Асинхронный двигатель состоит из двух основных частей, разделенных воздушным зазором: неподвижного статора и вращающегося ротора. Каждая из этих частей имеет сердечник и обмотку. При этом обмотка статора включается в сеть и является как бы первичной, а обмотка ротора — вторичной, так как энергия в нее поступает из обмотки статора за счет магнитной связи между этими обмотками.
По своей конструкции асинхронные двигатели разделяются на два вида: двигатели с короткозамкнутым ротором и двигатели с фазным ротором. Рассмотрим устройство трехфазного асинхронного двигателя с короткозамкнутым ротором (рис.5.2). Двигатели этого вида имеют наиболее широкое применение.
Рис.5.2. Устройство трехфазного асинхронного двигателя
с короткозамкнутым ротором:
1 — вал; 2, 6 — подшипники; 3, 7 — подшипниковые щиты; 4 — коробка выводов;
5 — вентилятор; 8 — кожух вентилятора; 9 — сердечник ротора с короткозамкну-
той обмоткой; 10 — сердечник статора с обмоткой; 11 — корпус; 12 — лапы
Неподвижная часть двигателя — статор — состоит из корпуса // и сердечника 10 с трехфазной обмоткой. Корпус двигателя отливают из алюминиевого сплава или из чугуна либо делают сварным. Рассматриваемый двигатель имеет закрытое обдуваемое исполнение. Поэтому поверхность его корпуса имеет ряд продольных ребер, назначение которых состоит в том, чтобы увеличить поверхность охлаждения двигателя.
В корпусе расположен сердечник статора 10, имеющий шихтованную конструкцию: отштампованные листы из тонколистовой электротехнической стали толщиной обычно 0,5 мм покрыты слоем изоляционного лака, собраны в пакет и скреплены специальными скобами или продольными сварными швами по наружной поверхности пакета. Такая конструкция Сердечника способствует значительному уменьшению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. На внутренней поверхности сердечника статора имеются продольные пазы, в которых расположены пазовые части обмотки статора, соединенные в определенном порядке лобовыми частями, находящимися за пределами сердечника по его торцовым сторонам. Конструкция короткозамкнутого ротора приведена на рис.5.3.
Рис.5.3. Конструкция короткозамкнутого ротора: а — беличья клетка; б — ротор с медной стержневой обмоткой; в — ротор с алюминиевой литой обмоткой;
1 — сердечник ротора; 2 — стержни; 3 — замыкающие кольца;
4 — лопасти вентилятора
Обмотка статора асинхронного электродвигателя может быть соединена звездой или треугольником. Схемы соединения представлены на рис.5.4
Рис.5.4. Схемы соединения выводов трехфазных обмоток электродвигателя:
а — звезда; б — треугольник
Принцип образования вращающегося магнитного поля рассмотрим на примере простейшей трехфазной двухполюсной обмотки, каждая фаза которой состоит из одной секции, фазы обмотки соединены звездой (рис.5.5). При этом секции тока в фазных обмотках (по времени) относительно друг друга на электрический угол 120° (рис.5.5, б). Проведем ряд построений вектора МДС трехфазной обмотки Fm, соответствующих различным моментам времениt0, t1, t2,t3отмеченным на графике рис.5.5, б.
В момент времени t0ток в фазе А равен 0, в фазе В ток имеет отрицательное, а в фазе С — положительное направления. Эти направления тока отмечаем на рис.5.5, б в сечениях обмоток статора для данного момента времени. При этом следует помнить, что за положительное направление тока
Рис.5.5. Получение вращающегося магнитного поля: а — трехфазная обмотка статора;
б — вращение МДС; в — модель магнитного поля статора;
1-4 — обмотка фазы А; 3-6 — обмотка фазы В;
5—2 — обмотка фазы С (первая цифра — начало обмотки)
в фазной обмотке принимается направление тока от начала обмотки к ее концу и обозначается х, а, следовательно, отрицательное направление тока в обмотке соответствует направлению тока от конца к началу и обозначается •. Затем в соответствии с указанными на рис. 5, б направлениями токов определяем (по правилу буравчика) направление вектора МДС трехфазной обмотки статора (вектор Fmнаправлен вниз).
В момент времени t1т.е. через (1/3) Т, ток в фазе В равен нулю, в фазе А имеет положительное, а в фазе С — отрицательное направление. Сделав построения, аналогичные моменту времени t0, заметим, что вектор МДС обмотки статора Fmпо сравнению с его положением в момент времени t0повернулся на 120° в направлении движения часовой стрелки.
Проведя аналогичные построения вектора МДС обмотки статора для момента t2и t3, видим, что каждый раз при переходе от одного момента времени к другому вектор Fmповорачивается на 120°, а за один период изменения токов в обмотках (с t0до t3) делает полный оборот (360°) и будет, таким образом, вращающимся. Вращающаяся МДС создает вращающееся магнитное поле, эквивалентное полю магнита N — S с индукцией Во (рис.5, в). Это поле вращается с синхронной частотойn0которая пропорциональна частоте переменного токаfи обратно пропорциональна числу пар полюсов обмоток статора р, т.е.
,
Зависимость n0 от р и f представлена в табл.5.2.
Таблица 5.2
f = 50 Гц | Р | 1 | 2 | 3 | 4 | 5 | 6 |
n0, об/мин | 3000 | 1500 | 1000 | 750 | 600 | 500 | |
р=1 | f. ГЦ | 50 | 100 | 200 | 400 | 500 | 1000 |
Круговое вращающееся магнитное поле характеризуется тем, что пространственный вектор магнитной индукции этого поля Во вращается равномерно (n0= const).
При необходимости изменить направление вращения магнитного поля статора нужно поменять порядок следования токов в фазных обмотках статора, для чего переключают фазы на зажимах двигателя (рис.5.6).
Рис.5.6. Изменение направления вращения магнитного поля.
studfiles.net
Устройство асинхронного двигателя (АД) с короткозамкнутым ротором показано на примере двигателя серии AM (рис. 1).
Рис. 1 - Устройство АД с короткозамкнутым ротором
Основными частями АД являются неподвижный статор 10 и вращающийся внутри него ротор, отделенный от статора воздушным зазором.
Для уменьшения вихревых токов сердечники ротора и статора набираются из отдельных листов, отштампованных из электротехнической стали толщиной 0,35 или 0,5 мм. Листы оксидируются (подвергаются термической обработке), что увеличивает их поверхностное сопротивление.
Сердечник статора встраивается в станину 12, являющуюся внешней частью машины. На внутренней поверхности сердечника имеются пазы, в которых уложена обмотка 14. Статорную обмотку чаще всего делают трехфазной двухслойной из отдельных катушек с укороченным шагом из изолированного медного провода. Начала и концы фаз обмотки выводят на зажимы коробки выводов.
Обмотку статора можно соединить звездой (Y) или треугольником (∆). Это дает возможность применять один и тот же двигатель при двух различных линейных напряжениях, находящихся в отношении √3, например, 127/220 В или 220/380 В. При этом соединению Y соответствует включение АД на высшее напряжение.
Сердечник ротора в собранном виде напрессовывается на вал 15 горячей посадкой и предохраняется от проворачивания при помощи шпонки. На внешней поверхности сердечник ротора имеет пазы для укладки обмотки 13. Обмотка ротора в наиболее распространенных АД представляет собой ряд медных или алюминиевых стержней, расположенных в пазах и замкнутых по торцам кольцами. В двигателях мощностью до 100 кВт и более обмотка ротора выполняется заливкой пазов расплавленным алюминием под давлением. Одновременно с обмоткой отливаются и замыкающие кольца вместе с вентиляционными крылатками 9. По форме такая обмотка напоминает «беличью клетку».
Для специальных двигателей обмотка ротора может выполняться подобно статорной. Ротор с такой обмоткой помимо указанных частей имеет три укрепленных на валу контактных кольца, предназначенных для соединения обмотки с внешней цепью. АД в этом случае называется двигателем с фазным ротором или с контактными кольцами.
Вал ротора 15 объединяет все элементы ротора и служит для соединения АД с исполнительным механизмом.
Воздушный зазор между ротором и статором составляет от 0,4 — 0,6 мм для машин малой мощности и до 1,5 мм у машин большой мощности. Подшипниковые щиты 4 и 16 двигателя служат опорой для подшипников ротора. Охлаждение двигателя осуществляется по принципу самообдува вентилятором 5. Подшипники 2 и 3 закрыты снаружи крышками 1, имеющими лабиринтовые уплотнения. На корпусе статора устанавливается коробка 21 с выводами 20 обмотки статора. На корпусе укрепляется табличка 17, на которой указываются основные данные АД. На рисунке обозначено также: 6 – посадочное гнездо щита; 7 – кожух; 8 – корпус; 18 – лапа; 19 – вентиляционный канал.
www.radioingener.ru
Как уже отмечалось (см. § 6.2), асинхронный двигатель состоит из двух основных частей, разделенных воздушным зазором: неподвижного статора и вращающегося ротора. Каждая из этих частей имеет сердечник и обмотку. При этом обмотка статора включается в сеть и является как бы первичной, а обмотка ротора - вторичной, так как энергия в нее поступает из обмотки статора за счет магнитной связи между этими обмотками.
По своей конструкции асинхронные двигатели разделяются на два вида: двигатели с короткозамкнутым ротором и двигатели сфазным ротором. Рассмотрим устройство трехфазного асинхронного двигателя с короткозамкнутым ротором(рис. 10.2). Двигатели этого вида имеют наиболее широкое применение.
Неподвижная часть двигателя — статор — состоит из корпуса 11 и сердечника 10с трехфазной обмоткой (см. гл. 8). Корпус двигателя отливают из алюминиевого сплава или из чугуна либо делают сварным. Рассматриваемый двигатель имеет закрытое обдуваемое исполнение. Поэтому поверхность его корпуса имеет ряд продольных ребер, назначение которых состоит в том, чтобы увеличить поверхность охлаждения двигателя.
В корпусе расположен сердечник статора 10, имеющий шихтованную конструкцию: отштампованные листы из тонколистовой электротехнической стали толщиной обычно 0,5 мм покрыты слоем изоляционного лака, собраны в пакет и скреплены специальными скобами или продольными сварными швами по наружной поверхности пакета. Такая конструкция сердечника способствует значительному уменьшению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. На внутренней
поверхности сердечника статора имеются продольные пазы, в которых расположены пазовые части обмотки статора (см. рис. 8.1), соединенные в определенном порядке лобовыми частями, находящимися за пределами сердечника по его торцовым сторонам.
Рис. 10.2. Устройство трехфазного асинхронного двигателя
с короткозамкнутым ротором:
1 — вал; 2, 6 — подшипники; 3, 7 — подшипниковые щиты; 4 — коробка выводов; 5 — вентилятор; 8 — кожух вентилятора; 9 — сердечник ротора с короткозамкнутой обмоткой; 10 — сердечник статора с обмоткой; 11 — корпус; 12 — лапы
В расточке статора расположена вращающаяся часть двигателя ротор, состоящий из вала 1 и сердечника 9 с короткозамкнутой обмоткой. Такая обмотка, называемая «беличье колесо», представляет собой ряд металлических (алюминиевых или медных стержней, расположенных в пазах сердечника ротора, замкнутых с двух сторон короткозамыкающими кольцами (рис. 10.3, а). Сердечник ротора также имеет шихтованную конструкцию, но листы ротора не покрыты изоляционным лаком, а имеют на своей поверхности тонкую пленку окисла. Это является достаточной изоляцией, ограничивающей вихревые токи, так как величина их невелика из-за малой частоты перемагничивания сердечника ротора (см. § 12.1). Например, при частоте сети
Рис. 10.3. Короткозамкнутый ротор:
а — обмотка «беличья клетка», б — ротор с обмоткой, выполненной методом литья под давлением; 1 — вал;,2 — короткозамыкающие кольца; 3 — вентиляционные лопатки
50 Гц и номинальном скольжении 6 % частота перемагничивания сердечника ротора составляет 3 Гц.
Короткозамкнутая обмотка ротора в большинстве двигателей выполняется заливкой собранного сердечника ротора расплавленным алюминиевым сплавом. При этом одновременно со стержнями обмотки отливаются короткозамыкающие кольца и вентиляционные лопатки (рис. 10.3, б).
Вал ротора вращается в подшипниках качения 2 и 6, расположенных в подшипниковых щитах 3 и 7.
Охлаждение двигателя осуществляется методом обдува наружной оребренной поверхности
Рис. 10.4. Расположение выводов обмотки статора
(а) и положение перемычек при соединении
обмотки статора звездой и треугольником (б)
корпуса. Поток воздуха создается центробежным вентилятором 5, прикрытым кожухом 8. На торцовой поверхности этого кожуха имеются отверстия для забора воздуха. Двигатели мощностью 15 кВт и более помимо закрытого делают еще и защищенного исполнения с внутренней самовентиляцией. В подшипниковых щитах этих двигателей имеются отверстия (жалюзи), через которые воздух посредством вентилятора прогоняется через внутреннюю полость двигателя. При этом воздух «омывает» нагретые части (обмотки, сердечники) двигателя и охлаждение получается более эффективным, чем при наружном обдуве.
Концы обмоток фаз выводят на зажимы коробки выводов 4. Обычно асинхронные двигатели предназначены для включения в трехфазную сеть на два разных напряжения, отличающиеся в раз. Например, двигатель рассчитан для включения в сеть на напряжения 380/660 В. Если в сети линейное напряжение 660 В, то обмотку статора следует соединить звездой, а если 380 В, то треугольником. В обоих случаях напряжение на обмотке каждой фазы будет 380 В. Выводы обмоток фаз располагают на панели таким образом, чтобы соединения обмоток фаз было удобно выполнять посредством перемычек, без перекрещивания последних (рис. 10.4). В некоторых двигателях небольшой мощности в коробке выводов имеется лишь три зажима. В этом случае двигатель может быть включен в сеть на одно напряжение (соединение обмотки статора такого двигателя звездой или треугольником выполнено внутри двигателя).
Рис. 10.5. Принципиальные схемы включения
трехфазных асинхронных двигателей с
короткозамкнутым (а) и фазным (б) ротором
Монтаж двигателя в месте его установки осуществляется либо посредством лап 12 (см. рис. 10.2), либо посредством фланца. В последнем случае на подшипниковом щите (обычно со стороны выступающего конца вала) делают фланец с отверстиями для крепления двигателя на рабочей машине. Для предохранения обслуживающего персонала от возможного поражения электрическим током двигатели снабжаются болтами заземления (не менее двух). Принципиальная схема включения в трехфазную сеть асинхронного двигателя с короткозамкнутым ротором показана на рис. 10.5, а.
Другая разновидность трехфазных асинхронных двигателей - двигатели с фазным ротором — конструктивно отличается от рассмотренного двигателя главным образом устройством ротора (рис. 10.6). Статор этого двигателя также состоит из корпуса 3 и сердечника 4 с
Рис. 10.6 Устройство трехфазного асинхронного двигателя с фазным ротором:
1, 7 – подшипники, 2,6 – подшипниковые щиты, 3 – корпус, 4 – сердечник статора с обмоткой, 5 – сердечник ротора, 8 – вал, 9 – коробка выводов, 10 – лапы, 11 – контактные кольца
трехфазной обмоткой. У него имеются подшипниковые щиты 2 и 6 с подшипниками качения 1 и 7. К корпусу 3 прикреплены лапы 10 и коробка выводов 9. Однако ротор имеет более сложную конструкцию. На валу 8 закреплен шихтованный Сердечник 5 с трехфазной обмоткой, выполненной аналогично обмотке статора. Эту обмотку соединяют звездой, а ее концы присоединяют к трем контактным кольцам 11, расположенным на валу и изолированным друг от друга и от вала. Для осуществления электрического контакта с обмоткой вращающегося ротора на каждое контактное кольцо 1 (рис. 10.7) накладывают обычно две щетки 2, располагаемые в щеткодержателях 3. Каждый щеткодержатель снабжен пружинами, обеспечивающими прижатие щеток к контактному кольцу с определенным усилием.
Асинхронные двигатели с фазным ротором имеют более сложную конструкцию и менее надежны, но они обладают лучшими регулировочными и пусковыми свойствами, чем двигатели с короткозамкнутым ротором (см. гл. 15). Принципиальная схема включения в трехфазную сеть асинхронного двигателя с фазным ротором показана на рис. 10.5, б. Обмотка ротора этого двигателя соединена с пусковым реостатом ПР, создающим в цепи ротора
добавочное сопротивление Rдоб.
На корпусе асинхронного двигателя прикреплена табличка, на которой указаны тип двигателя, завод-изготовитель, год выпуска и номинальные данные (полезная мощность, напряжение, ток, коэффициент мощности, частота вращения и КПД).
Рис. 10.7 Расположение щеткодержателей
19. Уравнение напряжений, МДС и токов асинхронного двигателя. Электромагнитный момент асинхронного двигателя.
mykonspekts.ru