ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

ТРИ ФАЗЫ - БЕЗ ПОТЕРИ МОЩНОСТИ. Три фазы из одной с помощью асинхронного двигателя


ТРИ ФАЗЫ - БЕЗ ПОТЕРИ МОЩНОСТИ

С.БИРЮКОВ, г. Москва

 В различных любительских электромеханических станках и приспособлениях чаще всего используются трехфазные асинхронные двигатели с короткозамкнутым ротором. К сожалению, трехфазная сеть в быту — явление крайне редкое, поэтому для их питания от обычной электрической сети любители применяют фазосдвигающий конденсатор, что не позволяет в полном объеме реализовать мощность и пусковые характеристики двигателя. Существующие же тринисторные "фазосдвигающие" устройства еще в большей степени снижают мощность на валу двигателей.Вариант схемы устройства запуска трехфазного электродвигателя без потери мощности приведен на рис. 1. Обмотки двигателя 220/380 В соединены треугольником, а конденсатор С1 включен, как обычно, параллельно одной из них. Конденсатору "помогает" дроссель L1, включенный параллельно другой обмотке.При определенном соотношении емкости конденсатора С1, индуктивности дросселя L1 и мощности нагрузки можно получить сдвиг фаз между напряжениями на трех ветвях нагрузки, равный точно 120°. На рис. 2 приведена векторная диаграмма напряжений для устройства, представленного на рис. 1, при чисто активной нагрузке R в каждой ветви.

ТРИ ФАЗЫ - БЕЗ ПОТЕРИ МОЩНОСТИ

Линейный ток Iл в векторном виде равен разности токов Iз и Ia, а по абсолютному значению соответствует величине Iф, где Iф=I1=I2=I3=Uл/R — фазный ток нагрузки, Uл=U1=U2=U3=220 В — линейное напряжение сети.К конденсатору С1 приложено напряжение Uc1=U2, ток через него равен Ic1 и по фазе опережает напряжение на 90°.   Аналогично к дросселю L1 приложено напряжение UL1=U3, ток через него IL1 отстает от напряжения на 90°. При равенстве абсолютных величин токов Ic1 и IL1 их векторная разность при правильном выборе емкости и индуктивности может быть равной Iл. Сдвиг фаз между токами Ic1 и IL1 составляет 60°, поэтому треугольник из векторов Iл, Iс1 и IL1 — равносторонний, а их абсолютная величина составляет Iс1=IL1=Iл=Iф

.

ТРИ ФАЗЫ - БЕЗ ПОТЕРИ МОЩНОСТИ

В свою очередь, фазный ток нагрузки Iф=Р/ЗUL, где Р — суммарная мощность нагрузки. Иными словами, если емкость конденсатора С1 и индуктивность дросселя L1 выбрать такими, чтобы при поступлении на них напряжения 220 В ток через них был бы равен Ic1=IL1=P/(Uл)=P/380, показанная на рис. 1 цепь L1C1 обеспечит на нагрузке трехфазное напряжение с точным соблюдением сдвига фаз.

ТРИ ФАЗЫ - БЕЗ ПОТЕРИ МОЩНОСТИ

В табл. 1 приведены значения тока Ic1=IL1. емкости конденсатора С1 и индуктивности дросселя L1 для различных величин полной мощности чисто активной нагрузки.Реальная нагрузка в виде электродвигателя имеет значительную индуктивную составляющую. В результате линейный ток отстает по фазе от тока активной нагрузки на некоторый угол ф порядка 20...40°. На шильдиках электродвигателей обычно указывают не угол, а его косинус — широко известный

, равный отношению активной составляющей линейного тока к его полному значению.Индуктивную составляющую тока, протекающего через нагрузку устройства, показанного на рис. 1, можно представить в виде токов, проходящих через некоторые катушки индуктивности Lн, подключенные параллельно активным сопротивлениям нагрузки (рис. 3,а), или, что эквивалентно, параллельно С1, L1 и сетевым проводам.

ТРИ ФАЗЫ - БЕЗ ПОТЕРИ МОЩНОСТИ

Из рис. 3,б видно, что поскольку ток через индуктивность противофазен току через емкость, катушки индуктивности LH уменьшают ток через емкостную ветвь фазосдвигающей цепи и увеличивают через индуктивную. Поэтому для сохранения фазы напряжения на выходе фазосдвигающей цепи ток через конденсатор С1 необходимо увеличить и через катушку уменьшить.

ТРИ ФАЗЫ - БЕЗ ПОТЕРИ МОЩНОСТИ

Векторная диаграмма для нагрузки с индуктивной составляющей усложняется. Ее фрагмент, позволяющий произвести необходимые расчеты, приведен на рис 4.Полный линейный ток Iл разложен здесь на две составляющие: активную и реактивную . В результате решения системы уравнений для определения необходимых значений токов через конденсатор С1 и катушку L1  получаем следующие значения этих токов

.

ТРИ ФАЗЫ - БЕЗ ПОТЕРИ МОЩНОСТИ

При чисто активной нагрузке  формулы дают ранее полученный результат Ic1=IL1=Iл. На рис. 5 приведены зависимости отношений токов Ic1 и IL1 к Iл от , рассчитанные по этим формулам Для( /2=0,87) ток конденсатора С1 максимален и равен  а ток дросселя L1 вдвое меньше. Этими же соотношениями с хорошей степенью точности можно пользоваться для типовых значений , равных 0,85 0,9.

ТРИ ФАЗЫ - БЕЗ ПОТЕРИ МОЩНОСТИ

В табл. 2 приведены значения токов Ie1, IL1, протекающих через конденсатор С1 и дроссель L1 при различных величинах полной мощности нагрузки, имеющей указанное выше значение .Для такой фазосдвигающей цепи используют конденсаторы МБГО, МБГП, МБГТ, К42-4 на рабочее напряжение не менее 600 В или МБГЧ, К42-19 на напряжение не менее 250 В Дроссель проще всего изготовить из трансформатора питания стержневой конструкции от старого лампового телевизора. Ток холостого хода первичной обмотки такого трансформатора при напряжении 220 В обычно не превышает 100 мА и имеет нелинейную зависимость от приложенного напряжения Если же в магнитопровод ввести зазор порядка 0,2 1 мм, ток существенно возрастет, а зависимость его от напряжения станет линейной.Сетевые обмотки трансформаторов ТС могут быть соединены так, что номинальное напряжение на них составит 220 В (перемычка между выводами 2 и 2'), 237 В (перемычка между выводами 2 и 3') или 254 В (перемычка между выводами 3 и 3') Сетевое напряжение чаще всего подают на выводы 1 и1'. В зависимости от вида соединения меняются индуктивность и ток обмотки В табл. 3 приведены значения тока в первичной обмотке трансформатора ТС-200-2 при подаче на нее напряжения 220 В при различных зазорах в магнитопроводе и разном включении секций обмоток Сопоставление данных табл 3 и 2 позволяет сделать вывод, что указанный трансформатор можно установить в фазосдвигающую цепь двигателя с мощностью примерно от 300 до 800 Вт и, подбирая зазор и схему включения обмоток, получить необходимую величину тока. Индуктивность изменяется также в зависимости от синфазного или противофазного соединения сетевой и низковольтных (например, накальных) обмоток трансформатора. Максимальный ток может несколько превышать номинальный ток в рабочем режиме. В этом случае для облегчения теплового режима целесообразно снять с трансформатора все вторичные обмотки, часть низковольтных обмоток можно использовать для питания цепей автоматики устройства, в котором работает электродвигатель.

ТРИ ФАЗЫ - БЕЗ ПОТЕРИ МОЩНОСТИ

В табл. 4 приведены номинальные величины токов первичных обмоток трансформаторов различных телевизоров [1, 2] и ориентировочные значения мощности двигателя, с которыми их целесообразно использовать фазосдвигающую LC-цепь следует рассчитывать для максимально возможной нагрузки электродвигателя.

ТРИ ФАЗЫ - БЕЗ ПОТЕРИ МОЩНОСТИ

При меньшей нагрузке необходимый сдвиг фаз уже не будет выдерживаться, но пусковые характеристики по сравнению с использованием одного конденсатора улучшатся. Экспериментальная проверка проводилась как с чисто активной нагрузкой, так и с электродвигателем. Функции активной нагрузки выполняли по две параллельно соединенных лампы накаливания мощностью 60 и 75 Вт, включенные в каждую нагрузочную цепь устройства (см рис 1), что соответствовало общей мощности 400 Вт В соответствии с табл 1 емкость конденсатора С1 составляла 15 мкф Зазор в магнитопроводе трансформатора ТС-200-2 (0,5 мм) и схема соединения обмоток (на 237 В) были выбраны из соображений обеспечения необходимого тока 1,05 А. Измеренные на нагрузочных цепях напряжения U1, U2, U3 отличались друг от друга на 2.. 3 В, что подтверждало высокую симметрию трехфазного напряжения.

Эксперименты проводились также с трехфазным асинхронным двигателем с короткозамкнутым ротором АОЛ22-43Ф мощностью 400 Вт [З]. Он работал с конденсатором С1 емкостью 20 мкф (кстати, такой же, как и при работе двигателя только с одним фазосдвигающим конденсатором) и с трансформатором, зазор и соединение обмоток которого выбраны из условия получения тока 0,7 А В результате удалось быстро запустить двигатель без пускового конденсатора и заметно увеличить крутящий момент, ощущаемый при торможении шкива на валу двигателя. К сожалению, провести более объективную проверку затруднительно, поскольку в любительских условиях практически невозможно обеспечить нормированную механическую нагрузку на двигатель.

Следует помнить, что фазосдвигающая цепь — это последовательный колебательный контур, настроенный на частоту 50 Гц (для варианта чисто активной нагрузки), и без нагрузки подключать к сети эту цепь нельзя.

Сам делал для движка на 1 квт. все отлично работает, никаких проблем. Дерзайте.

(прислал Н.Куц)

nice.artip.ru

Три фазы — из одной — Меандр — занимательная электроника

Читать все новости ➔

Этот преобразователь разработан автором для питания мало­мощного трёхфазного электродвигателя в приводе диска рекор­дера механической звукозаписи. Он обеспечивает три фиксиро­ванные частоты вращения диска — 33 1/3, 45 и 78 об/мин. С не­большими переделками преобразователь можно использовать для питания трёхфазных и двухфазных асинхронных электро­двигателей мощностью до 1000 Вт как с постоянной, так и с регулируемой частотой вращения.

Регулирование частоты вращения асинхронных электродвигателей возможно только изменением частоты питающего напряжения. Но при сниже­нии частоты необходимо пропорцио­нально уменьшать питающее напряже­ние во избежание перегрева обмоток и, наоборот, с ростом частоты повышать напряжение для поддержания мощнос­ти на валу.

В устройстве [1] применён регули­руемый автотрансформатор (ЛАТР), с его помощью изменяется напряжение, от которого зависит амплитуда прямо­угольных импульсов заданной частоты, подаваемых на обмотки двигателя. В устройстве [2] амплитуда этих импуль­сов остаётся постоянной, но изменяет­ся их скважность, что тоже приводит к нужному результату. Недостаток перво­го устройства — громоздкий автотранс­форматор, а второго — слишком слож­ная схема.

В предлагаемом вниманию читате­лей преобразователе однофазного се­тевого напряжения в трёхфазное, пода­ваемое на двигатель, указанные недо статки устранены. Он содержит регули­руемый симистором выпрямитель и простую цифровую часть, вырабатыва­ющую три последовательности симмет­ричных прямоугольных импульсов, вза­имно сдвинутых по фазе на 120°. Схема устройства изображена на рис. 1.

Рис. 1

Рис. 1

Регулируемый выпрямитель пред­ставляет собой, по существу, обычный симисторный регулятор, работающий на диодный выпрямительный мост со сглаживающим выпрямленное напря­жение конденсатором. Он состоит из силового симистора VS2, симметрично­го динистора VS1 с пороговым напря­жением 32 В, конденсаторов С2, С4, С6, С8. Переключателем SA1.2 выбирают один из трёх резисторов R7—R9, обра­зующих с конденсатором С2 фазосдви­гающую цепь, задерживающую момент открывания симистора относительно начала каждого полупериода. Точный расчёт сопротивления этих резисторов затруднён, поэтому они подобраны экс­периментально в процессе налажива­ния преобразователя. От задержки от­крывания симистора зависит напряжение, до которого заряжаются конденса­торы С4 и С6. Этим напряжением питают мощные ключи на полевых тран­зисторах VT1—VT6, формирующие вы­ходное трёхфазное напряжение.

Демпфирующая цепь C8R11 снижает коммутационные помехи. А для того чтобы помехи не проникали в питающую сеть, преобразователь подключён к ней через фильтр Z1 DL-6DX1. Он состоит из двухобмоточного дросселя, нескольких конденсаторов и резистора, через кото­рый конденсаторы разряжаются после отключения устройства от сети. Для правильной работы фильтра его корпус должен быть заземлён — соединён с третьим контактом сетевой розетки.

Резистор R6 предотвращает повреж­дение элементов выпрямителя в мо­мент его включения в сеть. Дело в том, что в этот момент конденсаторы C4 и С6 ещё не заряжены. Импульс их зарядного тока, если его амплитуду ничем не ограничить, может вывести из строя либо диоды выпрямительного моста VD1, либо симистор VS2. Резистор R6 ограничивает амплитуду этого импульса приблизительно до 40 А, допустимых для диодного моста и симистора.

Конечно, для ограничения тока можно было применить терморезистор с большим отрицательным ТКС, но под­ходящих терморезисторов в продаже не нашлось, хотя в каталогах произво­дителей они имеются. Поэтому в качест­ве R6 применён проволочный резистор С5-35В-7,5 Вт (ПЭВ-7,5). Не стоит за­менять его импортным проволочным резистором. Например, резистор фир­мы Uni-Ohm сопротивлением 5 Ом и мощностью 5 Вт при включении уст­ройства в сеть мгновенно сгорает.

Разборка этого резистора показала, что в нём на керамический каркас раз­мером с резистор МЛТ-0,5 намотан короткий отрезок чрезвычайно тонкого высокоомного провода, выдерживаю­щего ток не более 2...3 А. Рассеивание постоянной мощности, равной номи­нальной, обеспечено хорошим отводом выделяемого проводом тепла через внешнюю керамическую оболочку ре­зистора и её заполнитель. Но кратко­временную перегрузку во много раз такой резистор выдержать не может.

Резистор R2 нужен для правильной работы симистора VS2. Как известно, чтобы симистор закрылся, разность потенциалов между его электродами 1 и 2 должна стать нулевой. Однако этого не происходит при работе симистора на выпрямительный мост со сглажива­ющим конденсатором большой ёмкос­ти. Этот эффект и устраняет резистор R2. Его сопротивление может находить­ся в широких пределах, но при слишком большом его значении симистор пере­стаёт закрываться в конце каждого полупериода.

Цифровая часть устройства состоит из задающего генератора на микросхе­ме DA1, распределителя импульсов на счётчике Джонсона DD1, формировате­ля трёхфазной импульсной последова­тельности на элементах ЗИЛИ микро­схемы DD2, трёх драйверов полумоста DA3—DA5 и шести ключей на полевых транзисторах VT1—VT6, образующих трёхфазный мост.

Частота генерируемых микросхемой XR2206CP (DA1) импульсов опреде­ляется простой зависимостью:

F = 1/RC1

где R — сумма сопротивления посто­янного резистора (одного из R3—R5, выбранного переключателем SA1.1, спаренным с SA1.2) и введённого со­противления переменного резистора R1. Следует иметь в виду, что эта часто­та должна в шесть раз превышать частоту выходного трёхфазного напря­жения.

В рекордере для механической звукозаписи диск должен иметь три фиксированные скорости враще­ния — 78, 45 и 33 1/3 об/мин, а для этого с учётом передаточного чис­ла механизма его двигатель нужно питать трёхфазным напряжением час­тотой соответст­венно 18,52, 10,68 и 7,917 Гц. Частота задающего генера­тора преобразова­теля должна быть в шесть раз выше этих значений — 111,2, 64,1 и 47,5 Гц. Именно для этих частот на схеме указа­ны номиналы резисторов R3—R5 (из стандартного ряда Е96). При этом учте­но, что последовательно с ними включа­ется переменный резистор R1, сопро­тивление которого в среднем положе­нии — 3,4 кОм. С его помощью точно ус­танавливают частоту вращения диска по стробоскопическим меткам на ободе.

Диоды VD3—VD5 совместно с кон­денсаторами С10—С12 образуют бутстрепные цепи для питания драйверов "верхних" ключевых полевых транзис­торов трёхфазного моста, а резисторы R12—R17 ограничивают импульсный ток затворов транзисторов VT1—VT6. Дело в том, что мощные полевые тран­зисторы имеют входную ёмкость, ис­числяемую тысячами пикофарад. Для предотвращения очень большого тока перезарядки этой ёмкости и служат упомянутые резисторы. Для эффектив­ного ограничения тока сопротивление этих резисторов должно быть как мож­но больше, но чрезмерное увеличение затягивает процессы переключения транзисторов, что приводит к бесполез­ному расходу мощности на их нагрев.

Мощность, которую преобразова­тель может отдать в нагрузку, опреде­ляется мощностью выпрямителя и каче­ством отвода тепла от транзисторов VT1—VT6. В описываемой конструкции был применён теплоотвод от процессо­ра "Пентиум", способный рассеять при обдуве мощность около 30 Вт. Это зна­чит, что в нагрузку может быть передана мощность до 1000 Вт.

Подбирая номиналы элементов, от которых зависит частота задающего ге­нератора, частоту генерируемого на­пряжения можно изменять в широких пределах, ограниченных только воз­можностями питаемого двигателя. Кро­ме того, для каждого значения частоты необходимо установить оптимальное напряжение питания двигателя, подбирая резистор фазосдвигающей цепи симисторного регулятора такого сопро­тивления, при котором двигатель рабо­тает не перегреваясь.

Внешний вид собранного преобра­зователя показан на рис. 2. Так как эле­менты преобразователя гальванически связаны с сетью 230 В, при работе с ним следует соблюдать меры электро­безопасности, прочитать о которых можно в [3].

2

Рис. 2

При отсутствии микросхемы функ­ционального генератора XR2206CP за­дающий генератор можно построить по типовой схеме на интегральном тайме­ре NE555 или его отечественном анало­ге КР1006ВИ1. Вместо микросхемы CD4075BE можно установить К561ЛЕ10 (три элемента 3ИЛИ-НЕ). К сожалению, отечественного аналога драйвера IR2111 не существует.

По описанному принципу несложно построить не только трёхфазный, но и двухфазный преобразователь. Доста­точно изменить схему формирователя импульсных последовательностей со­гласно рис. 3. Элемент микросхемы DD2.3, микросхема DA5, транзисторы VT5 и VT6 и связанные с ними компо­ненты в этом случае не используются.

Рис. 3

Рис. 3

ЛИТЕРАТУРА

  1. Мурадханян Э. Управляемый инвер­тор для питания трёхфазного двигателя. — Радио, 2004, № 12, с. 37, 38.
  2. Калашник В., Черемисинова Н. Пре­образователь однофазного напряжения в трёхфазное. — Радио, 2009, № 3, с. 31—34.
  3. Осторожно! Электрический ток! — Радио, 2015, № 5, с. 54.

Автор: В. ХИЦЕНКО, г. Санкт-Петербург

Возможно, Вам это будет интересно:

meandr.org

Подключение электродвигателя на три фазы

С полным правом можно сказать, что электрические двигатели являются основой современной цивилизации. При существующем уровне прогресса они представляют собой один из наиболее эффективных решений для преобразования одного вида энергии в другой. подключение электродвигателяЭлектродвигатели настолько широко распространены, что иногда, глядя на то или иное устройство, невозможно даже предположить, что в нем используется какая-либо разновидность электромотора. Например, мало кто знает, что в некоторых мобильных телефонах режим вибрации реализуется благодаря вращению вала компактного двигателя с установленным на нем эксцентриком. Неудивительно, что еще меньшее число людей знает, как выполняется подключение электродвигателя. Хотя, откровенно говоря, ничего сложного в этом нет. Чтобы разобраться, как производится подключение электродвигателя, нет необходимости оканчивать электротехнические курсы или вникать в особенности взаимодействия магнитных полей внутри корпуса устройства.

Засучим рукава…

Подключение электродвигателя начинается вовсе не с подачи напряжения на выводы, а с осмотра спецификации устройства. На любом электромоторе (если, конечно, он не побывал в руках вандалов и не эксплуатировался в агрессивной среде) всегда присутствует небольшая табличка, в которой указаны тип, КПД, величина напряжения и тока, номинальная скорость вращения вала и пр. схема электродвигателяЕсли проигнорировать эти данные и выполнить подключение электродвигателя, то вполне возможно повреждение источника питания, проводников или самого мотора.

Один из ключевых моментов – мощность (в киловаттах). Ее величина влияет на сечение жилы провода, которым будет подводиться напряжение. Зависимость сечения проводника от тока и мощности приводится в специальной таблице (можно найти в ПУЭ).

Решения для переменного тока

Так как более широко распространены асинхронные двигатели, то дальше мы рассмотрим именно их. Открыв крышку борна (клеммная коробка), можно увидеть диэлектрическую колодку с рядом выводов. У двигателей, рассчитанных на трехфазные сети, контактов может быть 3 или 6. В первом случае подключение простое: на каждый вывод подводится фаза (380 В), а при необходимости изменить вращение две любые из них нужно поменять местами.

ремонт электродвигателяСхема электродвигателя с 6 выводами более гибкая. Обычно на табличке в колонке «Напряжение» указано сразу два значения: 220 и 380 Вольт (или 380 и 660). Это означает, что в зависимости от способа подвода питания потенциал на обмотках будет различным. Их существует два варианта: «треугольником» и «звездой». Внутри двигателя три обмотки, начала и концы которых, соответственно, обозначаются С1-с4, С2-с5, С3-с6. На табличке всегда указано соответствие подключения напряжению, то есть, 220/380 при «треугольник/звезда» означает, что схема соединения внутренних обмоток, например, в звезду, применяется для сети 380 В. Путать это не следует, если, конечно, не хочется проводить внеплановый ремонт электродвигателя.

Соединяем выводы

Предположим, что нужное напряжение выбрано. По табличке определяем схему соединения. Остается правильно установить перемычки между выводами и подвести напряжение. Для звезды следует установить мостики между контактами С4-С5-С6, а к С1, С2 и С3 подключить разноименные фазы. Для треугольника схема иная: перемычки ставятся между С3-С5, С2-С4 и С1-С6. В двухпроводной сети третью «фазу» можно получить с помощью включения вспомогательного конденсатора. Эта схема широкодоступна, поэтому здесь не рассматривается.

Каждый из способов соединение внутренних обмоток обладает своими особенностями: на одной большие токи и мощность, а на другой плавная работа. Выбирать нужную схему следует, исходя из возможностей сети и задач, решаемых с помощью электропривода.

fb.ru


Смотрите также