ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Плавный пуск электродвигателя своими руками. Схема плавного пуска асинхронного двигателя


Схема плавного пуска электродвигателя

Основным способом запуска асинхронного электродвигателя служит схема, основанная на методе звезды-треугольника. На первой стадии пуска, обмотки двигателя при неподвижном роторе, осуществляют коммутацию с сетью в конфигурации «звезда». После этого, через определенный интервал времени, обмотки двигателя автоматически переключаются в конфигурацию «треугольник». С помощью данного способа довольно успешно снижаются пусковые токи.

Данный способ отличается простотой и надежностью, однако, он не всегда эффективен и применяется не во всех случаях. Например, погружные насосы, имеющие небольшой момент инерции, запускаются очень не экономично из-за их небольшого диаметра и небольшого момента инерции.

Схема плавного пуска

Для таких случаев предусмотрен плавный пуск электродвигателя, схема которого будет рассмотрена ниже. Это устройство, осуществляющее плавный пуск, по своей сути является электронным прибором, предназначенным для снижения напряжения и соответствующего пускового тока с помощью управления фазами.

В данном электронном приборе содержится блок регулировок, где производится настройка различных защитных и эксплуатационных параметров. Здесь же установлен силовой блок, в котором тиристоры включены встречно-параллельным способом. С помощью этого прибора производится ограничение пускового тока, по сравнению с номинальным,примерно в два или три раза. Таким образом, снижается и момент инерции, который вызывает повышенное теплообразование и уменьшение срока эксплуатации двигателя.

Поэтому, схема пуска звезда-треугольник успешно заменяется на плавный пуск электродвигателя, схема которого позволяет устранить многие проблемы. Эта задача не представляет технической сложности и не требует замены асинхронного двигателя. При необходимости использования повышенного пускового момента, напряжение может быть повышено до 50%. В нормальных условиях эксплуатации такого повышения, как правило, не требуется.

Принцип плавного пуска

В условиях плавного пуска электродвигателя, с помощью силового блока тиристоров обеспечивается подача тока, обладающего несинусоидальной формой. Поскольку ускорение или торможение происходят за очень короткое время, то отрицательное влияние на питающую сеть носит непродолжительный характер. Однако, работа этого прибора может создавать помехи при работе контроллеров. Для того, чтобы исключить их влияние, используются специальные противопомеховые фильтры, которые устанавливаются на входе.

Таким образом, устройство плавного пуска может работать с минимальным износом, без потери расчетной мощности.

Пуск электродвигателя звезда - треугольник

electric-220.ru

Плавный пуск двигателя - Всё о электрике в доме

То, что в асинхронных электродвигателях с короткозамкнутым ротором при пуске появляются высокие токи, известно. Теоретически эта проблема решена довольно-таки давно (плавные способы пуска известны), но вот на практике эти технологии использовались редко. В настоящее время многое изменилось. Научно-технический прогресс принес в последнее время много разработок в электронной технике, благодаря чему стали производиться компактные устройства, очень эффективные и удобные, которые обеспечивали плавный пуск асинхронного электродвигателя. Их еще называют софтстартеры.

Эти устройства помогает запускать асинхронный электродвигатель без рывков и нагрузки, что обеспечивает долгосрочную эксплуатацию и самого двигателя, и исполнительных механизмов, которые напрямую соединены с валом мотора. Обычно в качестве таких устройств выступают редукторы разных модификаций.

И еще есть один момент, который иногда не учитывается. Если при пусковом моменте асинхронный электродвигатель перегрелся или вообще сгорел, то используемая в его конструкции трансформаторная сталь теряет свои технические характеристики, слишком высока температура перегрева. Если такой двигатель отремонтировать, то гарантированно, что его мощность будет ниже номинальной приблизительно на треть. Поэтому такие моторы устанавливать на старое место не рекомендуется. Он просто не потянет нагрузки, для которых агрегат предназначен.

Вот такие негативные моменты есть у асинхронного двигателя, который работает без устройства плавного пуска.

Начнем с того, что это устройство объединяет в себе две функции: плавного пуска и торможения. Производители комплектуют их еще дополнительными опциями: связь с автоматикой и защитными функциями.

Теперь схема пуска асинхронного двигателя. В основе этого процесса лежит постепенный подъем напряжения, что обеспечивает медленный разгон вращения вала мотора (ротора). Это и приводит к снижению пусковых токов. Есть в этом деле три параметра, которые определяют плавный пуск. Это:

Применяя эту технологию пуска с установкой и подключением софтстартеров, можно отказаться от системы реле, включателей, магнитных пускателей и контакторов, и при этом создается надежная защита от перегрузок и перегревов, от пробивки изоляции и возникновения электромагнитных помех. Но самое главное, что конструкция устройства плавного пуска асинхронных двигателей очень проста. Их легко подсоединить к двигателю, главное точно подобрать прибор по параметрам. Вот схема такого подключения:

В принципе, это все, что можно было бы сказать о таком эффекте, как плавный пуск асинхронного двигателя.

Как сделать плавный пуск электродвигателя своими руками – вариант с микросхемой

Плавный пуск двигателя

Какие конденсаторы нужны для запуска электродвигателя?

Для чего нужен плавный пуск асинхронного двигателя

Плавный пуск двигателя Из всех видов двигателей асинхронные двигатели получили наиболее широкое распространение в промышленности и продолжают вытеснять все больше и больше двигатели постоянного тока.

Асинхронные двигатели получили широкое распространение благодаря следующим своим качествам: дешевизне двигателя, простоте конструкции, надежности, высокому к. п. д. До настоящего времени асинхронные двигатели уступали место двигателям постоянного тока только в тех случаях, где требовалось плавное регулирование частоты вращения (строгальные станки, правильные машины, регулируемые главные приводы прокатных станов и т. п.), в электрическом транспорте и в приводах большой мощности повторно-кратковременного режима (реверсивные станы). Внедрение в промышленность регулируемых преобразователей частоты позволит, еще шире применять асинхронные двигатели.

Недостатками асинхронных двигателей являются:

1) Квадратичная зависимость момента от напряжения, при падении напряжения в сети сильно уменьшаются пусковой и критический моменты,

2) Опасность перегрева статора, особенно при повышениях напряжения сети, и ротора при понижении напряжения,

3) Малый воздушный зазор, несколько понижающий надежность двигателя,

4) Большие пусковые токи асинхронных двигателей. При пуске асинхронного двигателя с короткозамкнутым ротором ток статора больше номинального в 5 — 10 раз. Такие большие токи в статоре недопустимы по условиям динамических усилий в обмотках и нагрева обмоток. В асинхронных двигателях могут возникать переходные режимы с большими бросками тока не только при подключении двигателя к сети но и при его реверсе и торможении.

Итак, для чего нужно ограничивать пусковой ток в обмотках статора асинхронного электродвигателя с короткозамкнутым ротором?

Необходимость ограничения тока двигателей диктуется причинами электрического и механического характера. Причины электрического характера ограничения тока двигателей могут быть следующие:

1) Уменьшение толчков тока в сети. В некоторых случаях для крупных двигателей требуется ограничить пусковой ток до допускаемого для питающей системы.

2) Уменьшение электродинамических усилий в обмотках двигателя.

Уменьшение толчков тока в сети требуется обычно при пуске крупных асинхронных двигателей с короткозамкнутым ротором, если они получают питание от сравнительно маломощной питающей системы. Кроме того, для крупных двигателей заводы-изготовители машин не разрешают прямой пуск из-за чрезмерно больших электродинамических усилий в лобовых частях обмоток статора и ротора.

Причины механического характера ограничения момента двигателей могут быть самыми разнообразными, например предотвращение поломки или быстрого изнашивания передач, соскальзывания ремней со шкивов, буксования колес подвижных тележек, больших ускорений или замедлений, недопустимых для оборудования или людей в различных средствах передвижения и т. д. Иногда требуется уменьшить пусковой момент двигателей, даже небольших, для того чтобы смягчить удары в передачах и обеспечить плавное ускорение.

Во всех случаях, где условия работы не требуют форсированных ускорений или замедлений, желательно рассчитывать режимы на минимальные броски тока, а следовательно, и момента, сохраняя этим передачи механизма и двигатель.

Плавный пуск двигателя

Устройство плавного пуска двигателя

Для ограничения тока применяются пусковые реакторы, резисторы и автотрансформаторы, а также современные электронные устройства — софт-стартеры (устройства плавного пуска двигателей).

Плавный пуск двигателя

Напряжение на электродвигателе

Плавный пуск двигателя

Необходимо обратить внимание на то, что ограничение тока и момента с помощью устройств плавного пуска двигателей получается за счет усложнения схемы управления и удорожания установки, а потому должно применяться только там, где это обосновано.

Статьи и схемы

Полезное для электрика

Плавный пуск асинхронного электродвигателя: устройство, схема

January 24, 2016

Устройства плавного пуска выпускаются для асинхронных двигателей разной мощности. Многие модели нацелены конкретно на обеспечение разгона. Однако есть конфигурации, которые способны обеспечить плавную остановку двигателя. Используются пускатели чаще всего на конвейерах.

Также они устанавливаются на ленточных транспортерах. Для насосов они подходят идеально. Принцип действия моделей построен на постепенном понижении параметра токовой нагрузки. Для того чтобы разобраться в этом вопросе более детально, следует рассмотреть устройство простого стартера.

Плавный пуск двигателя

Схема стандартного пускателя

Реверсивная схема пуска асинхронного электродвигателя включает в себя трансформатор понижающего типа. Реле в данном случае устанавливается с высоковольтной обмоткой и может справляться с очень большой перегрузкой. Если рассматривать мощные модели, то у них имеются выпрямители.

Также схема пуска асинхронного электродвигателя предполагает применение резисторов подстроченного типа. В некоторых конфигурациях можно встретить трансиверы. Данные устройства предназначены для понижения тактовой частоты асинхронного двигателя. Таким образом, он способен прослужить много лет. Кенотроны у моделей часто используются со стабилизаторами.

Плавный пуск двигателя

Однофазные пускатели

Плавный пуск асинхронного электродвигателя за счет однофазного стартера происходит благодаря подаче напряжения на трансформатор. Далее оно подается на реле, где происходит преобразование. Большинство модификаций данного типа оснащены расширителями. Применяются они только кодовые, или коммутируемые. Для подключения асинхронного двигателя используются выходы.

Некоторые модификации продаются с регуляторами. Непосредственно выпрямители устанавливаются операционные. Параметр пороговой перегрузки моделей не превышает 40 А. В свою очередь, мощность их находится на уровне 5-10 кВт. Параметр напряжения питания колеблется от 100 до 220 В. По степени защиты однофазные модификации довольно сильно отличаются между собой. Некоторые из них являются уязвимыми к влаге или пыли, и это следует учитывать перед покупкой.

Плавный пуск двигателя

Устройство двухфазных моделей

Двухфазные стартеры следует рассмотреть на примере общепроизводственных моделей. Данного типа электродвигатели асинхронные (трехфазные) технические характеристики имеют следующие: мощность 5-15 кВт, максимальная перегрузка 40 А, показатель входного напряжения 220 В. Якоря у модификаций используются с первичной обмоткой. В моделях используются трансформаторы понижающего типа. Также важно отметить, что реле устанавливаются со стабилизаторами. Модуляторы для данных устройств подходят только ортогональные. Модификации с резисторами встречаются очень редко.

Модификации трехфазного типа

Плавный пуск асинхронного электродвигателя при помощи трехфазных стартеров происходит быстро. Если говорить про характеристики моделей, то важно отметить, что пороговую нагрузку устройства способны выдерживать в среднем на уровне 60 А. Мощность многих моделей превышает 5 кВт. Недостатком данных устройств принято считать низкий порог минимальной температуры. В мороз их использовать строго запрещается. Модуляторы для моделей подходят ортогонального типа.

Расширители чаще всего можно встретить кодовые. По параметру пропускной способности тока они довольно сильно отличаются. Трансиверы, как правило, на пускатели устанавливаются однополюсные. Транзисторы у моделей используются в основном широкополосные. По степени защиты пускатели отличаются. Многие из них не боятся повышенной влажности, однако в данном случае многое зависит от производителя.

Плавный пуск двигателя

Стартер для моделей с короткозамкнутым ротором

С короткозамкнутым ротором электродвигатели асинхронные (трехфазные) технические характеристики имеют следующие: мощность от 10 кВт, максимальная перегрузка составляет 40 А, показатель входного тока 220 В. Большинство пускателей оснащаются трансформаторами понижающего типа. Некоторые конфигурации на рынке представлены со стабилизаторами. Также важно отметить, что модели с мощностью свыше 12 кВт снабжены специальными динисторами.

Для стабилизации выходного напряжения они подходят идеально. Расширители во всех устройствах используются кодовые. Однако тиристоры подходят лишь полупроводникового типа. В среднем минимальную температуру устройства способны держать на уровне 5 градусов. Непосредственно пуск асинхронного электродвигателя с короткозамкнутым ротором осуществляется через выходные контакты на верхней части корпуса.

Особенности моделей для пуска высоковольтного двигателя

Плавный пуск асинхронного электродвигателя высоковольтного типа осуществляется благодаря силовым трансформаторам. В данном для управления используются лишь электромагнитные регуляторы. Непосредственно кенотроны устанавливаются частотные. Транзисторы для указанных моделей подходят с высокой пропускной способностью. Изоляторов в устройствах имеется два. Для подключения высоковольтных двигателей применяются выходные контакты. Модели с динисторами встречаются довольно редко.

Стартеры серии ABB

Стартеры данной серии считаются очень распространенными. В данном случае пуск двигателя происходит за счет смены фазы. Непосредственно преобразование тока осуществляется благодаря динисторам. По типу реле модели довольно сильно отличаются. Мощность моделей колеблется от 4 до 12 кВт. В свою очередь, питающее напряжение составляет в среднем 220 В. Распределители устанавливаются только кодового типа.

Если говорить про модуляторы, то на моделях высокой мощности они ортогональные. Также важно отметить, что трансиверы во всех пускателях данной серии однополюсные. Чаще всего модели можно встретить на конвейерах. Стабилизаторы в устройствах отсутствуют. Система защиты у них установлена серии ИП-62, и повышенной влажности они не боятся.

Устройство для пуска «Шнайдер»

Указанный стартер отличается повышенным входным напряжением на уровне 200 В. В данном случае пуск двигателей осуществляется через силовой трансформатор. Реле у этой модели используется с первичной обмоткой. Согласно документации на устройство, параметр пороговой перегрузки находится на отметке 40 А. Резистор в представленной конфигурации установлен построечный, а расширитель используется кодового типа. Проблемы со сменой фазы у данного устройства возникают довольно редко. Для преобразования тока применяется качественный модулятор. Регулятор скорости вращения асинхронного электродвигателя электромагнитного типа. Производителем предусмотрен расширительный динистор у модели этого типа. Стабилитрон в устройстве отсутствует.

Плавный пуск двигателя

Пускатели для морских судов

Модели для морских судов выпускаются разной мощности. Запускается эл. двигатель через силовой трансформатор. Если рассматривать двухфазные модификации, то они оборудуются выпрямителями. Модуляторы, в свою очередь, устанавливаются как ортогонального, так и бесконденсаторного типа. Резисторы, как правило, применяются подстроечные. Трехфазные модификации стартеров оборудуются стабилизаторами. Для смены тактовой частоты используются тиристоры. Кенотроны в данном случае устанавливаются с высокой пропускной способностью.

Модульные модели для объектов атомной энергетики

Модульные стартеры отличаются высоким параметром выходного напряжения. Запускается эл. двигатель благодаря трансформаторам понижающего типа. Для двухфазных моделей силовые аналоги используются очень редко. Выпрямители в устройствах устанавливаются только с реле. Расширители используются коммутируемого типа.

Степень защиты в стартерах предусмотрена серии ИП-67. Повышенной влажности и пыли модели не боятся. Изоляторов в устройствах имеется от трех до шести единиц. Мощность колеблется от 4 до 10 кВт. Регулятор скорости вращения асинхронного электродвигателя у них имеется электромагнитного типа. Также важно отметить, что тиристорные блоки устанавливаются полупроводниковые с контактами.

Плавный пуск двигателя

Модульные устройства для лифтовых станций

Для лифтовых станций применяются лишь двухфазные стартеры. Пуск асинхронного электродвигателя с помощью пускателя в данном случае осуществляется благодаря работе понижающего трансформатора. Перегрузку тока указанные модели обязаны держать на уровне 40 А. Расширители для бесперебойного питания используются чаще всего кодового типа.

Непосредственно трансиверы применяются однополюсные. Модуляторы в данном случае используются редко. Однако модификации с регуляторами встречаются. Резисторы для моделей применяются как подстроечного, так и импульсного типа. Модификации с кенотронами на рынке не встречаются. С перегрузками отлично справляются транзисторные блоки. Также важно отметить, что у моделей используются изоляторы.

Плавный пуск двигателя

Характеристики моделей на 60 А

Стартеры на 60 А для лифтовых станций подходят идеально. Плавный пуск асинхронного электродвигателя в данном случае обеспечивается за счет силовых трансформаторов. Реле у многих моделей с первичной обмоткой.

Для нормальной работы стартера используются только ортогональные модуляторы. Непосредственно тиристорные блоки можно встретить полупроводникового типа. Пороговую нагрузку они способны выдерживать большую. Мощность моделей в среднем колеблется от 10 кВт.

Плавный пуск двигателя

Как организовать путешествие с пользой для души и тела? Если вы отправляетесь в путешествие, то вы можете использовать эту возможность для того, чтобы ваш мозг восстанавливался и даже развивался.

Плавный пуск двигателя

10 загадочных фотографий, которые шокируют Задолго до появления Интернета и мастеров «Фотошопа» подавляющее большинство сделанных фото были подлинными. Иногда на снимки попадали поистине неверо.

Плавный пуск двигателя

Топ-10 разорившихся звезд Оказывается, иногда даже самая громкая слава заканчивается провалом, как в случае с этими знаменитостями.

Плавный пуск двигателя

20 фото кошек, сделанных в правильный момент Кошки — удивительные создания, и об этом, пожалуй, знает каждый. А еще они невероятно фотогеничны и всегда умеют оказаться в правильное время в правил.

Плавный пуск двигателя

7 частей тела, которые не следует трогать руками Думайте о своем теле, как о храме: вы можете его использовать, но есть некоторые священные места, которые нельзя трогать руками. Исследования показыва.

Плавный пуск двигателя

9 знаменитых женщин, которые влюблялись в женщин Проявление интереса не к противоположному полу не является чем-то необычным. Вы вряд ли сможете удивить или потрясти кого-то, если признаетесь в том.

Источники: http://onlineelektrik.ru/eoborudovanie/edvigateli/plavnyj-pusk-asinxronnogo-elektrodvigatelya-naznachenie.html, http://electricalschool.info/spravochnik/maschiny/843-dlja-chego-nuzhen-plavnyjj-pusk.html, http://fb.ru/article/226021/plavnyiy-pusk-asinhronnogo-elektrodvigatelya-ustroystvo-shema

electricremont.ru

Схема плавного запуска трехфазного двигателя, выполненная на базе микросхем КР1182ПМ1

Читать все новости ➔

imagesУстройства плавного пуска электродвигателя

Плавный пуск электродвигателя в последнее время применяется все чаще. Области его применении разнообразны и многочисленны. Это промышленность, электротранспорт, коммунальное и сельское хозяйство. Применение подобных устройств позволяет значительно снизить пусковые нагрузки на электродвигатель  и исполнительные механизмы, тем самым, продлив срок их службы.

Пусковые токи достигают значений в 7-10 раз выше, чем в рабочем режиме. Это привод к «просаживанию» напряжения в питающей сети, что отрицательно сказывается не только на работе остальных потребителей, но и самого двигателя. Время пуска затягивается, что может привести к перегреву обмоток и постепенному разрушению их изоляции. Это способствует преждевременному выходу электродвигателя из строя.

Устройства плавного пуска позволяют значительно снизить пусковые нагрузки на электродвигатель и электросеть, что особенно актуально в сельской местности либо при питании двигателя от автономной электростанции.

В момент запуска двигателя момент на его валу очень нестабилен и превышает номинальное значение более чем в пять раз. Поэтому пусковые нагрузки исполнительных механизмов также повышены по сравнению с работой в установившемся режиме и могут достигать до 500 процентов.  Нестабильность момента при пуске приводит к ударным нагрузкам на зубья шестерен, срезанию шпонок и иногда даже к скручиванию валов.

Устройства плавного пуска электродвигателя значительно уменьшают пусковые нагрузки на механизм: плавно выбираются зазоры между зубьями шестерен, что препятствует их поломке. В ременных передачах также плавно натягиваются приводные ремни, что уменьшает износ механизмов.

Кроме плавного пуска на работе механизмов благотворно сказывается режим плавного торможения. Если двигатель приводит в движение насос, то плавное торможение позволяют избежать гидравлического удара при выключении агрегата.

Устройства плавного пуска промышленного изготовления

Устройства плавного пуска в настоящее время выпускается многими фирмами, например, Siemens, Danfoss, Scheider Electric. Такие устройства обладают многими функциями, которые программируются пользователем. Это время разгона, время торможения, защита от перегрузок и множество других дополнительных функций.

При всех достоинствах фирменных устройства обладают одним недостатком, - достаточно высокой ценой. Вместе с тем можно создать подобное устройство самостоятельно. Стоимость его при этом получится небольшой.

Устройство плавного пуска на микросхеме КР1182ПМ1

На основе микросхемы КР1182ПМ1 возможно создание достаточно простого устройства плавного пуска трехфазного электродвигателя. Схема устройства показана на Рис.1.

Копия File0001

Рис.1. Схема устройства плавного пуска двигателя

Плавный пуск осуществляется при помощи постепенного увеличения напряжения на обмотках двигателя от нулевого значения до номинального. Это достигается за счет увеличения угла открывания тиристорных ключей за время, называемое временем запуска.

Описание схемы

В конструкции используется трехфазный электродвигатель 50 Гц, 350 В. Обмотки двигателя, соединенные «звездой», подключаются к выходным цепям, обозначенным на схеме как L1, L2, L3. Средняя точка «звезды» подключается к сетевой нейтрали (N).

Выходные ключи выполнены на тиристорах, включенных встречно-параллельно. В конструкции применены импортные тиристоры типа 40ТРS12. При небольшой стоимости они обладают достаточно большим током – до 35 А, а их обратное напряжение – 1200 В. Кроме них в ключах присутствуют еще несколько элементов. Их назначение следующее: демпфирующие RC-цепочки, включенные параллельно тиристорам, предотвращают ложные включения последних (на схеме это R8С11, R9С12, R10С13), а с помощью варисторов RU1- RU3 поглощаются коммутационные помехи, амплитуда которых превышает 500В.

В качестве управляющих узлов для выходных ключей используются микросхемы DA1-DA3 типа КР1182ПМ1. Конденсаторы С5-С10 внутри микросхемы формируют пилообразное напряжение, которое синхронизировано сетевым. Сигналы управления тиристорами в микросхеме формируются путем сравнения пилообразного напряжения с напряжением между выводами микросхемы 3 и 6.

Для питания реле К1-К3 в устройстве имеется блок питания, который состоит из нескольких элементов. Это трансформатор Т1, выпрямительный мостик VD1, сглаживающий конденсатор С4. На выходе выпрямителя установлен интегральный стабилизатор DA4 типа 7812 обеспечивающий на выходе напряжение 12 В, и защиту от коротких замыканий и перегрузок на выходе.

Описание  работы устройства плавного пуска электродвигателей

Сетевое напряжение на схему подается при замыкании силового выключателя Q1. Однако, двигатель еще не запускается. Это происходит потому, что обмотки реле К1…К3 пока обесточены, и их нормально-замкнутые контакты шунтируют выводы 3 и 6 микросхем DA1…DA3 через резисторы R1…R3. Это обстоятельство не дает заряжаться конденсаторам С1…С3, поэтому управляющие импульсы микросхемы не вырабатывают.

Пуск устройства в работу

При замыкании тумблера SA1 напряжение 12 В включает реле К1…К3. Их нормально-замкнутые контакты размыкаются, что обеспечивает возможность зарядки конденсаторов С1…С3 от внутренних генераторов тока. Вместе с увеличением напряжения на этих конденсаторах увеличивается и угол открывания тиристоров. Тем самым достигается плавное увеличение напряжения на обмотках двигателя. Когда конденсаторы зарядятся полностью, угол включения тиристоров достигнет максимальной величины, и частота вращения электродвигателя достигнет номинальной.

Отключение двигателя, плавное торможение

Для выключения двигателя следует разомкнуть выключатель SA1, Это приведет к отключению реле К1…К3. Их нормально – замкнутые контакты замкнутся, что приведет к разряду конденсаторов С1…С3 через резисторы R1…R3. Разряд конденсаторов будет длиться несколько секунд, за это же время произойдет останов двигателя.

При пуске двигателя в нулевом проводе могут протекать значительные токи. Это происходит оттого, что в процессе плавного разгона токи в обмотках двигателя несинусоидальные, но особо бояться этого не стоит: процесс пуска достаточно кратковременный. В установившемся же режиме этот ток будет много меньше (не более десяти процентов тока фазы в номинальном режиме), что обусловлено лишь технологическим разбросом параметров обмоток и «перекосом» фаз. От этих явлений избавиться уже невозможно.

Детали и конструкция

Для сборки устройства необходимы следующие детали:

Трансформатор мощностью не более 15 Вт, с напряжением выходной обмотки 15…17 В.

В качестве реле К1…К3 подойдут любые с напряжением катушки 12 В, имеющие нормально-замкнутый или переключающий контакт, например TRU-12VDC-SB-SL.

Конденсаторы С11…С13 типа К73-17 на рабочее напряжение не менее 600 В.

Устройство выполнено на печатной плате. Собранное устройство следует поместить в пластмассовый корпус подходящих размеров, на лицевой панели которого разместить выключатель SA1 и светодиоды HL1 и HL2.

Подключение двигателя

Подключение выключателя Q1 и двигателя выполняется проводами, сечение которых соответствует мощности последнего. Нулевой провод выполняется тем же проводом, что и фазные. При указанных на схеме номиналах деталей возможно подключение двигателей мощностью до четырех киловатт.

Если предполагается использовать двигатель мощностью не более полутора киловатт, а частота пусков не будет превышать 10…15 в час, то мощность, рассеиваемая на тиристорных ключах незначительна, поэтому радиаторы можно не ставить.

Если же предполагается использовать более мощный двигатель или запуски будут более частыми, потребуется установка тиристоров на радиаторы, изготовленные из алюминиевой полосы. Если же радиатор предполагается использовать общий, то тиристоры следует изолировать от него при помощи слюдяных прокладок. Для улучшения условий охлаждения можно воспользоваться теплопроводящей пастой КПТ– 8.

Проверка и наладка устройства

Перед включением, прежде всего, следует проверить монтаж на соответствие принципиальной схеме. Это основное правило, и отступать от него нельзя. Ведь пренебрежение этой проверкой может привести к куче обугленных деталей, и надолго отбить охоту делать «опыты с электричеством». Найденные ошибки следует устранить, ведь все же эта схема питается от сети, а с нею шутки плохи. И даже после указанной проверки подключать двигатель еще рано.

Сначала следует вместо двигателя подключить три одинаковых лампы накаливания, мощностью 60…100 Вт. При испытаниях следует добиться, чтобы лампы «разжигались» равномерно.

Неравномерность времени включения обусловлена разбросом емкостей конденсаторов С1…С3, которые имеют значительный допуск по емкости. Поэтому лучше перед установкой сразу подобрать их с помощью прибора, хотя бы с точностью процентов до десяти.

Время выключения обусловлено еще сопротивлением резисторов R1…R3. С их помощью можно выровнять время выключения. Эти настройки следует выполнять в том случае, если разброс времени включения – выключения в разных фазах превышает 30 процентов.

Двигатель можно подключать лишь после того, как вышеуказанные проверки прошли нормально, не сказать бы даже на отлично.

Что можно еще добавить в конструкцию

Выше уже было сказано, что такие устройства в настоящее время выпускаются разными фирмами. Конечно, все функции фирменных устройств в подобном самодельном повторить невозможно, но одну все-таки, скопировать, наверно, удастся.

Речь идет о так называемом шунтирующем контакторе. Назначение его следующее: после того, как двигатель достиг номинальных оборотов, контактор просто перемыкает тиристорные ключи своими контактами. Ток идет через них в обход тиристоров. Такую конструкцию часто называют байпасом (от английского bypass – обход). Для такого усовершенствования придется ввести дополнительные элементы в блок управления.

Возможно, Вам это будет интересно:

meandr.org

Плавный пуск электродвигателя своими руками

Устройство плавного пуска электродвигателя

Одним из самых главных недостатков асинхронных электродвигателей с короткозамкнутым ротором является наличие у них больших пусковых токов. И если теоретически методы их снижения были хорошо разработаны уже довольно давно, то вот практически все эти разработки (использование пусковых резисторов и реакторов, переключение со звезды на треугольник, использование тиристорных регуляторов напряжения и т.д.) применялись очень в редких случаях.

Все резко изменилось в наше время, т.к. благодаря прогрессу силовой электроники и микропроцессорной техники на рынке появились компактные, удобные и эффективные устройства плавного пуска электродвигателей (софтстартеры) .

Устройства плавного пуска асинхронных двигателей - это устройства, которые значительно увеличивают срок эксплуатации электродвигателей и исполнительных устройств, работающих от вала этого двигателя. При подаче напряжения питания обычным способом, происходят процессы, разрушающие электродвигатель.

Пусковой ток и напряжение на обмотках двигателей, в момент переходных процессов, значительно превышают допустимые значения. Это приводит к износу и пробою изоляции обмоток, подгоранию контактов, значительно сокращает срок службы подшипников, как самого двигателя, так и устройств сидящих на валу электродвигателя.

Для обеспечения необходимой пусковой мощности, приходится увеличивать номинальную мощность питающих электрических сетей, что приводит к значительному удорожанию оборудования и перерасходу электроэнергии.

Кроме того просадка напряжения питания в момент пуска электродвигателя - может привести к порче оборудования, задействованного от этих же источников питания, эта же просадка наносит серьезный ущерб оборудованию электроснабжения, уменьшает срок его службы.

В момент пуска электродвигатель является серьезным источником электромагнитных помех, нарушающих работу электронного оборудования, запитанного от этих же электрических сетей, или находящихся в непосредственной близости от двигателя.

Если произошла аварийная ситуация и двигатель перегрелся или сгорел, то, в результате нагрева, параметры трансформаторной стали изменятся настолько, что номинальная мощность, отремонтированного двигателя, может снизиться на величину до 30%, в результате, этот электродвигатель окажется непригодным к использованию на прежнем месте.

Устройство плавного пуска электродвигателей объединяет функции плавного пуска и торможения, защиты механизмов и электродвигателей, а также связи с системами автоматизации.

Плавный пуск с помощью софтстартера реализуется медленным подъемом напряжения для плавного разгона двигателя и снижения пусковых токов. Регулируемыми параметрами обычно являются начальное напряжение, время разгона и время торможения электродвигателя. Очень маленькое значение начального напряжения может очень сильно уменьшить пусковой момент электродвигателя, поэтому оно обычно устанавливается 30-60% от значения номинального напряжения.

При запуске напряжения скачком увеличивается до устанволенного значения начального напряжения, а потом плавно за заданное время разгона поднимается до номинального значения. Электродвиагетль будет при этом плавно и быстро разгоняться до номинальной скорости.

Применение софстартеров позволяет уменьшить пусковой бросок тока до минимальных значений, уменьшает количество применяемых реле и контакторов. выключателей. Обеспечивает надежную защиту электродвигателей от аварийной перегрузки, перегрева, заклинивания, обрыва фазы, снижает уровень электромагнитных помех.

Устройства плавного пуска электродвигателей просты в устройстве, монтаже и эксплуатации.

Пример схемы подключения устройства плавного пуска электродвигателя

При выборе устройства плавного пуска необходимо учитывать следующее:

1. Ток электродвигателя. Необходимо выбирать устройство плавного пуска по полному току нагрузки двигателя, который не должен превышать ток предельной нагрузки устройства плавного пуска.

3. Напряжение сети. Каждое устройство плавного пуска рассчитано на работу при определенном напряжении. Напряжение сети питания должно соответствовать паспортному значению софтстартера.

Устройства плавного пуска

скачать прайс-лист скачать руководство

Плавный пуск — одно из неотъемлемых условий для безопасной и долговременной работы трехфазных асинхронных электродвигателей.

Серия LD1000

Устройство плавного пуска серии LD1000 обеспечивает плавный разгон и торможение электродвигателя, тем самым снижает нагрузку на электросеть и пускаемые механизмы. Данную задачу LD1000 реализует за счѐт ограничения пускового тока и крутящего момента путѐм плавного нарастания подаваемого напряжения на электродвигатель.

Если Вы не уверены какое именно устройство плавного пуска выбрать, вам всегда помогут наши менеджеры по телефону +7 495 981-54-56.

Только здесь вы можете купить устройства плавного пуска, при оптимальном соотношении цена - качество!

Основные технические характеристики:

Плавный пуск вентилятора охлаждения

Вт 21 Май Просмотров: 11 171 Рубрика: Своими руками. Схема

Наконец-то появилась свободная минутка и я решил сделать очередное устройство для своего авто)  Добрался я в этот раз до вентилятора системы охлаждения двигателя . В штатном варианте, когда включается ВСОД, происходит просадка напряжения бортовой сети. Когда я поставил сделанное устройство у меня получилось плавное нарастание тока в обмотке двигателя при его включении, исключив резкий скачок тока, а также провалов и резкой просадки напряжения бортовой сети

P.S. Данное устройство размещается максимально близко к вентилятору  иначе могут образоваться помехи, которые будут мешать нормальной работе автомобиля.

Применение микросхемы КР1182ПМ1. Плавный пуск электродвигателя

Устройства плавного пуска электродвигателя

Плавный пуск электродвигателя в последнее время применяется все чаще. Области его применения разнообразны и многочисленны. Это промышленность, электротранспорт, коммунальное и сельское хозяйство. Применение подобных устройств позволяет значительно снизить пусковые нагрузки на электродвигатель и исполнительные механизмы, тем самым, продлив срок их службы.

Пусковые токи

Пусковые токи достигают значений в 7 10 раз выше, чем в рабочем режиме. Это приводит к просаживанию напряжения в питающей сети, что отрицательно сказывается не только на работе остальных потребителей, но и самого двигателя. Время пуска затягивается, что может привести к перегреву обмоток и постепенному разрушению их изоляции. Это способствует преждевременному выходу электродвигателя из строя.

Устройства плавного пуска позволяют значительно снизить пусковые нагрузки на электродвигатель и электросеть, что особенно актуально в сельской местности либо при питании двигателя от автономной электростанции.

Перегрузки исполнительных механизмов

В момент запуска двигателя момент на его валу очень нестабилен и превышает номинальное значение более чем в пять раз. Поэтому пусковые нагрузки исполнительных механизмов также повышены по сравнению с работой в установившемся режиме и могут достигать до 500 процентов. Нестабильность момента при пуске приводит к ударным нагрузкам на зубья шестерен, срезанию шпонок и иногда даже к скручиванию валов.

Устройства плавного пуска электродвигателя значительно уменьшают пусковые нагрузки на механизм: плавно выбираются зазоры между зубьями шестерен, что препятствует их поломке. В ременных передачах также плавно натягиваются приводные ремни, что уменьшает износ механизмов.

Кроме плавного пуска на работе механизмов благотворно сказывается режим плавного торможения. Если двигатель приводит в движение насос, то плавное торможение позволяет избежать гидравлического удара при выключении агрегата.

Устройства плавного пуска промышленного изготовления

Устройства плавного пуска в настоящее время выпускается многими фирмами, например Siemens, Danfoss, Schneider Electric. Такие устройства обладают многими функциями, которые программируются пользователем. Это время разгона, время торможения, защита от перегрузок и множество других дополнительных функций.

При всех достоинствах фирменные устройства обладают одним недостатком, - достаточно высокой ценой. Вместе с тем можно создать подобное устройство самостоятельно. Стоимость его при этом получится небольшой.

Устройство плавного пуска на микросхеме КР1182ПМ1

В первой части статьи рассказывалось о специализированной микросхеме КР1182ПМ1. представляющей фазовый регулятор мощности. Были рассмотрены типовые схемы ее включения, устройства плавного запуска ламп накаливания и просто регуляторы мощности в нагрузке. На основе этой микросхемы возможно создание достаточно простого устройства плавного пуска трехфазного электродвигателя. Схема устройства показана на рисунке 1.

Рисунок 1. Схема устройства плавного пуска двигателя.

Плавный пуск осуществляется при помощи постепенного увеличения напряжения на обмотках двигателя от нулевого значения до номинального. Это достигается за счет увеличения угла открывания тиристорных ключей за время, называемое временем запуска.

Описание схемы

В конструкции используется трехфазный электродвигатель 50 Гц, 380 В. Обмотки двигателя, соединенные звездой , подключаются к выходным цепям, обозначенным на схеме как L1, L2, L3. Средняя точка звезды подключается к сетевой нейтрали (N).

Выходные ключи выполнены на тиристорах включенных встречно – параллельно. В конструкции применены импортные тиристоры типа 40TPS12. При небольшой стоимости они обладают достаточно большим током – до 35 А, а их обратное напряжение 1200 В. Кроме них в ключах присутствуют еще несколько элементов. Их назначение следующее: демпфирующие RC цепочки, включенные параллельно тиристорам, предотвращают ложные включения последних (на схеме это R8C11, R9C12, R10C13), а с помощью варисторов RU1 RU3 поглощаются коммутационные помехи, амплитуда которых превышает 500 В.

В качестве управляющих узлов для выходных ключей используются микросхемы DA1 DA3 типа КР1182ПМ1. Эти микросхемы достаточно подробно были рассмотрены в первой части статьи. Конденсаторы С5 С10 внутри микросхемы формируют пилообразное напряжение, которое синхронизировано сетевым. Сигналы управления тиристорами в микросхеме формируются путем сравнения пилообразного напряжения с напряжением между выводами микросхемы 3 и 6.

Для питания реле К1 К3 в устройстве имеется блок питания, который состоит всего из нескольких элементов. Это трансформатор Т1, выпрямительный мостик VD1, сглаживающий конденсатор С4. На выходе выпрямителя установлен интегральный стабилизатор DA4 типа 7812 обеспечивающий на выходе напряжение 12 В, и защиту от коротких замыканий и перегрузок на выходе.

Описание работы устройства плавного пуска электродвигателей

Сетевое напряжение на схему подается при замыкании силового выключателя Q1. Однако, двигатель еще не запускается. Это происходит потому, что обмотки реле К1 К3 пока обесточены, и их нормально-замкнутые контакты шунтируют выводы 3 и 6 микросхем DA1 DA3 через резисторы R1 R3. Это обстоятельство не дает заряжаться конденсаторам С1 С3, поэтому управляющие импульсы микросхемы не вырабатывают.

Пуск устройства в работу

При замыкании тумблера SA1 напряжение 12 В включает реле К1 К3. Их нормально-замкнутые контакты размыкаются, что обеспечивает возможность зарядки конденсаторов С1 С3 от внутренних генераторов тока. Вместе с увеличением напряжения на этих конденсаторах увеличивается и угол открывания тиристоров. Тем самым достигается плавное увеличение напряжения на обмотках двигателя. Когда конденсаторы зарядятся полностью, угол включения тиристоров достигнет максимальной величины, и частота вращения электродвигателя достигнет номинальной.

Отключение двигателя, плавное торможение

Для выключения двигателя следует разомкнуть выключатель SA1, Это приведет к отключению реле К1 К3. Их нормально – замкнутые контакты замкнутся, что приведет к разряду конденсаторов С1 С3 через резисторы R1 R3. Разряд конденсаторов будет длиться несколько секунд, за это же время произойдет останов двигателя.

При пуске двигателя в нулевом проводе могут протекать значительные токи. Это происходит оттого, что в процессе плавного разгона токи в обмотках двигателя несинусоидальные, но особо бояться этого не стоит: процесс пуска достаточно кратковременный. В установившемся же режиме этот ток будет много меньше (не более десяти процентов тока фазы в номинальном режиме), что обусловлено лишь технологическим разбросом параметров обмоток и перекосом фаз. От этих явлений избавиться уже невозможно.

Детали и конструкция

Для сборки устройства необходимы следующие детали:

Трансформатор мощностью не более 15 Вт, с напряжением выходной обмотки 15 17 В.

В качестве реле К1 К3 подойдут любые с напряжением катушки 12 В, имеющие нормально-замкнутый или переключающий контакт, например TRU-12VDC-SB-SL.

Конденсаторы С11 С13 типа К73-17 на рабочее напряжение не менее 600 В.

Устройство выполнено на печатной плате. Собранное устройство следует поместить в пластмассовый корпус подходящих размеров, на лицевой панели которого разместить выключатель SA1 и светодиоды HL1 и HL2.

Подключение двигателя

Подключение выключателя Q1 и двигателя выполняется проводами, сечение которых соответствует мощности последнего. Нулевой провод выполняется тем же проводом, что и фазные. При указанных на схеме номиналах деталей возможно подключение двигателей мощностью до четырех киловатт.

Если предполагается использовать двигатель мощностью не более полутора киловатт, а частота пусков не будет превышать 10 15 в час, то мощность, рассеиваемая на тиристорных ключах незначительна, поэтому радиаторы можно не ставить.

Если же предполагается использовать более мощный двигатель или запуски будут более частыми, потребуется установка тиристоров на радиаторы, изготовленные из алюминиевой полосы. Если же радиатор предполагается использовать общий, то тиристоры следует изолировать от него при помощи слюдяных прокладок. Для улучшения условий охлаждения можно воспользоваться теплопроводящей пастой КПТ – 8.

Проверка и наладка устройства

Перед включением, прежде всего, следует проверить монтаж на соответствие принципиальной схеме. Это основное правило, и отступать от него нельзя. Ведь пренебрежение этой проверкой может привести к куче обугленных деталей, и надолго отбить охоту делать опыты с электричеством . Найденные ошибки следует устранить, ведь все же эта схема питается от сети, а с нею шутки плохи. И даже после указанной проверки подключать двигатель еще рано.

Сначала следует вместо двигателя подключить три одинаковых лампы накаливания, мощностью 60 100 Вт. При испытаниях следует добиться, чтобы лампы разжигались равномерно.

Неравномерность времени включения обусловлена разбросом емкостей конденсаторов С1 С3, которые имеют значительный допуск по емкости. Поэтому лучше перед установкой сразу подобрать их с помощью прибора, хотя бы с точностью процентов до десяти.

Время выключения обусловлено еще сопротивлением резисторов R1 R3. С их помощью можно выровнять время выключения. Эти настройки следует выполнять в том случае, если разброс времени включения – выключения в разных фазах превышает 30 процентов.

Двигатель можно подключать лишь после того, как вышеуказанные проверки прошли нормально, не сказать бы даже на отлично.

Что можно еще добавить в конструкцию

Выше уже было сказано, что такие устройства в настоящее время выпускаются разными фирмами. Конечно, все функции фирменных устройств в подобном самодельном повторить невозможно, но одну все-таки, скопировать, наверно, удастся.

Речь идет о так называемом шунтирующем контакторе. Назначение его следующее: после того, как двигатель достиг номинальных оборотов, контактор просто перемыкает тиристорные ключи своими контактами. Ток идет через них в обход тиристоров. Такую конструкцию часто называют байпасом (от английского bypass – обход). Для такого усовершенствования придется ввести дополнительные элементы в блок управления.

Источники:

sferatd.ru

ПЛАВНЫЙ ПУСК ЭЛЕКТРОДВИГАТЕЛЯ

   Схем для построения плавного пуска для электродвигателей, к примеру болгарки в интернете много, но я решил, что все же хорошего много не бывает. Плата построена в основном на планарных компонентах, но их можно заменить на обычные компоненты просверлив необходимые отверстия в плате. На все компоненты имеются аналоги. Принципиальная схема:

ПЛАВНЫЙ ПУСК ЭЛЕКТРОДВИГАТЕЛЯ - СХЕМА

   Список компонентов для сборки, показанных на печатной плате системы плавного пуска электродвигателя:

 

УСТРОЙСТВО ПЛАВНЫЙ ПУСК ЭЛЕКТРОДВИГАТЕЛЯ СВОИМИ РУКАМИ

   Это стандартная схема, (модуль XS-12) которая устанавливается почти во весь инструмент, где нужен плавный пуск электромотора.

Изготовление устройства для плавного пуска двигателя в электроинструментах

   Если нужно менять обороты, последовательно с резистором 47 ком и диодом (7 нога ЛМ-ки), ставим переменный резистор на 470 кОм, и от 30-100%, и сам плавный пуск - очень удобно. А по базе транзистора, который управляет симистором, параллельно емкости 39000 пф желательно подпаять резистор 1 Мом.

корпус от заводского сгоревшего устройства плавного пуска

   Готовую печатную плату (рисунок качаем в архиве) поместил в корпус от заводского сгоревшего устройства плавного пуска. Автор статьи: Serega-t34.

   Форум по устройствам управления

 

Поделитесь полезной информацией с друзьями:

elwo.ru

Плавный пуск электродвигателя своими руками |

Схем для построения плавного пуска для электродвигателей, к примеру болгарки в интернете много, но я решил, что все же хорошего много не бывает. Плата построена в основном на планарных компонентах, но их можно заменить на обычные компоненты просверлив необходимые отверстия в плате. На все компоненты имеются аналоги. Принципиальная схема:

Плавный пуск электродвигателя своими руками

Список компонентов для сборки, показанных на печатной плате системы плавного пуска электродвигателя:

Плавный пуск электродвигателя своими руками

Это стандартная схема, (модуль XS-12) которая устанавливается почти во весь инструмент, где нужен плавный пуск электромотора.

Плавный пуск электродвигателя своими руками

Если нужно менять обороты, последовательно с резистором 47 ком и диодом (7 нога ЛМ-ки), ставим переменный резистор на 470 кОм, и от 30-100%, и сам плавный пуск — очень удобно. А по базе транзистора, который управляет симистором, параллельно емкости 39000 пф желательно подпаять резистор 1 Мом.

Плавный пуск электродвигателя своими руками

Готовую печатную плату (рисунок качаем в архиве) поместил в корпус от заводского сгоревшего устройства плавного пуска. Автор статьи: Serega-t34.

*****

Плавный пуск электродвигателя своими руками

Как выглядеть моложе: лучшие стрижки для тех, кому за 30, 40, 50, 60 Девушки в 20 лет не волнуются о форме и длине прически. Кажется, молодость создана для экспериментов над внешностью и дерзких локонов. Однако уже посл.

Плавный пуск электродвигателя своими руками

Эти 10 мелочей мужчина всегда замечает в женщине Думаете, ваш мужчина ничего не смыслит в женской психологии? Это не так. От взгляда любящего вас партнера не укроется ни единая мелочь. И вот 10 вещей.

Плавный пуск электродвигателя своими руками

Наши предки спали не так, как мы. Что мы делаем неправильно? В это трудно поверить, но ученые и многие историки склоняются к мнению, что современный человек спит совсем не так, как его древние предки. Изначально.

Плавный пуск электродвигателя своими руками

Зачем нужен крошечный карман на джинсах? Все знают, что есть крошечный карман на джинсах, но мало кто задумывался, зачем он может быть нужен. Интересно, что первоначально он был местом для хр.

Плавный пуск электродвигателя своими руками

13 признаков, что у вас самый лучший муж Мужья – это воистину великие люди. Как жаль, что хорошие супруги не растут на деревьях. Если ваша вторая половинка делает эти 13 вещей, то вы можете с.

Плавный пуск электродвигателя своими руками

Непростительные ошибки в фильмах, которых вы, вероятно, никогда не замечали Наверное, найдется очень мало людей, которые бы не любили смотреть фильмы. Однако даже в лучшем кино встречаются ошибки, которые могут заметить зрител.

*****

Асинхронные двигатели (машины) получили большую популярность. Причин этому несколько: простота и надежность эксплуатации, приемлемая цена, широкий спектр применений.

Плавный пуск асинхронного электродвигателя необходим для продления его срока эксплуатации и минимизации работ, связанных с устранением возможных поломок.

Необходимость плавного запуска

Для того чтобы обеспечить необходимую пусковую мощность, следует увеличить номинальную мощность питающей сети. По этой причине оборудование может значительно подорожать. Причем очевиден и перерасход электроэнергии.

Одним из недостатков асинхронного электродвигателя является большой ток пуска. Он превышает номинальный в 5 — 10 раз. Ток с большими бросками может также возникнуть при торможении двигателя или при его реверсе. Это ведет к нагреву обмоток статора, а также слишком больших электродинамических усилий в частях статора и ротора.

Если вследствие возникшей аварийной ситуации двигатель перегрелся и вышел из строя всегда рассматривается возможность его ремонта. Но после перегрева параметры трансформаторной стали изменяются. Отремонтированный электродвигатель обладает номинальной мощностью на 30% меньшей, чем у него была ранее.

Для того чтобы ток ограничить используют пусковые реакторы, автотрансформаторы, резисторы и устройства плавного пуска двигателей — софт-стартеры.

Прямой запуск

В электросхеме прямого пуска машина непосредственно подключена к сетевому напряжению питания.

Плавный пуск электродвигателя своими руками

На схеме выше показана характеристика пускового тока при прямом старте. При таком подключении повышение температуры в обмотках машины минимальное.

Подключение осуществляется с помощью контактора (пускателя). В схеме применяется реле перегрузки для защиты электродвигателя. Однако такой метод применим, когда нет ограничений по току.

Во время старта машины пусковой момент ограничивают, чтобы сгладить резкий рывок, вследствие которого могут выйти из строя механические части привода и подсоединенные механизмы.

По этой причине производители крупных электродвигателей запрещают их прямой пуск.

Подключение «звезда-треугольник»

Одним из основных способов запуска машины является электросхема «звезда-треугольник». Такой старт возможен, для двигателей, у которых все начала и концы обмоток выведены.

Управление стартом по этой схеме состоит из трех контакторов, реле перегрузки и реле времени, управляющим контакторами.

Плавный пуск электродвигателя своими руками

Наши читатели рекомендуют!

Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Первоначально коммутация с сетью происходит по схеме «звезда». Контакторы К1 и К3 замкнуты. Затем, через определенное время, обмотки переключаются автоматически на схему «треугольник». Контакты К3 размыкаются, а контакты К2, наоборот, замыкаются. Реле времени в электросхеме служит для управления их переключением. На нем выставляется время разгона двигателя. При этом пусковые токи существенно снижаются.

Такой способ эффективен, но применяется он не всегда.

Старт через автотрансформатор

Плавный пуск электродвигателя своими рукамиЭтот способ применяется с использованием в электросхеме автотрансформатора, который соединен с машиной последовательно. Он служит для того, чтобы запуск произошел при пониженном на 50 — 80% от номинального напряжении. Вследствие этого пусковой ток и вращающий пусковой момент уменьшатся. Временной интервал переключения от пониженного напряжения к полному корректируется.

Однако здесь есть и недостаток. В процессе работы машина переключается на сетевое напряжение, что приводит к резкому скачку тока.

Устройства плавного пуска

В условиях плавного старта асинхронной машины с использованием в электросхеме силового блока тиристоров подается ток несинусоидальной формы. Ускорение и торможение происходят за короткий промежуток времени. Многие собирают устройство плавного пуска своими руками. Это намного снижает его цену.

Плавный пуск электродвигателя своими руками

В этой схеме тиристоры подключены в цепи параллельно по встречному принципу. К общему электроду поступает управляющее напряжение. Такое устройство принято называть симистором. В случае трехфазной системы он присутствует в каждом проводе.

Для того чтобы отвести тепло, выделяемое при нагревании полупроводников, применяются радиаторы. Габариты, вес и цена устройств при этом возрастает.

Существует и другой вариант для решения проблемы нагрева. В схему подключают шунтирующий контакт. После старта контакты замыкаются. В этом случае возникает параллельная цепь, сопротивление которой меньше сопротивления полупроводников. А ток, как известно, выбирает путь наименьшего сопротивления. Пока происходит этот процесс, симисторы остывают. Пример такого подключения приведен ниже на рисунке.

Плавный пуск электродвигателя своими руками

Типы устройств плавного старта

Их можно разделить на четыре категории.

Софт-стартеры

Плавный пуск электродвигателя своими руками Современные устройства плавного пуска выполнены, на микропроцессорах. И это существенно увеличивает их функциональные возможности по сравнению с аналоговыми. Эти устройства называют софт-стартерами. Они увеличивают срок службы исполнительных механизмов и самих электродвигателей.

С ними старт электродвигателя происходит с постепенным увеличением напряжения. Кроме этого, регулируется время разгона и время его торможения. Для того чтобы пониженное начальное напряжение не могло в электросхеме значительно снизить пусковой момент, его устанавливают в диапазоне 30 — 60% от номинального.

Плавная регулировка напряжения дает возможность плавного ускорения двигателя до номинальной скорости.

Плавный пуск электродвигателя своими руками Необходимо отметить, что с применением софт-стартеров уменьшилось количество реле и контакторов в электрической цепи. Само по себе устройство софт-стартеров не является сложным. Они просты в монтаже и эксплуатации. Электросхема подключения показана на рисунке справа.

Однако существует ряд особенностей, которые обязательно следует учитывать при их выборе.

Обязательно прочтите эти материалы:

*****

Александр Ситников ( Кировская обл.)

Рассматриваемая в статье схема позволяет осуществить безударный пуск и торможение электродвигателя, увеличить срок службы оборудования и снизить нагрузку на электросеть. Плавный пуск достигается путём регулирования напряжения на обмотках двигателя силовыми тиристорами.

Устройства плавного пуска ( УПП) широко применяются в различных электроприводах. Структурная схема разработанного УПП приведена на рисунке 1, а диаграмма работы УПП – на рисунке 2. Основой УПП являются три пары встречно-параллельных тиристоров VS1 – VS6, включенных в разрыв каждой из фаз. Плавный пуск осуществляется за счёт постепенного

Плавный пуск электродвигателя своими руками

увеличения прикладываемого к обмоткам электродвигателя сетевого напряжения от некоторого начального значения Uначдо номинального Uном. Это достигается путём постепенного увеличения угла проводимости тиристоров VS1 – VS6 от минимального значения до максимального в течение времени Тпуск, называемого временем пуска.

Обычно значение Uначсоставляет 30…60% от Uном, поэтому пусковой момент электродвигателя существенно меньше, чем в случае подключения электродвигателя на полное напряжение сети. При этом происходит постепенное натяжение приводных ремней и плавное зацепление зубчатых колес редуктора. Это благоприятно сказывается на снижении динамических нагрузок электропривода и, как следствие, способствует продлению срока службы механизмов и увеличению интервала между ремонтами.

Применение УПП также позволяет снизить нагрузку на электросеть, поскольку в этом случае пусковой ток электродвигателя составляет 2 – 4 номинала тока двигателя, а не 5 – 7 номиналов, как при непосредственном пуске. Это важно при питании электроустановок от источников энергии ограниченной мощности, например, дизель-генераторных установок, источников бесперебойного питания и трансформаторных подстанций малой мощности

Плавный пуск электродвигателя своими руками

( особенно в сельской местности). После завершения пуска тиристоры шунтируются байпасом ( обходным контактором) К, благодаря чему в течение времени Траб на тиристорах не рассеивается мощность, а значит, экономится электроэнергия.

При торможении двигателя процессы происходят в обратном порядке: после отключения контактора К угол проводимости тиристоров максимален, напряжение на обмотках электродвигателя равно сетевому за вычетом падения напряжения на тиристорах. Затем угол проводимости тиристоров в течение времени Тторм уменьшается до минимального значения, которому соответствует напряжение отсечки Uотс, после чего угол проводимости тиристоров становится равным нулю и напряжение на обмотки не подается. На рисунке 3 приведены диаграммы тока одной из фаз двигателя при постепенном увеличении угла проводимости тиристоров.

Плавный пуск электродвигателя своими руками

На рисунке 4 приведены фрагменты принципиальной электрической схемы УПП. Полностью схема приведена на сайте журнала. Для её работы требуется напряжение трех фаз А, В, С стандартной сети 380 В частотой 50 Гц. Обмотки электродвигателя при этом могут быть соединены как « звездой», так и „треугольником“.

Плавный пуск электродвигателя своими руками

В качестве силовых тиристоров VS1 – VS6 применены недорогие приборы типа 40TPS12 в корпусе ТО-247 с прямым током Iпр= 35 А. Допустимый ток через фазу составляет Iдоп= 2Iпр= 70 А. Будем считать, что максимальный пусковой ток составляет 4Iном, откуда следует, что Iном

Параллельно тиристорам подключены демпфирующие RC-цепочки R48, C20, C21, R50, C22, C23, R52, C24, C25, предотвращающие ложное включение тиристоров, а также варисторы R49, R51 и R53, поглощающие импульсы перенапряжения свыше 700 В. Обходные реле К1, К2, К3 типа TR91-12VDC-SC-C с номинальным током 40 А шунтируют силовые тиристоры после завершения пуска.

Питание системы управления осуществляется от трансформаторного блока питания, запитанного от межфазного напряжения Uав. В блок питания входят понижающие трансформаторы TV1, TV2, диодный мост VD1, токоограничивающий резистор R1, сглаживающие конденсаторы С1, С3, С5, помехоподавляющие конденсаторы С2, С4, С6 и линейные стабилизаторы DA1 и DA2, обеспечивающие напряжение 12 и 5 В соответственно.

Система управления построена с применением микроконтроллера DD1 типа PIC16F873. Микроконтроллер выдаёт импульсы управления тиристорами VS1 – VS6 путём « зажигания» оптосимисторов ОРТ5-ОРТ10 (MOC3052 ). Для ограничения тока в цепях управления тиристоров VS1 – VS6 служат резисторы R36 – R47. Импульсы управления подаются одновременно на два тиристора с задержкой относительно начала полуволны межфазного напряжения. Цепи синхронизации с сетевым напряжением состоят из трёх однотипных узлов, состоящих из зарядных резисторов R13, R14, R18, R19, R23, R24, диодов VD3 – VD8, транзисторов VT1 – VT3, накопительных конденсаторов С17 – С19 и оптопар OPT2 – OPT4. C выхода 4 оптопар OPT2, OPT3, OPT4 на входы микроконтроллера RC2, RC1, RC0 поступают импульсы длительностью примерно 100 мкс, соответствующие началу отрицательной полуволны фазных напряжений Uab, Ubc, Uca.

Плавный пуск электродвигателя своими руками

Диаграммы работы узла синхронизации приведены на рисунке 5. Если принять верхний график за сетевое напряжение Uав, то среднийграфик будет соответствовать напряжению на конденсаторе С17, а нижний – току через фотодиод оптопары ОРТ2. Микроконтроллер регистрирует поступающие на его входы синхроимпульсы, определяет наличие, порядок чередования, отсутствие « слипания» фаз, а также производит расчёт времени задержки импульсов управления тиристорами. Входы цепей синхронизации защищены от перенапряжения варисторами R17, R22 и R27.

Плавный пуск электродвигателя своими рукамиС помощью потенциометров R2, R3, R4 задаются параметры, соответствующие диаграмме работы УПП, приведённой на рисунке 2; соответственно R2 – Tпуск, R3 – Тторм, R4 – Uначи Uотс. Напряжения уставок с движков R2, R3, R4 поступают на входы RA2, RA1, RA0 микросхемы DD1 и преобразуются с помощью АЦП. Время пуска и торможения регулируется в пределах от 3 до 15 с, а начальное напряжение – от нуля до напряжения, соответствующего углу проводимости тиристора в 60 электрических градусов. Конденсаторы С8 – С10 – помехоподавляющие.

Команда « ПУСК» подаётся путём замыкания контактов 1 и 2 разъёма XS2, при этом на выходе 4 оптопары OPT1 появляется лог. 1; конденсаторы С14 и С15 производят подавление колебаний, возникающих вследствие „дребезга“ контактов. Разомкнутому положению контактов 1 и 2 разъёма XS2 соответствует команда „СТОП“. Коммутацию цепи управления запуском можно реализовать кнопкой с фиксацией, тумблером или контактами реле.

Силовые тиристоры защищены от перегрева термостатом B1009N с нормально-замкнутыми контактами, размещёнными на теплоотводе. При достижении температуры 80°С контакты термостата размыкаются, и на вход RC3 микроконтроллера поступает уровень лог. 1, свидетельствующий о перегреве.

Светодиоды HL1, HL2, HL3 служат индикаторами следующих состояний:

Включение обходных реле К1, К2, К3 производится путём подачи микроконтроллером лог. 1 на базу транзистора VT4.

Программирование микроконтроллера – внутрисхемное, для чего используется разъём XS3, диод VD2 и микропереключатель Дж1. Элементы ZQ1, C11, C12 образуют цепь запуска тактового генератора, R5 и С7 – цепь сброса по питанию, С13 осуществляет фильтрацию помех по шинам питания микроконтроллера.

На рисунке 6 приведён упрощённый алгоритм работы УПП. После инициализации микроконтроллера вызывается подпрограмма Error_Test, которая определяет наличие аварийных ситуаций: перегрев теплоотвода, невозможность синхронизироваться с сетевым напряжением вследствие потери фазы, неверного подключения к сети или сильных помех. Если аварийная ситуация не фиксируется, то переменной Error присваивается значение «0 », после возврата из подпрограммы зажигается светодиод „Готовность“, и схема переходит в режим ожидания команды „ПУСК“. После регистрации команды „ПУСК“ микроконтроллер производит аналого!цифровое преобразование напряжений уставок на потенциометрах и расчёт параметров Тпуск и Uнач, после чего выдаёт импульсы управления силовыми тиристорами. По окончании пуска включается байпас. При торможении двигателя процессы управления выполняются в обратном порядке.

*****

В связи с особенностями конструкции, старт угловой шлифовальной машины сопряжен с высокими динамическими нагрузками. За счет массы рабочего диска, в начале вращения на ось редуктора действуют силы инерции. Это влечет за собой некоторые негативные моменты:

  1. Нагрузки на ось при резком старте создают инерционный рывок, который при большом диаметре и массе диска может вырвать электроинструмент из рук;

ВАЖНО! При запуске болгарки, всегда держите инструмент обеими руками, и будьте готовы к его удержанию. В противном случае можно получить травму. Данное предупреждение особенно актуально для тяжелых алмазных или стальных дисков.

  • При резкой подаче рабочего напряжения на двигатель, возникает перегрузка по току, которая проходит после набора номинальных оборотов;

    В результате чего изнашиваются щетки и перегреваются обе обмотки электромотора. При постоянном включении и выключении электроинструмента, перегрев может оплавить изоляцию обмоток и привести к короткому замыканию, с последующим дорогостоящим ремонтом.

  • Большой крутящий момент при резком наборе оборотов преждевременно изнашивает шестерни редуктора УШМ;

    В некоторых случаях возможно отламывание зубьев и заклинивание редуктора.

  • Перегрузки, которые воспринимает рабочий диск, могут разрушить его при запуске двигателя.

    Поэтому наличие защитного кожуха обязательно.

  • ВАЖНО! Во время запуска болгарки, открытый сектор кожуха должен быть направлен в сторону, противоположную от оператора.

    Чтобы лучше понять механику работы, рассмотрим устройство болгарки на чертеже. Хорошо видны все элементы, испытывающие перегрузку при резком старте.

    Плавный пуск электродвигателя своими руками

    Схематический чертеж расположение рабочих органов и систем управления в болгарке

    Для уменьшения пагубных воздействий резкого пуска, производители выпускают болгарки с регулировкой оборотов и плавным пуском.

    Плавный пуск электродвигателя своими руками

    Регулировка оборотов находится на рукоятке инструмента

    Но таким приспособлением оснащаются лишь модели средней и высокой ценовой категории. Многие домашние мастера приобретают УШМ без регулятора и замедления пусковых оборотов. Особенно это касается мощных экземпляров с диаметром отрезного диска более 200 мм. Такую болгарку мало того что тяжело удержать в руках во время запуска, износ механики и электрической части происходит гораздо быстрее.Выход один – установить плавный пуск болгарки самостоятельно. Существуют готовые заводские устройства с регулятором оборотов и замедлением старта двигателя при запуске.

    Плавный пуск электродвигателя своими руками

    Готовое устройство для регулировки плавного пуска

    Такие блоки устанавливаются внутрь корпуса, при наличии свободного места. Однако, большинство пользователей УШМ предпочитают изготавливать схему для плавного пуска болгарки самостоятельно, и подключать ее в разрыв питающего кабеля.

    Как изготовить схему плавного пуска угловой шлифовальной машины своими руками

    Популярная схема реализуется на основе управляющей микросхемы фазового регулирования КР118ПМ1, а силовая часть выполнена на симисторах. Такое устройство достаточно просто монтируется, не требует дополнительной настройки после сборки, а стало быть, изготовить ее может мастер без специализированного образования, достаточно уметь держать в руках паяльник.

    Плавный пуск электродвигателя своими руками

    Электрическая схема регулировки плавного пуска для болгарки

    Предложенный блок можно подключить к любому электроинструменту, рассчитанному на переменное напряжение 220 вольт. Отдельный вынос кнопки питания не требуется, доработанный электроинструмент включается штатной клавишей. Схему можно установить как внутрь корпуса болгарки, таки и в разрыв питающего кабеля в отдельном корпусе.

    Наиболее практичным является подключение блока плавного пуска к розетке, от которой запитывается электроинструмент. На вход (разъем ХР1) подается питание от сети 220 вольт. К выходу (разъем XS1) подключается расходная розетка, в которую втыкается вилка УШМ.

    При замыкании клавиши пуска болгарки, по общей цепи питания подается напряжение на микросхему DA1. На управляющем конденсаторе происходит плавное нарастание напряжения. По мере заряда оно достигает рабочей величины. За счет этого тиристоры в составе микросхемы открываются не сразу, а с задержкой, время которой определяется зарядом конденсатора. Симистор VS1, управляемый тиристорами, открывается с такой же паузой.

    Посмотрите видео с подробным разъяснением как сделать и какую схему применить

    В каждом полупериоде переменного напряжения, задержка уменьшается в арифметической прогрессии, в результате чего напряжение на входе в электроинструмент плавно возрастает. Этот эффект и определяет плавность запуска двигателя болгарки. Следовательно обороты диска возрастают постепенно, и вал редуктора не испытывает инерционного шока.

    Время набора оборотов до рабочего значения определяется емкостью конденсатора С2. Величина 47 мкФ обеспечивает плавный пуск за 2 секунды. При такой задержке нет особого дискомфорта для начала работы с инструментом, и в то же время сам электроинструмент не подвергается избыточным нагрузкам от резкого старта.

    После выключения УШМ, конденсатор С2 разряжается сопротивлением резистора R1. При номинале 68 кОм время разряда составляет 3 секунды. После чего устройство плавного пуска готово к новому циклу запуска болгарки.При небольшой доработке, схему можно модернизировать до регулятора оборотов двигателя. Для этого резистор R1 заменяется на переменный. Регулируя сопротивление, мы контролируем мощность двигателя, меняя его обороты.

    Таким образом, в одном корпусе можно выполнить регулятор оборотов двигателя и устройство плавного пуска электроинструмента.

    Остальные детали схемы работают следующим образом:

    Для простоты и компактности монтажа, резисторы и конденсаторы припаиваются прямо к ножкам микросхемы.

    Симистор VS1 может быть любым, со следующими характеристиками: максимальное напряжение до 400 вольт, минимальный пропускной ток 25 ампер. Величина тока зависит от мощности угловой шлифовальной машины.

    По причине плавного пуска болгарки, ток не будет превышать номинального рабочего значения для выбранного электроинструмента. Для экстренных случаев, например, заклинивания диска УШМ – необходим запас по току. Поэтому значение номинальной величины в амперах следует увеличить вдвое.

    Номиналы радиодеталей, использованных в предлагаемой электросхеме – испытаны на УШМ мощностью 2 кВт. Запас по мощности имеется до 5 кВт, это связано с особенностью работы микросхемы КР118ПМ1.Схема рабочая, многократно исполненная домашними мастерами.

    Поделиться с друзьями:

    linochek.ru


    Смотрите также