ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Статические механические характеристики ад при частотном управлении. Механические характеристики асинхронного двигателя при частотном управлении


Статические механические характеристики ад при частотном управлении.

Для получения основных соотношений воспользуемся Т образной схе­мой замещения АД, которая наиболее точно отражает реальные физиче­ские процессы в двигателе. Принимаем следующие допущения:

а) не учитываем потери в стали и её насыщение, т.е. в намагничивающем контуре учитываем только сопротивление X.

б) напряжение и поток в зазоре считаем синусоидальным.

Поскольку в общем случае частота питающего напряжения изменяется, как и само напряжение, будем использовать систему относительных единиц.

Здесь

Sа - абсолютное скольжение

Найдя из схемы замещения , и подставив в уравнение электромагнитной мощности, а значение Рэм в уравнение электромагнитного мо­мента , после преобразований получим уравнение механической ха­рактеристики АД для случая частотного управления

, где

; ; ; ;

Т.о.

Электромагнитный момент М здесь непосредственно со скоростью не связан, но связь есть через выражения:

Выражения для критического скольжения и критического момента при принятой системе обозначений имеют вид

;

При пропорциональном законе управления, который графически можно представить в виде прямой (см. график). Точке А , для которойf1=f1H (1=1) и U1=U1H (V1=1) , соответствует естественная характеристика двигателя, которая изображена на следующем рисунке. Здесь же приведено семейство механических характеристик при 1<1. Видно, что перегрузочная способность двигателя уменьшается, особенно при 1 <0,5. Снижение Мкр ограничивает диапазон регулирования, т.к. при некоторой частоте перегрузочная способность будет очень малой.

Объясняется это, как уже отмечалось ранее, тем, что при снижении частоты всё больше начинает сказываться влияние падения напряжения на актив­ном сопротивлении r1, которое от частоты не зависит. Все большая часть питающего напряжения начинает прикладываться к r1 , а к остальной части схемы, в том числе к цепи намагничивания, - меньшая.

Т.о. закон пропорционального управления не очень хорош .Выход из по­ложения - при уменьшении f1 напряжение U1 уменьшать в меньшей сте­пени (смотри пунктир на графике V1=f(1))

Механические характеристики в этом случае будут иметь вид, изображенный на следующем графике. Иначе говоря, можно подобрать та­кую зависимостьV1 от , которая обеспечит постоянство критического момента при изменении частоты, в том числе и при 1=0. При малых частотах ток, потребляемый двигателем, больше, чем на естественной характеристике и двигатель сильно греется. Если же ему обеспечить номинальный нагрев, то придется уменьшить напряжение, что приведет к уменьшению Мкр. Получается, что принципиально невозможно обеспечить за­кон V1=f(1), при котором удовлетворялись бы 2 противоречия, т.е. обеспече­ние перегрузочной способности и нормального нагрева двигателя при сни­жении частоты. Данный закон регулирования может быть обеспечен лишь при условии, если напряжение изменяется не только в функции частоты, но и нагрузки на валу двигателя.

При изменении нагрузки изменяются токи в роторе и статоре. Это изме­няет падение напряжения на сопротивлении статора r1, и тех эле­ментах схемы замещения, которые являются принципиально важными с т..з. передачи электромагнитной мощности. Поэтому напряжение, подводимое к статору при изменении частоты (и даже при ее постоян­стве), необходимо регулировать т.о., чтобы скомпенсировать падение на­пряжения на r1и других элементах схемы замещения. Этим самым можно обеспечить постоянство потокосцеплений.

Выразим потокосцепления, наводящие в обмотках статора и ротора ЭДС Е1=ES ; Er=E2 и Em (ЭДС взаимной индукции без учета потоков рассеяния), а также эти ЭДС в относительных единицах.

; ;

; ;; тогда

; ;

Рассмотрим сначала управление при s=const. Этот случай соответствует такому регулированию напряжения, приложенного к статору, при котором обеспечивается компенсация падения напряжения на r1. ЭДС es=e1 в этом случае становится независимой от нагрузки, т.е. становится постоянной при дан­ном значении частоты. При изменении частоты нужно изменять напряже­ние. Пропорционально изменению частоты будет изменятся и es . Это соответствует стабилизации потокосцепления . Если же будет изменяться нагрузка, то дополнительно нужно регулировать напряжение т.о., чтобы скомпенсировать изменившееся падение напряже­ния наr1 и этим самым обеспечить как постоянство es, так и постоянство пото­косцепления S.

Уравнение механических характеристик в этом случае можно полу­чить, положив в исходном уравнении b=0,d=0 , т.к. компенсация падения на­пряжения на r1 равносильна тому , как будто бы этого сопротивления вообще нет. Вместо V1 нужно положить es. Можно считать , что в данном случае к схеме приложено напряжения ES. Для сокращения записи уравнения обо­значим через K. Тогда уравнение механической характеристики при­мет вид.

;

Рассчитав и изобразив механические характеристики для разных час­тот, получим увеличение Мкр ~ на 20% (смотри график) по сравнению с Мкр на естественной характеристике. В этом случае, как показывает анализ, потери в меди постоянны, потери в стали при снижении частоты уменьшаются. Т.о., если двигатель снабжен независимой вентиляцией , можно обеспечить дли­тельный режим его работы как при больших, так и малых частотах.

Если обеспечить постоянство Еm, получим закон регулирования, при котором будет постоянным поток в зазоре, т.е m=const. Этого можно добиться, компенсируя падения напряжения на r1 и x1 путем форсировки (увеличения) напряжения, подводимого к ста­тору. Компенсация падения напряжения на r1 и x1 обеспечивает постоянство потокосцепления.

При изменении частоты нужно пропорционально изменять и Еm, что и соот­ветствует компенсации падений напряжения на r1 и x1 .

Вэтом случае можно считать, чтоr1=0 ; x1=0 , следовательно b=0 ; c=x2’ , d=0 ; e=1 . Уравнение механической характеристики и значение Мкр будет после подстановки вместо V1 ЭДС еm иметь вид:

;

Анализ показывает, что в этом случае получим увеличение Мкр примерно в 2 раза при всех частотах по сравнению с Мкр на естественной ха­рактеристике. При снижении частоты относительная жесткость характери­стик возрастет.

Если напряжение, подводимое к статору, регулировать т.о., чтобы компенсировать падение напряжения и на.r1и на x1 и на xl2, то можно обеспечить r=const. В этом случае можно считать, что двигатель пи­тается напряжением Er , а не U1 и .

Компенсация падений напряжения на r1, x1, x2’ равносильна тому, что как - будто этих сопротивлений нет вообще, следовательно b=0;с=0;d=0;е=1. Уравнения механических характеристик и Мкр прини­мают вид (вместо V1 подставляем er):

;

Зависимость М от скольжения линейна. Характеристики получаются такими, как у компенсированной машины постоянного тока независимого возбуждения. Перегрузочная способность теоретически равна . Именно этот вариант и реализуется в современных системах частотно регулируе­мых электроприводов.

В принципе и это не является пределом. При компенсации падения на­пряжения ещё и на r2’ можно получить абсолютно жесткую механическую характери­стику с постоянным скольжением (см.график).

Т.о. только при реализации рассмотренных здесь законов возможности АД используется полностью.

studfiles.net

Основные сведения о частотно-регулируемом электроприводе

 Частотник в комплекте с асинхронным электродвигателем позволяет заменить электропривод постоянного тока. Системы регулирования скорости двигателя постоянного тока достаточно просты, но слабым местом такого электропривода является электродвигатель. Он дорог и ненадежен. При работе происходит искрение щеток, под воздействием электроэрозии изнашивается коллектор.  Такой электродвигатель не может использоваться в запыленной и взрывоопасной среде.

      Асинхронные электродвигатели превосходят двигатели постоянного тока по многим параметрам: они просты по устройству и надежны, так как не имеют подвижных контактов. Они имеют меньшие по сравнению с двигателями постоянного тока размеры, массу и стоимость при той же мощности. Асинхронные двигатели просты в  изготовлении и эксплуатации.

      Основной недостаток асинхронных электродвигателей – сложность регулирования их скорости традиционными методами (изменением питающего напряжения, введением дополнительных сопротивлений в цепь обмоток).         Управление асинхронным электродвигателем в частотном режиме до недавнего времени было большой проблемой, хотя теория частотного регулирования была разработана еще в тридцатых годах. Развитие частотно-регулируемого электропривода сдерживалось высокой стоимостью преобразователей частоты. Появление силовых схем с IGBT-транзисторами, разработка высокопроизводительных микропроцессорных систем управления  позволило различным фирмам Европы, США и Японии создать современные преобразователи частоты доступной стоимости. 

      Известно, что регулирование частоты вращения исполнительных механизмов можно осуществлять  при помощи различных устройств: механических вариаторов,  гидравлических муфт, дополнительно вводимыми в статор или ротор резисторами, электромеханическими преобразователями частоты, статическими преобразователями частоты.  

      Применение первых четырех устройств не обеспечивает высокого качества регулирования скорости,  неэкономично, требует больших затрат при монтаже и эксплуатации.       Статические преобразователи частоты являются наиболее совершенными устройствами управления асинхронным приводом в настоящее время.

      Принцип частотного метода регулирования скорости асинхронного двигателя заключается в том, что,  изменяя частоту f1 питающего напряжения, можно в соответствии с выражением  неизменном числе  пар полюсов p изменять угловую скорость магнитного поля статора.

      Этот способ обеспечивает плавное регулирование скорости в широком диапазоне, а механические характеристики обладают высокой жесткостью.

      Регулирование скорости при этом не сопровождается увеличением скольжения асинхронного двигателя, поэтому потери мощности при регулировании невелики.

      Для получения высоких энергетических показателей асинхронного двигателя – коэффициентов мощности, полезного действия, перегрузочной способности – необходимо одновременно с частотой изменять и подводимое напряжение.

      Закон изменения напряжения зависит от характера  момента  нагрузки Mс .  При постоянном  моменте   нагрузки Mс=const напряжение на статоре должно регулироваться пропорционально частоте: Для вентиляторного характера момента нагрузки это состояние имеет вид: При моменте нагрузки, обратно пропорциональном скорости:       Таким образом, для плавного бесступенчатого регулирования частоты вращения вала асинхронного электродвигателя, преобразователь частоты должен обеспечивать одновременное регулирование частоты и напряжения на статоре асинхронного двигателя. Преимущества использования регулируемого электропривода в технологических процессах

      Применение регулируемого электропривода обеспечивает энергосбережение и позволяет получать новые качества систем и объектов. Значительная экономия электроэнергии обеспечивается за счет регулирования какого-либо технологического параметра. Если это транспортер или конвейер, то можно регулировать скорость его движения. Если это насос или вентилятор – можно поддерживать давление или регулировать производительность. Если это станок, то можно плавно регулировать скорость подачи или главного движения.

      Особый экономический эффект от использования преобразователей частоты дает применение частотного регулирования на объектах, обеспечивающих транспортировку жидкостей. До сих пор самым распространённым способом регулирования производительности таких объектов является использование задвижек или регулирующих клапанов, но сегодня доступным становится частотное регулирование асинхронного двигателя, приводящего в движение, например, рабочее колесо насосного агрегата или вентилятора. Перспективность частотного  регулирования  наглядно  видна  из рисунка 1 Рис.1 Потребление мощности при различных способах регулирования скорости вращения насосов       Таким образом, при дросселировании  поток вещества, сдерживаемый задвижкой или клапаном,  не совершает полезной работы. Применение регулируемого электропривода насоса или вентилятора позволяет задать необходимое давление или расход, что обеспечит не только экономию электроэнергии, но и снизит потери транспортируемого вещества. Структура частотного преобразователя

      Большинство  современных  преобразователей частоты построено по схеме двойного преобразования.  Они  состоят из следующих основных частей:  звена  постоянного  тока  (неуправляемого выпрямителя), силового импульсного инвертора и системы управления.

      Звено постоянного тока состоит из неуправляемого выпрямителя и фильтра.  Переменное напряжение питающей сети преобразуется в нем в напряжение постоянного тока.

      Силовой трехфазный импульсный инвертор состоит из шести транзисторных ключей. Каждая обмотка электродвигателя подключается через соответствующий ключ к положительному и отрицательному выводам выпрямителя. Инвертор осуществляет преобразование выпрямленного напряжения в трехфазное переменное напряжение нужной частоты и амплитуды, которое прикладывается к обмоткам статора электродвигателя.

      В выходных каскадах инвертора в качестве ключей используются силовые IGBT-транзисторы. По сравнению с тиристорами они имеют более высокую частоту переключения, что позволяет вырабатывать выходной сигнал синусоидальной формы с минимальными искажениями. Принцип работы преобразователя частоты  

      Преобразователь частоты состоит из неуправляемого диодного силового выпрямителя В, автономного инвертора , системы  управления ШИМ, системы автоматического регулирования, дросселя Lв и конденсатора фильтра Cв (рис.2).  Регулирование выходной частоты fвых. и напряжения  Uвых осуществляется в инверторе за счет высокочастотного широтно-импульсного управления.

      Широтно-импульсное управление характеризуется периодом модуляции, внутри которого обмотка статора электродвигателя подключается поочередно к положительному и отрицательному полюсам выпрямителя.

       Длительность этих состояний внутри периода ШИМ модулируется по синусоидальному закону. При высоких (обычно 2…15 кГц) тактовых частотах ШИМ, в обмотках электродвигателя, вследствие их фильтрующих свойств, текут синусоидальные токи.

Рис.2. Упрощенная схема инвертора с широтно-импульсной модуляцией (ШИМ).       Таким образом, форма кривой выходного напряжения представляет собой высокочастотную двухполярную последовательность прямоугольных импульсов (рис. 3). Частота импульсов определяется частотой ШИМ, длительность (ширина) импульсов в течение периода выходной частоты АИН промодули-рована по синусоидальному закону. Форма кривой выходного тока (тока в обмотках асинхронного электродвигателя) практически синусоидальна.  Регулирование выходного напряжения инвертора можно осуществить двумя способами: амплитудным  (АР) за счет изменения входного напряжения Uв  и широтно-импульсным (ШИМ) за счет изменения программы переключения вентилей V1-V6 при Uв = const.       Второй способ получил распространение в современных преобразователях частоты благодаря развитию современной элементной базы (микропроцессоры, IBGT-транзисторы). При широтно-импульсной модуляции форма токов в обмотках статора асинхронного двигателя получается близкой к синусоидальной благодаря фильтрующим свойствам самих обмоток.

Рис.3. Форма кривых напряжения и тока на выходе инвертора с широтно-импульсной модуляцией.       Такое управление позволяет получить высокий КПД преобразователя и эквивалентно аналоговому управлению с помощью частоты и амплитуды напряжения.

      Современные инверторы выполняются на основе полностью управляемых силовых полупроводниковых приборов – запираемых GTO – тиристоров, либо биполярных IGBT-транзисторов с изолированным затвором. На рис. 2.45 представлена 3-х фазная мостовая схема автономного инвертора на IGBT-транзисторах.

      Она состоит из входного емкостного фильтра Cф и шести IGBT-транзисторов V1-V6 включенными встречно-параллельно диодами обратного тока D1-D6.

      За счет поочередного переключения вентилей V1-V6 по алгоритму, заданному системой управления, постоянное входной напряжение Uв  преобразуется в переменное прямоугольно-импульсное выходное напряжение. Через управляемые ключи V1-V6 протекает активная составляющая тока асинхронного электродвигателя, через диоды D1-D6 – реактивная составляющая тока.

Рис.4. Схема преобразователя частоты (инвертора) И – трехфазный мостовой инвертор; В – трехфазный мостовой выпрямитель; Сф – конденсатор фильтра;

www.technowell.ru

40.Частотное регулирование скорости. Искусственные характеристики

40) Частотное регулирование скорости. Искусственные характеристики.

Регулирование частоты вращения асинхронного двигателя изменением частоты питающего напряжения

Так как частота вращения магнитного поля статора nо = 60f/р, то регулирование частоты вращения асинхронного двигателя можно производить изменением частоты питающего напряжения.

Принцип частотного метода регулирования скорости асинхронного двигателя заключается в том, что, изменяя частоту питающего напряжения, можно в соответствии с выражением при неизменном числе пар полюсов р изменять угловую скорость nо магнитного поля статора.

Этот способ обеспечивает плавное регулирование скорости в широком диапазоне, а механические характеристики обладают высокой жесткостью.

Для получения высоких энергетических показателей асинхронных двигателей (коэффициентов мощности, полезного действия, перегрузочной способности) необходимо одновременно с частотой изменять и подводимое напряжение. Закон изменения напряжения зависит от характера момента нагрузки Мс. При постоянном моменте нагрузки напряжение на статоре должно регулироваться пропорционально частоте.

Схема частотного электропривода приведена на рис. 5, а механические характеристики АД при частотном регулировании — на рис. 6.

Рис. 5. Схема частотного электропривода

Рис. 6. Механические характеристики асинхронного двигателя при частотном регулировании

С уменьшением частоты f критический момент несколько уменьшается в области малых частот вращения. Это объясняется возрастанием влияния активного сопротивления обмотки статора при одновременном снижении частоты и напряжения.

Частотное регулирование скорости асинхронного двигателя позволяет изменять частоту вращения в диапазоне (20 - 30) : 1. Частотный способ является наиболее перспективным для регулирования асинхронного двигателя с короткозамкнутым ротором. Потери мощности при таком регулировании невелики, поскольку минимальны потери скольжения.

Большинство современныхпреобразователей частоты построено по схеме двойного преобразования. Они состоят из следующих основных частей: звена постоянного тока (неуправляемого выпрямителя), силового импульсного инвертора и системы управления.

Звено постоянного тока состоит из неуправляемого выпрямителя и фильтра. Переменное напряжение питающей сети преобразуется в нем в напряжение постоянного тока.

Силовой трехфазный импульсный инвертор содержит шесть транзисторных ключей. Каждая обмотка электродвигателя подключается через соответствующий ключ к положительному и отрицательному выводам выпрямителя. Инвертор осуществляет преобразование выпрямленного напряжения в трехфазное переменное напряжение нужной частоты и амплитуды, которое прикладывается к обмоткам статора электродвигателя.

1

studfiles.net

Частотное управление асинхронными двигателями

Использование асинхронного двигателя в регулируемом электроприводе представляет особый интерес, т.к. АД является наиболее простым, деше­вым и надежным двигателем. Возможности его регулирова­ния, аналогичные возможностям регулирования ДНВ изменением напряжения на якоре, обеспечиваются изменением частоты на­пряжения и тока статорной обмотки. Для реализации этой возможности пи­тание двигателя необходимо осуществлять от управляемого преобразова­теля частоты.

В качестве преобразователей частоты могут использоваться электро­машинные и статические преобразователи. К электромашинным преобра­зователям относятся синхронные генераторы, приводимые во вращение ре­гулируемым двигателем постоянного тока, и асинхронные преобразова­тели частоты, вращаемые к.з. АД. К статическим преобразователям отно­сятся тиристорные преобразователи, выполняемые на базе автономных инверторов напряжения и тока, а также преобразователи, выполненные на базе силовых транзисторов.

При частотном управлении АД возникает необходимость, как отмечено ранее при рассмотрении электромеханических свойств АД, регулировать не только частоту, но и величину подводимого напряже­ния, причем напряжение регулируется не только в функции частоты, но ещё и в функции нагрузки двигателя. Регулирование напряжения только в функции частоты с учетом характеристик механизма может быть реализовано в ра­зомкнутых системах частотного управления. Регулирование напряжения в функции частоты и нагрузки можно осуществить лишь в замкнутых систе­мах.

Верхний предел регулирования частоты, следовательно, скорости АД, ограничивается прочностью крепления обмоток ротора и заметным увеличением потерь в стали статора. Нижний предел ограничен сложностью реализации источника питания с низкой частотой и возможностью нерав­номерности вращения двигателя. Как правило, напряжение при частотном управлении регулируется лишь вниз по отношению к номинальному, а час­тота вверх и вниз по отношению к основной.

Законы частотного регулирования

При выборе соотношения между частотой и напряжением, подводимым к статору АД, чаще всего исходят из условия сохранения перегрузочной способности двигателя для любой из его регулировочных механических характери­стик. Основной закон частотного регулирования (закон Костенко), известный ещё из курса электрических машин, в математической форме имеет вид

, где

МС и М’C -статические моменты сопротивления соответствующие ско­рости двигателя при частотах f1 и f’1.

U1 и U’1 -соответствующие частотам f1 и f’1 напряжения.

В относительных единицах этот закон запишется так:

, где

Из него следует, что закон изменения напряжения определяется не только частотой источника питания, но и характером изменения момента сопро­тивления механизма на валу двигателя при изменении угловой скорости.

Согласно формуле Бланка

или в относительных единицах

Учитывая, что , а, можно написать

Тогда основной закон после подстановки в формулу

значения C , будет иметь вид:

При постоянном моменте на валу двигателя МС

(следовательно и С ) не зависит от скорости, а значит и частоты. Поэтому х=0 и

или

, а в именованных единицах

Полученный закон – это закон пропорционального управления. Механические характеристики двигателя при этом законе изобра­жены на рисунке. Жесткость характеристик сохраняется сравнительно вы­сокой. Критический момент в зоне частот, близких к основной, практически остается неизменной. Однако при значи­тельном снижении чистоты (ниже 0,5f1H ) сопротивление становится соизмеримым по величине с сопротивлением r1 статора или даже меньше его. Влияние падения напряжения на r1 становится весьма заметным, к намагничивающей цепи двигателя подводится тем меньшее напряжение, чем меньше частота. Это вызывает уменьшение критического момента, следовательно, перегрузочной способ­ности двигателя.

Плавное регулирование до f1=0 при этом законе невозможно. Невозможно также обес­печить устойчивую работу двигателя при Мс=const в широком диапазоне регулирования частоты.

Закон пропорционального регулирования можно легко реализовать при разомкнутой системе, Этот закон целесообразен только для крупных АД, а для мелких, маломощных он малоэффективен , т.к. уже при 1<0,5 пе­регрузочная способность двигателя заметно снижается (у них большое r1). Потери в двигателе больше, чем при основном законе.

При идеальном вентиляторном моменте сопротивления x=2 , 0=0 и

или

Механические характеристики при этом законе изображены на рис. При постоянной мощности статической нагрузки РС=const или : В этом случае Х=-1 Приняв0=0, получим закон управления

или

Механические характеристики при этом законе имеют вид, изображенный на рисунке. Возможны также законы, обеспечивающие постоянство потокосцеплений статораS=const, ротора r=const, взаимного потокосцепления статора и ротора m=const. Возможен закон поддержания относительной частоты тока ротора (=const), абсолютной частоты тока ротора (f2=const), закон управления по ЭДС и мо­менту

или

studfiles.net

Основы электропривода

как и при работе на естественной характеристике. Следует также учитывать, что в связи с относительно малой мощностью цепи обмотки возбуждения по сравнению с номинальной мощностью двигателя затраты на регулировочные устройства (реостаты или преобразователи в цепи обмотки возбуждения) невелики.

Двигатели независимого возбуждения, регулируемые путем ослабления потока, широко применяются для привода механизмов, мощность которых с изменением скорости остается постоянной.

6 Влияние параметров  (сопротивление роторной цепи), , f на вид механических характеристик асинхронного двигателя с короткозамкнутым и фазным ротором. Способы регулирования скорости вращения асинхронных двигателей

в последние годы с развитием полупроводниковой техники все большее внимание уделяется применению различных систем регулируемых электроприводов переменного тока с асинхронными двигателями с короткозамкнутым или фазным ротором.

Применение двигателей переменного тока обусловлено их простотой, дешевизной, повышенной надежностью, существенно (в 23 раза) меньшими габаритами и массой по сравнению с двигателями постоянного тока. Кроме того, некоторые способы регулирования угловой скорости не требуют специальных преобразовательных устройств.

Отмечая достоинства двигателей переменного тока, нельзя не обратить внимания на то, что относительно простые способы регулирования угловой скорости электроприводов переменного тока обладают и рядом недостатков, к которым можно отнести в одном случае небольшую плавность, в другом — невысокие энергетические показатели и т. д. Более эффективные способы регулирования осуществляются при помощи сравнительно сложных преобразовательных устройств и средств управления.

Наибольшее распространение получили следующие способы регулирования угловой скорости асинхронного двигателя: 1) реостатное регулирование; 2) переключением числа пар полюсов; 3) частотное регулирование; 4) изменением напряжения на статоре; 5) каскадным включением асинхронного двигателя с другими машинами или преобразователями. Для регулирования угловой скорости, кроме упомянутых, могут быть использованы некоторые другие способы включения электрических двигателей: импульсное регулирование, регулирование изменением подводимого к статору напряжения, регулирование с помощью электромагнитной муфты скольжения и др.

Реостатное регулирование угловой скорости асинхронных двигателей

Введение резисторов в цепь ротора (реостатное регулирование) позволяет, как и для двигателей постоянного тока, регулировать угловую скорость двигателя. Регулирование осуществляется вниз от основной угловой скорости. Плавность регулирования зависит от числа ступеней включаемых резисторов.

Для асинхронных двигателей с фазным ротором применяется регулирование скорости путем изменения сопротивлений в цепи ротора, а для двигателей с короткозамкнутым ротором используются сопротивления в цепи статора, как это показано на рис. 6.1

а) б)

Рисунок 6.1–Схемы включения резисторов в цепь ротора а) и статора б)

  (6-1)

Согласно выражениям (6-1) при увеличении активного сопротивления вторичной цепи увеличивается критическое скольжение, и механическая характеристика становится более мягкой (см. рис. 6.2).

а) б)

Рисунок 6.2 – Механические характеристики асинхронного двигателя при регулировании скорости изменением сопротивления в цепи ротора а) и статора б)

При увеличении скольжения в 2 раза по сравнению с номинальным, т. е. при снижении скорости всего лишь на 815%, допустимый момент уменьшается в 2 раза. По этой причине диапазон регулирования обычно не превышает (1,52):1.

При неизменном моменте нагрузки и реостатном управлении потери мощности в роторной цепи изменяются пропорционально скольжению, а потери в статоре не зависят от скольжения и остаются неизменными при данном моменте нагрузки. Если, например, скорость двигателя снижена вдвое по сравнению с номинальной, то примерно половина всей потребляемой из сети мощности теряется в регулировочных резисторах. Следовательно, с ростом регулировочного сопротивления при одном и том же скольжении снижается к. п. д.

Рассматриваемый способ регулирования скорости связан со значительными потерями энергии в добавочном сопротивлении и поэтому малоэкономичен. Он применяется главным образом при кратковременной или повторно-кратковременной работе (например, пуско-наладочные режимы некоторых машин, крановые устройства и пр.), а также в приводах с вентиляторным моментом. В последнем случае мощность на валу с уменьшением скорости быстро снижается, и поэтому мощность скольжения и потери в цепи ротора по величине ограничены.

К недостаткам реостатного регулирования скорости относятся также мягкость механических характеристик и зависимость диапазона регулирования от величины нагрузки. В частности, регулирование скорости на холостом ходу практически невозможно.

Реостатное регулирование скорости асинхронного двигателя с фазным ротором продолжает находить практическое применение при невысоких требованиях к точности регулирования.

Реостатное регулирование благодаря своей простоте находит практическое применение, например, в приводе подъемно-транспортных устройств, вентиляторов и насосов малой и средней мощности (до 100 кВт).

Регулирование угловой скорости асинхронного электропривода изменением напряжения

Если регулировать напряжение, подводимое к трем фазам статора асинхронного двигателя, то можно, пренебрегая влиянием регулирующего устройства на характеристики двигателя, изменять максимальный момент, не изменяя критического скольжения. Для изменения напряжения на зажимах статора могут использоваться различные устройства: автотрансформаторы, дроссели насыщения, тиристорные регуляторы напряжения.

В случае ненасыщенной магнитной цепи машины максимальный момент при пониженном напряжении снижается пропорционально квадрату напряжения:

где  – соответственно максимальные моменты, развиваемые двигателем при сниженном и номинальном напряжениях;  — соответственно пониженное и номинальное напряжения.

Критическое скольжение, не зависящее от напряжения, остается неизменным. Не изменяется также и синхронная угловая скорость, которая зависит только от частоты питающего напряжения и числа пар полюсов двигателя.

Регулирование угловой скорости двигателя при этом способе происходит за счет уменьшения модуля жесткости механических характеристик и осуществляется вниз от номинальной угловой скорости. Плавность регулирования определяется плавностью изменения напряжения; при применении тиристорного регулятора напряжения угловая скорость регулируется бесступенчато.

Механические характеристики двигателя с короткозамкнутым ротором при регулировании напряжения на статоре приведены на рис. 6. Из этих характеристик следует, что пределы регулирования весьма ограничены даже при использовании вентиляторной нагрузки, но они могут быть существенно расширены в замкнутых системах электропривода. В действительности вследствие уменьшения критического скольжения из-за влияния параметров регулирующего устройства пределы регулирования в разомкнутых системах еще уменьшаются.

Так как большие потери мощности скольжения в двигателе с короткозамкнутым ротором выделяются в самом роторе, то допустимый момент резко уменьшается по мере роста скольжения, поэтому такой неэкономичный способ регулирования угловой скорости асинхронного двигателя с короткозамкнутым ротором можно использовать только при малой мощности двигателя и в кратковременном режиме работы.

Рисунок 6.3 – Механические характеристики двигателя с короткозамкнутым ротором при регулировании напряжения на статоре

Лучшее использование двигателя и более благоприятные характеристики могут быть получены, если применить двигатель с фазным ротором, в роторную цепь его включить дополнительный нерегулируемый резистор и регулировать напряжение на статоре (рис. 6.4, а). Механические характеристики для рассматриваемого способа приведены на рис. 6.4, б. Преимущество этого способа по сравнению с реостатным заключается в том, что управление двигателем осуществляется плавно и исключается контактная аппаратура в роторной цепи.

Потери энергии в приводе получаются примерно такими же или несколько больше, как и при реостатном регулировании; потери мощности скольжения в основном выносятся из двигателя и выделяются в дополнительном резисторе, что увеличивает допустимый момент. Этот способ может быть использован при вентиляторной нагрузке для продолжительного режима, а при Мс = const для кратковременного режима работы. Очевидно, что регулирование изменением напряжения может быть осуществлено только вниз от основной угловой скорости.

Механические характеристики (рис. 6.4, б) по мере снижения напряжения становятся мягкими и не обеспечивают стабильности угловой скорости при возможном отклонении нагрузки. Кроме того, наличие постоянно включенного резистора приводит к недоиспользованию двигателя по скорости (угловая скорость всегда меньше номинальной) и по мощности. Повышение стабильности угловой скорости и расширение диапазона регулирования до (510):1 достигается в замкнутых системах.

Рисунок 6.4 – Схема включения двигателя с фазным ротором с нерегулируемым резистором в роторной цепи и регулированием напряжения на статоре (а) и механические характеристики (б)

Для регулирования напряжения используются как тиристорные регуляторы напряжения с фазовым управлением, так и реакторы насыщения, автотрансформаторы и импульсные, например тиристорные или контактные регулирующие устройства.

Если регулирование скорости осуществляется с помощью тиристорного регулятора напряжения с фазовым управлением, то возникают дополнительные потери в двигателе, обусловленные высшими гармониками в кривой напряжения. Потери в меди статора и ротора за счет высших гармоник возрастают в среднем на 10%. Общие электромагнитные потери в меди и стали двигателя, рассчитанные с учетом высших гармоник, возрастают не более чем на 10—12% по сравнению с общими потерями, определенными при синусоидальном напряжении.

При снижении напряжения, подводимого к статору, уменьшается магнитный поток двигателя, что при постоянстве момента нагрузки приводит к возрастанию токов ротора и статора, поэтому возрастают потери и превышение температуры обмоток двигателя. Возрастание потерь и, кроме того, ухудшение условий вентиляции двигателя с уменьшением угловой скорости приводит к необходимости снижения допустимого момента.

Регулирование скорости изменением напряжения, подводимого к статору, находит применение преимущественно при использовании двигателей небольшой мощности (до 2030 кВт) с контактными кольцами при включении дополнительного сопротивления в роторной цепи для механизмов повторно-кратковременного и кратковременного режимов работы.

Частотное регулирование скорости асинхронных электроприводов

Принципиальная возможность регулирования угловой скорости асинхронного двигателя изменением частоты питающего напряжения  следует непосредственно из выражения:

.

Питание асинхронных двигателей осуществляется при этом не от общей сети, а от преобразователя частоты ПЧ, показанного на рис. 6.5, энергия к которому подводится от сети постоянной частоты f1С и напряжения U1С. На выходе преобразователя, как правило, меняется не только частота f1, но и напряжение U1. Для преобразования частоты могут быть использованы электромашинные или полупроводниковые устройства, различающиеся по принципу действия и конструкции.

Рисунок 6.5 – Схема включения асинхронных двигателей, получающих питание от преобразователя частоты

При регулировании частоты возникает также необходимость регулирования напряжения источника питания. Действительно, э. д. с. обмотки статора асинхронного двигателя пропорциональна частоте и потоку:

С другой стороны, пренебрегая в первом приближении падением напряжения на сопротивлениях обмотки статора, т. е. полагая , можно записать:

Или 

Из приведенного выражения следует, что при неизменном напряжении источника питания  и регулировании его частоты изменяется магнитный поток асинхронного двигателя. В частности, уменьшение частоты  приводит к возрастанию потока и как следствие к насыщению машины и увеличению тока намагничивания, что связано с ухудшением энергетических показателей двигателя, а в ряде случаев и с его недопустимым нагревом. Увеличение частоты  приводит к снижению потока двигателя, что при постоянном моменте нагрузки на валу в соответствии, с выражением  приводит к возрастанию тока ротора, т. е. к перегрузке его обмоток по току при недоиспользованной стали. Кроме того, с этим связано снижение максимального момента и перегрузочной способности двигателя. Для наилучшего использования асинхронного двигателя при регулировании скорости изменением частоты необходимо регулировать напряжение одновременно в функции частоты и нагрузки.

Регулирование напряжения лишь в функции одной частоты с учетом характеристики механизма может быть реализовано в разомкнутых системах частотного управления.

Регулирование напряжения в функции нагрузки можно осуществить, как правило, лишь в замкнутых системах, в которых при использовании обратных связей напряжение при данной частоте может изменяться в зависимости от нагрузки.

По мере снижения частоты при  падает доля э. д. с. по отношению к приложенному напряжению вследствие относительного возрастания падения напряжения в сопротивлении статора с ростом нагрузки, что приводит к уменьшению магнитного потока, а, следовательно, к снижению электромагнитного момента. Как следствие убывания магнитного потока и абсолютного критического скольжения по мере снижения частоты падает максимальный момент и снижается жесткость механических характеристик (см. рис. 6.6).

Рисунок 6.6 – Механические характеристики асинхронного двигателя при частотном управлении по закону .

Изменение частоты источника питания позволяет регулировать скорость асинхронного двигателя как выше, так и ниже основной. Обычно при регулировании выше основной скорости частота источника питания превышает номинальную не более чем в 1,52 раза. Указанное ограничение обусловлено, прежде всего, прочностью крепления обмотки ротора. Кроме того, с ростом частоты питания заметно увеличиваются величины мощности потерь, связанные с потерями в стали статора. Регулирование скорости вниз от основной, как правило, осуществляется в диапазоне до 1015. Нижний предел частоты ограничен сложностью реализации источника питания с низкой частотой, возможностью неравномерности вращения и рядом других факторов. Таким образом, частотное регулирование скорости асинхронного двигателя может осуществляться в диапазоне до 20–30. Использование двигателей специальной конструкции дает возможность расширить диапазон регулирования за счет увеличения верхнего предела скорости. Нижний предел скорости может быть уменьшен путем введения в схему управления различных обратных связей.

Если при регулировании частоты напряжение изменяется таким образом, что Ф=const, то допустимый момент на валу асинхронного двигателя при частотном регулировании скорости также будет неизменным ().

Этот способ регулирования позволяет получить жесткие механические характеристики. Потери мощности при частотном управлении невелики. Это следует из выражения

с учетом того, что двигатель при изменении частоты работает на линейных участках механических характеристик, т. е. при малых скольжениях s. При наличии соответствующего преобразователя частоты можно получить любую плавность регулирования. Важно отметить, что указанные положительные свойства можно реализовать с бесконтактным асинхронным короткозамкнутым двигателем, который является наиболее простым, надежным и дешевым электрическим двигателем.

Частотное регулирование угловой скорости электроприводов переменного тока с двигателями с короткозамкнутым ротором находит все большее применение в различных отраслях техники. Например, в установках текстильной промышленности, где с помощью одного преобразователя частоты, питающего группу асинхронных двигателей, находящихся в одинаковых условиях, плавно и одновременно регулируются их угловые скорости. Примером другой установки с частотно-регулируемыми асинхронными двигателями с короткозамкнутым ротором могут служить транспортные рольганги в металлургической промышленности, некоторые конвейеры и др.

Частотное регулирование угловой скорости асинхронных двигателей широко применяется в индивидуальных установках, когда требуется получение весьма высоких угловых скоростей (например, для центрифуг, шлифовальных станков, для привода электрошпинделей в металлорежущих станках с частотой вращения до 20 000 об/мин).

Экономические выгоды частотного регулирования особенно существенны для приводов, работающих в повторно-кратковременном режиме, где имеет место частое изменение направления вращения с интенсивным торможением.

Основным недостатком электроприводов с частотным управлением является необходимость использования преобразователей частоты, которые в настоящее время характеризуются относительной сложностью по схемному исполнению и высокой стоимостью. Этот недостаток ограничивает применение частотноуправляемых электроприводов. Тем не менее, преимущества этих приводов столь значительны, что на протяжении многих лет и в настоящее время ведутся интенсивные работы по созданию преобразователей частоты для регулирования скорости асинхронных двигателей.

В случае создания приемлемых по сложности и стоимости преобразователей частоты частотноуправляемый привод с асинхронным короткозамкнутым двигателем получит широкое распространение в технике.

Перечень ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1) Чиликин М. Г., Общий курс электропривода: учебник для вузов / М. Г. Чиликин, А.С. Сандлер.– 6-е изд. доп. и перераб. – М.: Энергоиздат, 2014. – 576 с., с ил.

2) Основы автоматизированного электропривода: учеб. пособие для вузов / М. Г. Чиликин, М. М. Соколов, В. М. Терехов, А. В. Шинянский. – М.: Энергия, 1974. –568 с., с ил.

3) Чиликин М. Г. Теория автоматизированного электропривода: учеб. пособие для вузов / М. Г. Чиликин, В. И. Ключев, А. С. Сандлер. – М.: Энергия, 2015. – 616 с., с ил.

4) Вешеневский С. Н. Характеристики двигателей в электроприводе. / С. Н. Вешеневский. – 6-е изд., исправленное. – М.: Энергия, 2014. – 432 с., с ил.

5) Зимин Е.Н. Автоматическое управление электроприводами: учеб. пособие для студентов вузов. / Е. Н. Зимин, В.И. Яковлев. – М.: Высш. школа, 2015. – 318 с., с ил.

6) Андреев В. П. Основы электропривода: учеб. пособие для студентов вузов. / В. П. Андреев. 2-е изд., перераб. – М.: Энергия, 2014. – 772 с., с ил.

7) Ключев В. И. Электропривод и автоматизация общепромышленных механизмов: учебник для вузов. / В. И. Ключев, В. М. Терехов. – М.: Энергия, 2015. – 360 с., с ил.

studfiles.net


Смотрите также