопастей.

1261481832_ispytanija-generatora-as01

По данным характеристики можно отметить, что диаметр турбины будет соответствовать 1,7 метра, а быстроходность Z 5.

1261481666_lopasti-000

Изготовив полностью всю конструкцию, необходимо проверить ее работоспособность. Достаточно  проверить ее работу, заменив обычный флюгер. Здесь достаточно небольшого ветра, что бы генератор пришел в действие. Поэтому необходимо аккуратно установить конструкцию вместо флюгера и привести в действие. Как уже говорилось, наличие ветра лишь придаст эффектным оборотам данной конструкции, но главное, что бы в это время генератор был уже закреплен.

1261482393_na-machte1-000

Данная конструкция сможет спокойно отработать в течении нескольких месяцев, причем без ремонта или замены конструктивных частей. Конечно, при условии, что все сделано правильно. После нескольких месяцев работы следует полностью проверить генератор.

1261482408_na-machte2-000

Автор:  Нагорянский Александр Александрович.

volt-index.ru

Генератор для ветряка из асинхронного двигателя

ротор асинхронного двигателя на неодимовых магнитах>

немного вводной информации по переделке асинхронных двигателей в генератор Переделка асинхронного двигателя довольно популярный метод изготовления генератора для ветрогенератора. Асинхронные двигатели с малым количеством полюсов рассчитаны на высокие обороты, к примеру двух-полюсные на 3000 об/м, но для ветрогенераторов нужны низкие обороты, по этому нужно выбирать самые низко-оборотистые двигатели. Сейчас в доступности самые низко-оборотистые на 750 и 1000 об/м, соответственно на 8 и 6 полюсов.

Двигатели на 2-4 полюса приходится перематывать чтобы сделать больше количество полюсов, это достаточно сложно и затратно, а двигатели на 6-8 полюсов можно не перематывать и использовать как есть. Вся переделка двигателя в генератор заключается в переделке ротора на неодимовые магниты. Делается это достаточно просто, родной ротор просто протачивается на толщину магнитов (к примеру 5 мм), далее ротор делится на количество полюсов (к примеру 8) и на полюса наклеиваются магниты.

Магниты подбираются небольших размеров и из них набираются полюса. К примеру двигатель АИР112MB8 3 кВт имеет ротор диаметром 131 мм, а длинна 130 мм. Значит длинна окружности ротора (130 мм*3,14=408,2 мм), но мы протачиваем ротор на 5 мм, значит (130 мм-10 мм*3,14=376.8 мм) делим на количество полюсов (376.8:8=47.1 мм) и получаем ширину полюса 47.1 мм. Магниты возьмём 30*10*5 мм, их поместится 4 ряда в полюсе и останется зазор в 7 мм между полюсами. По длине ротор 130 мм, а у нас как-раз 4 магнита по длинне 120 мм, и получается на ротор нужно по 16 магнитов на полюс, а всего понадобится 128 магнитов.

Можно использовать магниты любых других удобных размеров для набора полюсов. Магниты клеятся на супер-клей и другие клеи, а после наклейки оборачивается ротор скотчем и заливается эпоксидной смолой. Чтобы наиболее эффективно использовать магниты нужно делать минимальный зазор между магнитами и статором, тогда диаметр ротора с магнитами делают по диаметру статора, чтобы он на миллиметр не заходил в статор. После наклейки и заливки магнитов ротор подгоняют в статор шлифуя магниты, стачивают по немногу и пробуют вставлять в статор, добиваются того чтобы магниты были как можно ближе к зубам статора и при этом ротор вращался свободно без зацепов статора. При шлифовке очень важно не перегреть магниты, можно шлифовать на болгарке поливая водой, или на токарном станке.

асинхронный двигатель на неодимовых магнитах>

Вообще желательно сделать новый цельно-металлический ротор под магниты, или на родной ротор асинхронника под магниты одеть металлическую гильзу. Так магниты будут работать гораздо эффективнее, и хватит толщины 3-4 мм, а если не ставить гильзу, то магниты желательно ставить потолще, к примеру 6-10 мм.

Ниже представлены данные по асинхронным двигателям, размеры, толщина обмоточного провода, количество полюсов, сопротивление обмотки и прочее. Атак-же расчёт мощности переделанного генератора на различных оборотах при работе на аккумуляторы напряжением 12/24/48 вольт. За основу расчёта я взял магнитную индукцию равной 1 Тл, но на практике она может быть больше или меньше, всё зависит от толщины магнитов, плотности заполнения полюсов. Если будет протачиваться родной ротор и без металлической гильзы, то при толщине магнитов 5 мм марки n50 магнитная индукция будет 0.8 Тл примерно, если магниты толщиной 8-10 мм, то магнитная индукция будет 1-1.2 Тл. А если с гильзой или с цельно-металлическим ротором, то при толщине магнитов 5-6 мм магнитная индукция составит около 1-1.2 Тл

Асинхронный двигатель АИР100L6 2,2 кВт

Число полюсов 6, 1000 об/м. Размеры статора: наружный диаметр 168 мм, внутренний диаметр 113 мм, длина статора 120 мм, число зубов 36. Обмотка: число проводников в пазу 42, диаметр провода 1,13 мм, трехфазный, сопротивление фазы 2.39 Ом.
Примерная мощность на АКБ 12/24/48 вольт при соединении треугольником
Обороты ( об/м)Напряжение ХХАКБ 13 V А/Ватт*чАКБ 26 V А/Ватт*ч АКБ 52 V А/Ватт*ч
6013---
120265,4/70--
1803910.8/1405,4/140-
2405216.2/21110,8/281-
3006521.6/28116.2/4224,5/247
3607827/35221/56310/540
4209132.5/42227/70415/832
60013048/63343/112631/1710
90019575/98570/183058/3172

Асинхронный двигатель АИР100L8 1.5 кВт

Число полюсов 8, 750 об/м. Размеры статора: наружный диаметр 168 мм, внутренний диаметр 117 мм, длина статора 120 мм, число зубов 48. Обмотка: число проводников в пазу 48, диаметр провода 1,01 мм, трехфазный, сопротивление фазы 3.7 Ом.
Примерная мощность на АКБ 12/24/48 вольт при соединении треугольником
Обороты ( об/м)Напряжение ХХАКБ 13 V А/Ватт*чАКБ 26 V А/Ватт*ч АКБ 52 V А/Ватт*ч
60171/13--
120345,6/732/56-
1805110/1306.7/175-
2406814.8/19311,3/2954,3/244
3009522/28818.6/48411.6/604
36011226.7/34723.2/60416.2/843
42012931/40727.8/72320.8/1082
60017042.4/55138.9/101131.8/1658
90025565.4/85061.8/160954/2852

Асинхронный двигатель АИР112MA6 3 кВт

Число полюсов 6, 1000 об/м. Размеры статора: наружный диаметр 191 мм, внутренний диаметр 132 мм, длина статора 100 мм, число зубов 54. Обмотка: число проводников в пазу 28, диаметр провода 1,19 мм, трехфазный, сопротивление фазы 2 Ом.
Примерная мощность на АКБ 12/24/48 вольт при соединении треугольником
Обороты ( об/м)Напряжение ХХАКБ 13 V А/Ватт*чАКБ 26 V А/Ватт*ч АКБ 52 V А/Ватт*ч
6013--
90193/39--
120266.5/84--
1803913/1696.5/169-
2405219.5/25313/338-
3006526/33819.5/5076.5/338
3607832.5/42226/67613/676
4209139/50732.5/84519.5/1014
60013058.5/76052/135231.8/39/2028

Асинхронный двигатель АИР112MA8 2.2 кВт

Число полюсов 8, 750 об/м. Размеры статора: наружный диаметр 191 мм, внутренний диаметр 132 мм, длина статора 100 мм, число зубов 48. Обмотка: число проводников в пазу 40, диаметр провода 1,13 мм, трехфазный, сопротивление фазы 2.6 Ом.
Примерная мощность на АКБ 12/24/48 вольт при соединении треугольником
Обороты ( об/м)Напряжение ХХАКБ 13 V А/Ватт*чАКБ 26 V А/Ватт*ч АКБ 52 V А/Ватт*ч
60171.5/20--
90348/1053/80-
1205114.6/1909.6/250-
1806831/27516/4206.1/320
2408527/36022.6/59012.6/550
30011238/49533/86023/1200
36012944.6/57939.6/103029.6/1540
42014651/66546/120036/1880
60016357.6/75052.6/137042.6/2220

Асинхронный двигатель АИР112MB8 3 кВт

Число полюсов 8, 750 об/м. Размеры статора: наружный диаметр 191 мм, внутренний диаметр 132 мм, длина статора 130 мм, число зубов 48. Обмотка: число проводников в пазу 31, диаметр провода 1,25 мм, трехфазный, сопротивление фазы 1.93 Ом.
Примерная мощность на АКБ 12/24/48 вольт при соединении треугольником
Обороты ( об/м)Напряжение ХХАКБ 13 V А/Ватт*чАКБ 26 V А/Ватт*ч АКБ 52 V А/Ватт*ч
60172/26--
903411/1434.2/109-
1205120/26013.1/242-
1806828.9/37622.1/5748.4/437
2408537.8/49231/80717.3/903
30011252.1/67745.2/117631.5/1642
36012961/79354.2/140940.5/2107
42014670/91063.1/164249.4/2572
60016378.9/102672.1/187458.4/3037

Асинхронный двигатель АИР132S6 5.5 кВт

Число полюсов 6, 1000 об/м. Размеры статора: наружный диаметр 225 мм, внутренний диаметр 154 мм, длина статора 115 мм, число зубов 54. Обмотка: число проводников в пазу 21, диаметр провода 1,13 мм, трехфазный, сопротивление фазы 1 Ом.
Примерная мощность на АКБ 12/24/48 вольт при соединении треугольником
Обороты ( об/м)Напряжение ХХАКБ 13 V А/Ватт*чАКБ 26 V А/Ватт*ч АКБ 52 V А/Ватт*ч
6013--
90196/78--
1202613/169--
1803926/33813/338-
2405239/50726/676-
3006552/67639/101413/676
3607865/84552/135226/1352
4209178/101465/169039/2028
600130117/1521104/270478/4056

Асинхронный двигатель АИР132S8 4 кВт

Число полюсов 8, 750 об/м. Размеры статора: наружный диаметр 222 мм, внутренний диаметр 158 мм, длина статора 112 мм, число зубов 48. Обмотка: число проводников в пазу 28, диаметр провода 1,48 мм, трехфазный, сопротивление фазы 1,24Ом.
Примерная мощность на АКБ 12/24/48 вольт при соединении треугольником
Обороты ( об/м)Напряжение ХХАКБ 13 V А/Ватт*чАКБ 26 V А/Ватт*ч АКБ 52 V А/Ватт*ч
60173,2/41--
903416.9/2206,4/127-
1205130.6/39820/524-
1806844.3/52633.8/88012.9/670
2408558/75447.5/123726.6/1383
30011279.8/103769.3/180348.3/2516
36012993.5/121683/215962/3229
420146120/157296.7/251675.8/3941
60016357.6/750110/287289.5/4654

Множество двигателей не имеет смысла просчитывать, думаю представленной информации выше достаточно для того чтобы понять что получится из асинхронного двигателя различных размеров. Думаю что вполне можно и четырёх-полюсные на магниты переделывать, и даже двух-полюсные, но мощность будет ниже. Так-же я посчитал мощность при соединении фаз треугольником так-как при таком соединении сопротивление генератора меньше и следовательно ток зарядки выше. Но можно соединять и звездой, напряжение при этом поднимется в 1,7раза выше, но и сопротивление тоже, зато зарядка начнётся при ещё более низких оборотах.

Маломощные асинхронные двигатели от 0.18 до 1 кВт без перемотки статора не подходят для ветрогенераторов, энергию конечно давать будут, но из-за большого сопротивления обмоток ток зарядки будет очень маленький. Например 6-ти полюсной двигатель мощностью 0.55 кВт имеет сопротивление фазы 22Ом, и при 600 об/м мощность будет всего (130-13:22=5,3*13=69) 69ватт на АКБ 12вольт, а на 48вольт около 180ватт.

Винт для генератора можно рассчитать и изготовить из ПВХ труб, или сделать из дерева. Програ ммка по расчёту лопаситей описана в этой статье - Расчёт лопастей для ветрогенератора

e-veterok.ru

Ветрогенератор от Игоря Васильева

За основу брал генера­тор 3.5 кВт на 220 во­льт, 1500 оборотов в ­минуту . Ранее (лет 2­5 назад) он у меня ра­ботал на ветряке как ­есть. Винт был из дере­ва, 4 метра в диаметр­е. Сначала винт был напрямую соединен с г­енератором, но потом я пос­тавил редуктор с соотношением 1:3, и в­ыработка энергии воз­росла.

Работал ветря­к на ТЭН 3.5 кВт, который работал на о­топление. В процессе­ и этот тен не всегда­ удерживал ветряк (ге­нератор) на 1500 обор­отах, хотя средний ве­тер в нашей местности­ около 3 м/с. В какой то м­омент оторвало один э­лектромагнит на ротор­е, защиты от ураганов­ в тот момент не было­. Восстанавливать его­ на тот момент не ста­л, а стал экспериментировать с ротором. Уве­личивал число полюсов­ , чтобы уменьшить об­ороты, так как сильны­й ветер редкость.

В ­последнем варианте от­казался от электромаг­нитов и стал делать г­енератор на постоянны­х магнитах. Но и тут ­оказалось не все глад­ко. Первоначально реш­ил сделать генератор п­о классической схеме ­36 пазов и 24 полюса,­ но недооценил залипа­ние, первоначально он­о составило 0.4 кг\м.­ Хотя пробные замеры ­характеристик на проб­ной катушки меня очен­ь порадовали. Судя по­ опыту ветроловов и п­о моему расчёту, моме­нт страгивания ви­нта диаметром 3 метра должен был быть п­ри ветре около 8 м\с­.

Тогда я решил снима­ть магниты, но пренеб­рег информацией , что­ магниты боятся нагре­ва и нагрел ротор фен­ом. Соответственно ма­гниты ослабли и залип­ание уменьшилось до 0­.19 кг\м. Сняв магнит­ы и переклеив их по с­хеме 36 на 22 , залип­ание уменьшилось до 0­,09кг\м. Также пришло­сь нестандартно соед­инять обмотки катушек­ статора согласно намотке 22/36. Катушки мот­ал в два провода, диаметр которых 1­,56 мм, по 18 витков.в каждой катушке.

На данный момент на ­ветряке стоит старый ­деревянный двух-лопастн­ой винт диаметром 3 м­етра. Винт делался бе­з всякой науки, но крутку я все-таки делал­. В планах поставить ­новый деревянный трёх-лопастной винт, но ­пока не определился с­ размером. Сейчас сис­тема на 12 вольт. Ген­ератор начинает дава­ть зарядку от 90 обор­отов. Измерить ветер ­нечем, поэтому сказат­ь с какого ветра начи­нает работать не могу­. Как только тоненьки­е ветки на деревьях н­ачинают шевелится, ге­нератор начинает раск­ручиваться и практиче­ски сразу начинается ­зарядка. При переключ­ении на 24 вольтовую с­истему выдаёт почти в­ 1.5 раза больше мощн­ости (видел 600 ватт)­, но с нашими ветрами ­ заряжаться будет реж­е. Контроллер сделан ­из автомобильного рел­е и полевых транзисто­ров, балласт пока лам­почки.

Автор этого ветрогенератора Васильев Игорь.

Ниже фотографии генератора, ветряка в целом и показания приборов.­ Процесс намотки генератора

генератор для ветрогенератора из асинхронного двигателя>

генератор для ветрогенератора из асинхронного двигателя>

генератор для ветрогенератора из асинхронного двигателя>

магниты для ветрогенератора>

генератор для своими руками для ветрогенератора>

магниты для ветрогенератора>

магниты для ветрогенератора>

магниты для ветрогенератора>

мощность ветрогенератора>

мощность ветрогенератора>

мощность ветрогенератора>

мощность ветрогенератора>

мощность ветрогенератора>

мощность ветрогенератора>

мощность ветрогенератора>

мощность ветрогенератора>

ветрогенератор своими руками>

e-veterok.ru

Ветрогенератор своими руками из асинхронного двигателя

Генератор из асинхронного электродвигателя своими руками

Для обеспечения бесперебойного электроснабжения дома используют генераторы переменного тока, приводимые во вращение дизельными или карбюраторными двигателями внутреннего сгорания. Но из курса электротехники известно, что любой электродвигатель обратим: он также способен и вырабатывать электроэнергию. Можно ли сделать генератор из асинхронного двигателя своими руками, если он и двигатель внутреннего сгорания уже имеются? Ведь тогда не потребуется покупка дорогой электростанции, а можно будет обойтись подручными средствами.

Конструкция асинхронного электродвигателя

Асинхронный электродвигатель включает в себя две основные детали: неподвижный статор и вращающегося внутри него ротор. Ротор вращается на подшипниках, закрепленных в съемных торцевых частях. Ротор и статор содержат электрические обмотки, витки которых уложены в пазы.

Статорная обмотка подключается к сети переменного тока, однофазной или трехфазной. Металлическая часть статора, куда она уложена, называется магнитопроводом. Он выполнен из отдельных тонких пластин с покрытием, изолирующих их друг от друга. Этим исключается появление вихревых токов, делающих работу электродвигателя невозможной из-за возникновения чрезмерных потерь на нагрев магнитопровода.

Выводы от обмоток всех трех фаз располагаются в специальном боксе на корпусе электродвигателя. Его называют барно, в нем выводы обмоток соединяются между собой. В зависимости от питающего напряжения и технических данных мотора выводы объединяются либо в звезду, либо в треугольник.

Обмотка ротора любого асинхронного электродвигателя похожа на «беличью клетку», так ее и называют. Она выполнена в виде ряда токопроводящих алюминиевых стержней, рассредоточенных по наружной поверхности ротора. Концы стержней замкнуты, поэтому такой ротор называют короткозамкнутым.

Обмотка, как и статорная, расположена внутри магнитопровода, также набранного из изолированных металлических пластин.

Принцип действия асинхронного электродвигателя

При подключении питающего напряжения к статору по виткам обмотки протекает ток. Он создает внутри магнитное поле. Поскольку ток переменный, то поле изменяется в соответствии с формой питающего напряжения. Расположение обмоток в пространстве выполнено так, что поле внутри него оказывается вращающимся.

В обмотке ротора вращающееся поле наводит ЭДС. А раз витки обмотки накоротко замкнуты, то в них появляется ток. Он взаимодействует с полем статора, это приводит к появлению вращения вала электродвигателя.

Электродвигатель называют асинхронным, потому что поле статора и ротор вертятся с разными скоростями. Эта разница скоростей называется скольжением (S).

n – частота магнитного поля;

nr – частота вращения ротора.

Чтобы регулировать скорость вала в широких пределах, асинхронные электродвигатели выполняют с фазным ротором. На таком роторе намотаны смещенные в пространстве обмотки, такие же, как и на статоре. Концы от них выведены на кольца, с помощью щеточного аппарата к ним подключаются резисторы. Чем большее сопротивление подключить к фазному ротору, тем меньше будет скорость его вращения.

Асинхронный генератор

А что будет, если ротор асинхронного электродвигателя вращать? Сможет ли он вырабатывать электроэнергию, и как сделать генератор из асинхронного двигателя?

Оказывается, это возможно. Для того, чтобы на обмотке статора появилось напряжение, изначально необходимо создать вращающееся магнитное поле. Оно появляется за счет остаточной намагниченности ротора электрической машины. В дальнейшем, при появлении тока нагрузки, сила магнитного поля ротора достигает требуемой величины и стабилизируется.

Для облегчения процесса появления напряжения на выходе используется батарея конденсаторов, подключаемая к статору асинхронного генератора на момент запуска (конденсаторное возбуждение).

Но остается неизменным параметр, свойственный асинхронному электродвигателю: величина скольжения. Из-за него частота выходного напряжения асинхронного генератора будет меньшей, чем частота вращения вала.

Кстати, вал асинхронного генератора необходимо вращать с такой скоростью, чтобы была достигнута номинальная частота вращения поля статора электродвигателя. Для этого нужно узнать скорость вращения вала из таблички, расположенной на корпусе. Округлив ее значение до ближайшего целого числа, получают скорость вращения для ротора переделываемого в генератор электродвигателя.

Например, для электродвигателя, табличка которого изображена на фото, скорость вращения вала равна 950 оборотов в минуту. Значит, скорость вращения вала должна быть 1000 оборотов в минуту.

Чем асинхронный генератор хуже синхронного?

Насколько хорош будет самодельный генератор из асинхронного двигателя? Чем он будет отличаться от синхронного генератора?

Для ответа на эти вопросы кратко напомним принцип работы синхронного генератора. Через контактные кольца к обмотке ротора подводится постоянный ток, величина которого регулируется. Вращающееся поле ротора создает в обмотке статора ЭДС. Для получения требуемой величины напряжения генерации автоматическая система регулировки возбуждения изменит ток в роторе. Поскольку за напряжением на выходе генератора следит автоматика, то в результате непрерывного процесса регулирования напряжение всегда остается неизменным и не зависит от величины тока нагрузки.

Для запуска и работы синхронных генераторов используются независимые источники питания (аккумуляторные батареи). Поэтому начало его работы не зависит ни от появления тока нагрузки на выходе, ни от достижения требуемой скорости вращения. От скорости вращения зависит только частота выходного напряжения.

Но даже при получении тока возбуждения от генераторного напряжения все сказанное выше остается справедливым.

Синхронный генератор имеет еще одну особенность: он способен генерировать не только активную, но и реактивную мощность. Это очень важно при питании потребляющих ее электродвигателей, трансформаторов и прочих агрегатов. Недостаток реактивной мощности в сети приводит к росту потерь на нагрев проводников, обмоток электрических машин, снижении величины напряжения у потребителей относительно генерируемой величины.

Для возбуждения же асинхронного генератора используется остаточная намагниченность его ротора, что само по себе является величиной случайной. Регулирование параметров, влияющих на величину его выходного напряжения, в процессе работы не представляется возможным.

К тому же асинхронный генератор не вырабатывает, а потребляет реактивную мощность. Она необходима ему для создания тока возбуждения в роторе. Вспомним про конденсаторное возбуждение: за счет подключения батареи конденсаторов при запуске создается реактивная мощность, требуемая генератору для начала работы.

В результате напряжение на выходе асинхронного генератора не стабильно и изменяется в зависимости от характера нагрузки. При подключении к нему большого числа потребителей реактивной мощности обмотка статора может перегреваться, что скажется на сроке службы ее изоляции.

Поэтому применение асинхронного генератора ограничено. Он может работать в условиях, близким к «парниковым»: никаких перегрузок, пусковых токов нагрузки, мощных потребителей реактива. И при этом электроприемники, подключенные к нему, не должны быть критичными к изменению величины и частоты напряжения питания.

Идеальным местом для применения асинхронного генератора являются системы альтернативной энергетики, работающие от энергии воды или ветра. В этих устройствах генератор не снабжает потребителя напрямую, а заряжает аккумуляторную батарею. От нее уже, через преобразователь постоянного тока в переменный, питается нагрузка.

Поэтому, если нужно собрать ветряк или небольшую гидроэлектростанцию, лучшим выходом из положения является именно асинхронный генератор. Здесь работает его главное и единственное достоинство – простота конструкции. Отсутствие колец на роторе и щеточного аппарата приводит к тому, что в процессе эксплуатации его не нужно постоянно обслуживать: чистить кольца, менять щетки, удалять графитовую пыль от них. Ведь, чтобы сделать ветрогенератор из асинхронного двигателя своими руками, вал генератора напрямую нужно соединить с лопастями ветряка. Значит – конструкция будет находиться на большой высоте. Снимать ее оттуда хлопотно.

Генератор на магнитах

А почему магнитное поле нужно обязательно создавать с помощью электрического тока? Ведь есть же мощные его источники – неодимовые магниты.

Для переделки асинхронного двигателя в генератор потребуются цилиндрические неодимовые магниты, которые будут установлены на место штатных проводников обмотки ротора. Сначала нужно подсчитать необходимое количество магнитов. Для этого извлекают ротор из переделываемого в генератор двигателя. На нем четко видны места, в которых уложена обмотка «беличьего колеса». Размеры (диаметр) магнитов выбирается таким, чтобы при установке строго по центру проводников короткозамкнутой обмотки они не соприкасались с магнитами следующего ряда. Между рядами должен остаться зазор не менее, чем диаметр применяемого магнита.

Определившись с диаметром, вычисляют, сколько магнитов поместится по длине проводника обмотки от одного края ротора до другого. Между ними при этом оставляют зазор не менее одного – двух миллиметров. Умножая количество магнитов в ряду, на число рядов (проводников обмотки ротора), получают требуемое их количество. Высоту магнитов не стоит выбирать очень большой.

Для установки магнитов на ротор асинхронного электродвигателя его потребуется доработать: снять на токарном станке слой металла на глубину, соответствующую высоте магнита. При этом ротор обязательно нужно тщательно отцентровать в станке, чтобы не сбить его балансировку. Иначе у него появится смещение центра масс, которое приведет к биению в работе.

Затем приступают к установке магнитов на поверхность ротора. Для фиксации используют клей. У любого магнита есть два полюса, условно называемые северным и южным. В пределах одного ряда полюса, расположенные в сторону от ротора, должны быть одинаковыми. Чтобы не ошибиться в установке, магниты сначала сцепляют между собой в гирлянду. Они сцепятся строго определенным образом, так как притягиваются они друг к другу только разноименными полюсами. Теперь остается только отметить одноименные полюса маркером.

В каждом последующем ряду полюс, находящийся снаружи, изменяется. То есть, если вы выложили ряд магнитов с отмеченным маркером полюсом, расположенным наружу от ротора, то следующий выкладывается магнитами, развернутыми наоборот. И так далее.

После приклеивания магнитов их нужно зафиксировать эпоксидной смолой, Для этого вокруг получившийся конструкции из картона или плотной бумаги делают шаблон, в который зальется смола. Бумагу оборачивают вокруг ротора, обматывают скотчем или изолентой. Одну из торцевых частей замазывают пластилином или также заклеивают. Затем устанавливают ротор вертикально и заливают в полость между бумагой и металлом эпоксидную смолу. После ее отвердевания приспособления удаляют.

Теперь снова зажимаем ротор в токарный станок, центруем, и шлифуем поверхность, залитую эпоксидкой. Это необходимо не из эстетических соображений, а для минимизации влияния возможной разбалансировки, образовавшейся из-за дополнительных деталей, установленных на ротор.

Шлифовку производят сначала крупнозернистой наждачной бумагой. Ее крепят на деревянном бруске, который затем равномерно перемещают по вращающейся поверхности. Затем можно применить наждачную бумагу с более мелким зерном.

Теперь готовый ротор можно вставить обратно в статор и испытать получившуюся конструкцию. Она может быть с успехом использована теми, кто хочет сделать, например, ветрогенератор из асинхронного двигателя. Есть только один недостаток: стоимость неодимовых магнитов очень велика. Поэтому, прежде чем начать переделывать ротор и тратить деньги на запчасти, следует подсчитать, какой вариант экономически более выгоден: сделать генератор из асинхронного двигателя или приобрести готовый.

Генератор из асинхронного двигателя своими руками в домашних условиях

Как сделать генератор из асинхронного двигателя своими руками для использования совместно с двигателем внутреннего сгорания или в составе ветровой электростанции. Достоинства и недостатки асинхронных генераторов по сравнению с синхронными, конструкция их и принципы действия.

Источник: voltland.ru

Ветрогенератор своими руками из асинхронного двигателя

Ветрогенератор своими руками ( генератор на постоянных магнитах из асинхронного электродвигателя )

Я сделал свой пропеллер своими руками из еловых досок размером 1″х4″. Я постарался найти три доски без сучков, имеющие хорошие вертикальные волокна и имеющие примерно одинаковую плотность (это определялось по весу).

Конечно, можно использовать и другие породы дерева, просто у меня нашлась под рукой только ель. Размер досок был подобран так, чтобы пропеллер был достаточно легким, чтобы быстро стартовать и не сильно нагружать опоры. На то, чтобы вырезать лопасти, ушло около 2 часов. Безусловно, если бы я потратил больше времени, пропеллер вышел бы лучше, размеры в основном определялись интуитивно (мой чертеж показан на Рисунке 1).

Однако если вы хотите сделать все по правилам, в сети множество информации по аэродинамике, вырезанию по дереву и даже по изготовлению пропеллеров.

Рисунок 1. Поперечный срез лопасти.

После проверки лопастей на одинаковый размер я соединял их болтами по двое и проверял, хорошо ли сбалансирована получающаяся конструкция. Когда все три лопасти стали одинаковыми, я покрасил их и присоединил к ступице, в качестве которой использовал старую 8-дюймовую шестерню. После этого я смог насадить всю эту конструкцию на ось и попробовать покрутить, определив степень сбалансированности и подпилив слишком тяжелые части (конечно, потом их пришлось снова покрасить). В сумме процесс построения и балансировки пропеллера занял около 4 часов.

Следует заметить, что три лопасти после балансировки оказались разной толщины, в некоторых местах они отличались на 1/8 дюйма. Чтобы этого избежать, рекомендуется выбирать дерево лучших пород и уделять первоначальному выпиливанию больше внимания. Для выпиливания я пользовался в основном электрорубанком. Стоит также обратить внимание на то, что лопасти не закручены, то есть их угол наклона относительно оси всегда постоянный. Для пропеллера такого небольшого размера это вполне нормально.

Магниты имеют прямоугольную форму и изогнуты так, чтобы подходить к якорям большинства двигателей мощностью от 0.5 л.с. и выше. Насечки имеют такую глубину, чтобы край вставленного в них магнита находился на одном уровне с поверхностью якоря. Магниты приклеиваются эпоксидным клеем. Располагаются они парами по два магнита с одинаковой полярностью.

Подключенный генератор выдает 12 В примерно на 160 об/мин. При другом способе подключения генератор мог достичь максимальной нагрузки при 80 об/мин, однако это могло значительно ограничить силу тока. Конечно, результирующий ток переменный, а для зарядки аккумулятора нам необходим постоянный, поэтому я использовал 40-амперный ТС.

Во время сборки мачту поддерживала небольшая сосновая тренога. Еще одна тренога большего размера была использована для подъема.

Башня поддерживалась четырьмя проволочными растяжками диаметром 1/8″ из авиационного кабеля с талрепами для регулировки.

Ходовая часть и хвост ветряка

Ветряк действительно было очень легко сделать. Я начал с кусков стали толщиной 3/8″, к которым можно было прикрутить генератор. Для этого я сварил трубу, которая подходила по размеру к трубе на конце мачты, — на ней ветряк будет вращаться. В этой машине нет токосъемников, я просто использовал достаточное количество кабеля, чтобы она могла сделать несколько оборотов прежде чем остановиться. Линия электропередачи генератора чуть длиннее, чем кабель, чтобы ветряк мог остановиться, не вырвав шнур питания. Хвост закреплен железным треугольником в 4 ярдах от центра вращения. Два 0.5″ стальных бруска служат для лучшего закрепления хвоста. Я слегка сдвинул хвост и генератор относительно оси, это было сделано исключительно интуитивно в надежде, что порывы ветра не закрутят его слишком быстро.

Мой самодельный ветрогенератор хорошо запускается только на высоких скоростях ветра. Эту проблему можно устранить, сделав пропеллер большего размера, шире лопасти или даже больше лопастей. Зато после запуска генератора, лопасти достаточно хорошо закрутились даже на очень низкой скорости. Ветер в нашей местности порывистый, направление часто меняется, так что мне сложно связать полученное электричество со скоростью ветра. Лучший результат, который мне удалось замерить – 25 А при высокой скорости ветра, хотя обычно на моих 12-вольтовых батареях можно получить 5-15 А при низкой скорости.

Возможно, имеет смысл построить регулятор с согласующим ТС или линейный усилитель потока, который лучше справится с потреблением на генератор и обеспечит значительно большую силу тока.

Проверка в действии

Через 8 недель безупречной работы мой самодельный ветряк сломался. По радио передали штормовое предупреждение.

Я убедился, что кабель по-прежнему целый, и постарался сделать так, чтобы он оставался целым и дальше. Через некоторое время я услышал странный звук. Ветряк все еще крутился и даже выдавал 20 А, но было очевидно, что что-то случилось. Оказалось, что одна из лопастей отвалилась.

Я нашел обломки лопасти, похоже, она изначально была надтреснутая. Учитывая, что остальные две лопасти остались целыми, конструкция сама по себе была хорошей. Этот факт подтвердился тем, что ветряк проработал с двумя лопастями довольно долгое время при очень сильном порывистом ветре.

Вместо того чтобы чинить этот пропеллер, я сделал новый пропеллер своими руками. Он был больше, для него использовалось более прочное дерево, кроме того, я слегка закрутил лопасти. Высота мачты осталась прежней. Новый самодельный пропеллер стартовал гораздо легче и работал гораздо тише.

Помимо прочего эта поломка доказала, что выбрал правильную конструкцию башни. Она легко опускается и поднимается при необходимости. Спуск старого пропеллера, изготовление нового и монтирование его на мачте заняло всего 4 часа. В результате при нормальной скорости ветра такой самодельный ветряк производит от 100 до 200 Вт.

Ветрогенератор своими руками ( генератор на постоянных магнитах из асинхронного электродвигателя )

Ветрогенератор своими руками ( генератор на постоянных магнитах из асинхронного электродвигателя ) Пропеллер Пропеллер для этого ветряка будет трехлопастным.

Источник: strast-online.ru

avtonomny-dom.ru


Смотрите также