ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Устройство и принцип действия асинхронного двигателя. Принцип действия и устройство асинхронного двигателя


Устройство и принцип действия асинхронных электродвигателей

Устройство и принцип деяния асинхронных электродвигателейЭлектронные машины, модифицирующие электронную энергию переменного тока в механическую энергию, именуютсяэлектродвигателями переменного тока.

В индустрии наибольшее распространение получили асинхронные движки трехфазного тока.Разглядим устройство и принцип деяния этих движков.

Принцип деяния асинхронного мотора основан на использовании вращающегося магнитного поля.

Для уяснения работы такового мотора проделаем последующий опыт.

Укрепим подковообразный магнит на оси таким макаром, чтоб его можно было крутить за ручку. Меж полюсами магнита расположим на оси медный цилиндр, способный свободно крутиться.

Простая модель для получения вращающегося магнитного поля

Набросок 1. Простая модель для получения вращающегося магнитного поля

Начнем крутить магнит за ручку по часовой стрелке. Поле магнита также начнет крутиться и при вращении будет пересекать своими силовыми линиями медный цилиндр. В цилиндре, по закону электрической индукции, возникнут вихревые токи, которые создадут свое собственное магнитное поле — поле цилиндра. Это поле будет вести взаимодействие с магнитным полем неизменного магнита, в итоге чего цилиндр начнет крутиться в ту же сторону, что и магнит.

Установлено, что скорость вращения цилиндра несколько меньше скорости вращения поля магнита.

Вправду, если цилиндр крутится с той же скоростью, что и магнитное поле, то магнитные силовые полосы не пересекают его, а как следует, в нем не появляются вихревые токи, вызывающие вращение цилиндра.

Скорость вращения магнитного поля принято именовать синхронной, потому что она равна скорости вращения магнита, а скорость вращения цилиндра — асинхронной (несинхронной). Потому сам движок получил заглавиеасинхронного мотора. Скорость вращения цилиндра (ротора) отличается от синхронной скорости вращения магнитного поля на маленькую величину, именуемую скольжением.

Обозначив скорость вращения ротора через n1 и скорость вращения поля через n мы можемподсчитать величину скольжения в процентах по формуле:

s = (n— n1) / n.

В приведенном выше опыте крутящееся магнитное поле и вызванное им вращение цилиндра мы получали благодаря вращению неизменного магнита, потому такое устройство еще не является электродвигателем. Нужно вынудить электронный ток создавать крутящееся магнитное поле и использовать его для вращения ротора. Задачку эту в свое время искрометно разрешил М. О. Доливо-Добровольский. Он предложил использовать для этой цели трехфазный ток.

Устройство асинхронного электродвигателя М. О.Доливо-Добровольского

Схема асинхронного электродвигателя Доливо-Добровольского

Набросок 2. Схема асинхронного электродвигателяДоливо-Добровольского

На полюсах стального сердечника кольцевой формы, именуемого статором электродвигателя, помещены три обмотки,сети трехфазного тока 0расположенные одна относительно другой под углом 120°.

Снутри сердечника укреплен на оси железный цилиндр, именуемый ротором электродвигателя.

Если обмотки соединить меж собой так, как показано на рисунке, и подключить их к сети трехфазного тока, то общий магнитный поток, создаваемый 3-мя полюсами, окажется вращающимся.

На рисунке 3 показан график конфигурации токов в обмотках мотора и процесс появления вращающегося магнитного поля.

Разглядим — подробнее этот процесс.

Получение вращающегося магнитного поля

Набросок 3. Получение вращающегося магнитного поля

В положении «А» на графике ток в первой фазе равен нулю, во2-ой фазе он отрицателен, а в третьей положителен. Ток по катушкам полюсовпотечет в направлении, обозначенном на рисунке стрелками.

Определив по правилу правой руки направление сделанного током магнитного потока, мы убедимся, что на внутреннем конце полюса (обращенном к ротору) третьей катушки будет сотворен южный полюс (Ю), а на полюсе 2-ой катушки — северный полюс (С). Суммарный магнитный поток будет ориентирован от полюса 2-ой катушки через ротор к полюсу третьей катушки.

простой асинхронный электродвигательВ положении «Б» на графике ток во 2-ой фазе равен нулю, в первой фазе он положителен, а в третьей отрицателен. Ток, протекая по катушкам полюсов, делает на конце первой катушки южный полюс (Ю), на конце третьей катушки северный полюс (С). Суммарный магнитный поток сейчас будет ориентирован от третьего полюса через ротор к первому полюсу, т. е. полюсы при всем этом переместятся на 120°.

В положении «В» на графике ток в третьей фазе равен нулю, во 2-ой фазе он положителен, а в первой отрицателен. Сейчас ток, протекая по первой и 2-ой катушкам, создаст на конце полюса первой катушки — северный полюс (С), а на конце полюса 2-ой катушки — южный полюс (Ю), т. е. полярность суммарного магнитного поля переместится еще на 120°. В положении «Г» на графике магнитное поле переместится еще на 120°.

Таким макаром, суммарный магнитный поток будет поменять свое направление с конфигурацией направления тока в обмотках статора (полюсов).

При всем этом за один период конфигурации тока в обмотках магнитный поток сделает полный оборот. Крутящийся магнитный поток будет увлекать за собой цилиндр, и мы получим таким макаром асинхронный электродвигатель.

Напомним, что на рисунке 3 обмотки статора соединены «звездой», но крутящееся магнитное поле появляется и при соединении их «треугольником».

Если мы поменяем местами обмотки 2-ой и третьей фаз, то магнитный поток изменит направление собственного вращения на оборотное.

Того же результата можно достигнуть, не меняя местами обмотки статора, а направляя ток 2-ой фазы сети в третью фазу статора, а третью фазу сети — во вторую фазу статора.

Таким макаром, поменять направление вращения магнитного поля можно переключением 2-ух всех фаз.

Мы разглядели устройство асинхронного мотора, имеющего на статоре три обмотки. В данном случае крутящееся магнитное поле двухполюсное и число его оборотов в секунду равно числу периодов конфигурации тока в секунду.

асинхронный движок на станкеЕсли на статоре расположить по окружности 6 обмоток, то будет сотворено четырехполюсное крутящееся магнитное поле. При 9 обмотках поле будет шестиполюсным.

При частоте трехфазного тока f, равной 50 периодам за секунду, либо 3000 за минуту, число оборотов n вращающегося поля за минуту будет:

при двухполюсном статореn = (50 х 60) / 1 = 3000 об/мин,

при четырехполюсном статоре n = (50 х 60 ) / 2 =1500 об/мин,

при шестиполюсном статоре n = (50 х60 ) / 3 =1000 об/мин, 

при числе пар полюсов статора, равном p:  n = (f х60 ) / p,

Итак, мы установили скорость вращения магнитного поля и зависимость ее от числа обмоток на статоре мотора.

Ротор же мотора будет, как нам понятно, несколько отставать в собственном вращении.

Но отставание ротора очень маленькое. Так, к примеру, при холостом ходе мотора разность скоростей составляет всего 3%, а при нагрузке 5— 7%. Как следует, обороты асинхронного мотора при изменении нагрузки меняются в очень маленьких границах, что является одним из его плюсов.

устройство асинхронного мотора

Разглядим сейчас устройство асинхронных электродвигателей

Статор современного асинхронного электродвигателя имеет невыраженные полюсы, т. е. внутренняя поверхность статора изготовлена совсем гладкой.

Чтоб уменьшить утраты на вихревые токи, сердечник статора набирают из тонких штампованныхжелезных листов.

роторо асинхронного мотора беличья клеточкаСобранный сердечник статора закрепляют в железном корпусе.

В пазы статора закладывают обмотку из медной проволоки. Фазовые обмотки статора электродвигателя соединяются «звездой» либо «треугольником», зачем все начала и концы обмоток выводятся на корпус — на особый изоляционный щиток. Такое устройство статора очень комфортно, потому что позволяет включать его обмотки на различные стандартные напряжения.

Ротор асинхронного мотора, подобно статору, набирается из штампованных листов стали. В пазы ротора закладывается обмотка.

Зависимо от конструкции ротора асинхронные электродвигатели делятся на движки с короткозамкнутым ротором и фазным ротором.

Обмотка короткозамкнутого ротора изготовлена из медных стержней, закладываемых в пазы ротора. Торцы стержней соединены с помощью медного кольца. Такая обмотка именуется обмоткойтипа «беличьей клетки». Заметим, что медные стержни в пазах не изолируются. 

В неких движках «беличью клетку» подменяют литымротором.

устройство асинхронных электродвигателей

Асинхронный движок с фазным ротором (с контактными кольцами) применяется обычно в электродвигателях большой мощности и в тех случаях; когда нужно, чтоб электродвигатель создавал огромное усилие при трогании с места. Достигается это тем, что в обмотки фазного мотора врубается пусковой реостат.

Короткозамкнутые асинхронные движки пускаются в ход 2-мя методами:

1) Конкретным подключением трехфазного напряжения сети к статору мотора. Этот метод самый обычныйи более пользующийся популярностью.

2) Понижением напряжения, подводимого к обмоткам статора. Напряжение понижают,к примеру, переключая обмотки статора со «звезды» на «треугольник». 

Запуск мотора в ход происходит при соединении обмоток статора «звездой», а когда ротор достигнет обычного числа оборотов, обмотки статора переключаются на соединение «треугольником».

асинхронный электродвигательТок в подводящих проводах при всем этом методе запуска мотора миниатюризируется в 3 раза по сопоставлению с тем током, который появился бы при пуске мотора прямым включением в сеть с обмотками статора, соединенными «треугольником». Но этот метод подходящ только в этом случае, если статор рассчитан для обычной работы при соединении его обмоток«треугольником».

Более обычным, дешевеньким и надежным является асинхронный электродвигатель с короткозамкнутым ротором, но этот движок обладает некими недочетами — малым усилием при трогании с места и огромным пусковым током. Эти недочеты в значимой мере устраняются применением фазного ротора, но применение такового ротора существенно удорожает движок и просит пускового реостата.

elektrica.info

Устройство, принцип действия и основные свойства асинхронных двигателей.

Асинхронная машина—это машина, в которой при работе возбуждается вращающееся магнитное поле, но ротор вращается асинхронно, т. е. с угловой скоростью, отличной от угловой скорости поля. Она была изобретена М. О. Доливо-Добровольским в 1888 г. Причины исключительно широ­кого распространения асинхронного двигателя (а вместе с ним и тpexфазной системы) — его простота и дешевизна. Можно сказать, что в основном асинхронная машина состоит из трех неподвижных обмоток, размещенных на общем сердечнике и помещен­ной между ними четвертой вращающейся обмотки. В машине отсутствуют какие-либо легко повреждающиеся или быстро изнашивающиеся электрические части (например, коллектор).

Асинхронные машины малой мощности часто выполняются одно­фазными, что позволяет использовать их в устройствах, питающихся от двухпроводной сети. Такие машины находят широкое применение в бытовой технике.

Общим недостатком асинхронных машин является относительная сложность и неэкономичность регулирования их эксплуатационных характеристик.

Устройство АД

Трехфазная асинхронная машина состоит из двух главных частей: неподвижного статора и вращающегося ротора.

Конструкция статора. Статор асинхронной машины представляет собой полый цилиндр, собранный из пластин электротехнической стали, изолированных друг от друга слоем. Три фазные обмотки, возбуждающие вращающееся магнитное поле машины, раз­мещены в пазах на внутренней стороне статора. Чтобы лучше исполь­зовать окружность статора, каждая из фазных обмоток распола­гается по нескольким пазам (рас­пределенная обмотка). Распределение обмотки по пазам обусловливает соответствующее распределение маг­нитного поля вдоль окружности статора.

Минимальное число фазных обмоток в трехфазной асинхронной машине т = 3. Каждая обмотка содержит одну или несколько катушеч­ных групп, соединенных последовательно. Расположение каждой из обмоток с одной катушечной группой сдвинуто по окружности статора относительно катушечной группы соседней фазной обмотки на угол 120°. В общем случае число фазных обмоток в трехфазной асинхронной машине может быть любым, но кратным трем.

Конструкция ротора. Асинхронные машины в основном разли­чаются устройством ротора. Ротор асинхронной машины представляет собой цилиндрический сердечник, собранный из пластин электротехнической стали, изолированных друг от друга лаком. Сердечник ротора насажен на вал, закрепленный в подшипниках. В пазах ротора располагаются витки обмотки ротора.

В большинстве двигателей применяется короткозамкнутый ротор. Он значительно дешевле, и, что очень существенно, обслуживание двигателя с короткозамкнутым ротором значительно проще. Обмотка короткозамкнутого ротора выполняется в виде цилиндрической клетки из медных или алюминиевых стержней, которые без изоляции вставляются в пазы сердечника ротора. Торцевые концы стержней замыкаются накоротко кольцами из того же материала, что и стержни (так называемое «беличье колесо»). Часто короткозамкнутая обмотка изготовляется путем заливки пазов ротора расплавлен­ным алюминием.

Обмотка фазного ротора, называемого также ротором с контакт­ными кольцами, выполняется изолированным проводом. В большинстве случаев она трехфазная, с тем же числом катушек, что и обмотка статора данного двигателя. Три фазные обмотки ротора соединяются на самом роторе в звезду, а свободные концы их соеди­няются с тремя контактными кольцами, укрепленными на валу ма­шины, но изолированными от этого вала. На кольца наложены щетки, установленные в неподвижных щеткодержателях. Через кольца и щетки обмотка ротора замыкается на трехфазный реостат. Обмотка статора такого двигателя включается непосредственно в трехфазную сеть. Включение реостата в цепь ротора дает возможность существенно улучшить пусковые условия двигателя — уменьшить пусковой ток и увеличить начальный пусковой момент, кроме того, с помощью реостата, включенного в цепь ротора, можно плавно регу­лировать скорость двигателя.

Принцип действия АД

В асинхронном двигателе фазные обмотки статора подобно первичной обмотке трансформатора получают энергию из трехфазной сети. Токи обмоток статора возбуждают в машине вращающееся магнитное поле, а последнее индуктирует ЭДС в замкнутой накоротко (или на пусковой реостат) обмотке ротора. Взаимодействие токов ротора, воз­никающих под действием этой ЭДС, с вращающимся магнитным по­лем вынуждает ротор вращаться по направлению вращения поля. Но чем быстрее вращается ротор, тем меньше индуктируемые в нем токи.

Особенности АД

Режим работы трехфазной асинхронной машины определяется ре­жимом электромагнитного взаимодействия токов в обмотках статора и ротора.

Взаимодействие вращающегося магнитного поля, создаваемого то­ками в обмотках статора, с токами ротора вынуждает ротор вращаться по направлению вращения поля. Но чем быстрее вращается ротор, тем меньше индуктируемые в его обмотке ЭДС, а, следовательно, и токи. Если частота вращения поля п1, а частота вращения ротора п, то режим работы асинхронного двигателя можно характеризовать скольжением

В зависимости от значения скольжения трехфазная асинхронная машина может работать в режимах двигателя, генератора и электро­магнитного тормоза.

В режиме двигателя (0<s<1) трехфазная асинхронная машина является преобразователем электрической энергии в механическую. Ротор двигателя должен вращаться асинхронно-медленнее поля, с та­кой частотой вращения, при которой токи в обмотке ротора, взаимодействуя с вращающимся магнитным полем, создаваемым токами в обмотках статора, создают вращающий момент, уравновешивающий тормозной момент от сил трения и нагрузки на валу.

В режиме генератора (s<0) трехфазная асинхронная машина является преобразователем механической энергии в электрическую. Ротор генератора вращается в направлении вращения магнитного поля, создаваемого токами в обмотках статора, с частотой вращения большей, чем частота вращения поля.

В режиме электромагнитного тормоза (s>1) ротор трехфазной асинхронной машины вращается в направлении, противоположном направлению вращения магнитного поля, создаваемого токами в об­мотках статора. В режиме электромагнитного тормоза в трехфазной асинхронной машине рассеивается значительная энергия в обмотках, на гистерезис и вихревые токи.

Похожие статьи:

poznayka.org

Устройство и принцип действия асинхронного двигателя.

Асинхронные двигатели.

Асинхронный двигатель - это асинхронная машина, предназначенная для преобразования электрической энергии переменного тока в механическую энергию. Само слово “асинхронный” означает не одновременный. При этом имеется ввиду, что у асинхронных двигателей частота вращения магнитного поля статора всегда больше частоты вращения ротора. Работают асинхронные двигатели, как понятно из определения, от сети переменного тока.

Устройство и принцип действия асинхронного двигателя.

На рисунке: 1 - вал, 2,6 - подшипники, 3,8 - подшипниковые щиты, 4 - лапы, 5 - кожух вентилятора, 7 - крыльчатка вентилятора, 9 - короткозамкнутый ротор, 10 - статор, 11 - коробка выводов.

Основными частями асинхронного двигателя являются статор (10) и ротор (9).

Статор имеет цилиндрическую форму, и собирается из листов технической стали. В пазах сердечника статора уложены обмотки статора, которые выполнены из обмоточного провода. Оси обмоток сдвинуты в пространстве относительно друг друга на угол 120°. В зависимости от подаваемого напряжения концы обмоток соединяются треугольником или звездой.

Роторы асинхронного двигателя бывают двух видов: короткозамкнутый и фазный ротор.

Короткозамкнутый ротор представляет собой сердечник, набранный из листов стали. В пазы этого сердечника заливается расплавленный алюминий, в результате чего образуются стержни, которые замыкаются накоротко торцевыми кольцами. Эта конструкция называется "беличьей клеткой". В двигателях большой мощности вместо алюминия может применяться медь. Беличья клетка представляет собой короткозамкнутую обмотку ротора, откуда собственно название.

Фазный ротор имеет трёхфазную обмотку, которая практически не отличается от обмотки статора. В большинстве случаев концы обмоток фазного ротора соединяются в звезду, а свободные концы подводятся к контактным кольцам. С помощью щёток, которые подключены к кольцам, в цепь обмотки ротора можно вводить добавочный резистор. Это нужно для того, чтобы можно было изменять активное сопротивление в цепи ротора, потому что это способствует уменьшению больших пусковых токов.

Принцип работы

При подаче к обмотке статора напряжения, в каждой фазе создаётся магнитный поток, который изменяется с частотой подаваемого напряжения. Эти магнитные потоки сдвинуты относительно друг друга на 120°, как во времени, так и в пространстве. Результирующий магнитный поток оказывается при этом вращающимся.

Результирующий магнитный поток статора вращается и тем самым создаёт в проводниках ротора ЭДС. Так как обмотка ротора, имеет замкнутую электрическую цепь, в ней возникает ток, который в свою очередь взаимодействуя с магнитным потоком статора, создаёт пусковой момент двигателя, стремящийся повернуть ротор в направлении вращения магнитного поля статора. Когда он достигает значения, тормозного момента ротора, а затем превышает его, ротор начинает вращаться. При этом возникает так называемое скольжение.

Скольжение s - это величина, которая показывает, насколько синхронная частота n1 магнитного поля статора больше, чем частота вращения ротора n2, в процентном соотношении.

Скольжение это крайне важная величина. В начальный момент времени она равна единице, но по мере возрастания частоты вращения n2 ротора относительная разность частот n1-n2 становится меньше, вследствие чего уменьшаются ЭДС и ток в проводниках ротора, что влечёт за собой уменьшение вращающего момента. В режиме холостого хода, когда двигатель работает без нагрузки на валу, скольжение минимально, но с увеличением статического момента, оно возрастает до величины sкр -критического скольжения. Если двигатель превысит это значение, то может произойти так называемое опрокидывание двигателя, и привести в последствии к его нестабильной работе. Значения скольжения лежит в диапазоне от 0 до 1, для асинхронных двигателей общего назначения оно составляет в номинальном режиме - 1 - 8 %.

Как только наступит равновесие между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом создаваемым нагрузкой на валу двигателя процессы изменения величин прекратятся.

Выходит, что принцип работы асинхронного двигателя заключается во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. Причём вращающий момент может возникнуть только в том случае, если существует разность частот вращения магнитных полей.

Вращающееся магнитное поле.

В основе работы асинхронных двигателей лежит вращающееся магнитное поле, создаваемое МДС обмоток статора.

Принцип получения вращающегося магнитного поля с помощью неподвижной системы проводников заключается в том, что если по системе неподвижных проводников, распределенных в пространстве по окружности, протекают токи, сдвинутые по фазе, то в пространстве создается вращающееся поле. Если система проводников симметрична, а угол сдвига фаз между токами соседних проводников одинаков, то амплитуда индукции вращающегося магнитного поля и скорость постоянны. Если окружность с проводниками развернуть на плоскость, то с помощью подобной системы можно получить «бегущее» поле.

Вращающееся поле переменного тока трехфазной цепи. Рассмотрим получение вращающегося поля на примере трехфазного асинхронного двигателя с тремя обмотками, сдвинутыми по окружности на 120° (рис.3.5) и соединенными звездой. Пусть обмотки статора питаются симметричным трехфазным напряжением со сдвигом фаз напряжений и токов на 120°.

Если для обмотки АХ принять начальную фазу тока равной нулю, тогда мгновенные значения токов имеют вид

Графики токов представлены на рис. 3.6. Примем, что в каждой обмотке всего два провода, занимающие два диаметрально расположенные паза.

Рис. 3.5 Рис. 3.6

Как видно из рис. 3.6, в момент времени to ток в фазе А положительный, а в фазах В и С – отрицательны

 

Прямое включение в сеть

Это самый простой и самый дешевый способ пуска. На двигатель вручную или с помощью дистанционного управления подается номинальное напряжение. Прямое включение в сеть допускается, если мощность двигателя не превышает 5% от мощности трансформатора, если от него питается и осветительная сеть. Ограничение по мощности объясняется бросками тока в момент пуска, что приводит к снижению напряжения на зажимах вторичных обмоток трансформатора. Если от трансформатора не питается осветительная сеть, то прямое включение в сеть можно применять для двигателей, мощность которых не превышает 25% от мощности трансформатора.

Асинхронные двигатели.

Асинхронный двигатель - это асинхронная машина, предназначенная для преобразования электрической энергии переменного тока в механическую энергию. Само слово “асинхронный” означает не одновременный. При этом имеется ввиду, что у асинхронных двигателей частота вращения магнитного поля статора всегда больше частоты вращения ротора. Работают асинхронные двигатели, как понятно из определения, от сети переменного тока.

Устройство и принцип действия асинхронного двигателя.

На рисунке: 1 - вал, 2,6 - подшипники, 3,8 - подшипниковые щиты, 4 - лапы, 5 - кожух вентилятора, 7 - крыльчатка вентилятора, 9 - короткозамкнутый ротор, 10 - статор, 11 - коробка выводов.

Основными частями асинхронного двигателя являются статор (10) и ротор (9).

Статор имеет цилиндрическую форму, и собирается из листов технической стали. В пазах сердечника статора уложены обмотки статора, которые выполнены из обмоточного провода. Оси обмоток сдвинуты в пространстве относительно друг друга на угол 120°. В зависимости от подаваемого напряжения концы обмоток соединяются треугольником или звездой.

Роторы асинхронного двигателя бывают двух видов: короткозамкнутый и фазный ротор.

Короткозамкнутый ротор представляет собой сердечник, набранный из листов стали. В пазы этого сердечника заливается расплавленный алюминий, в результате чего образуются стержни, которые замыкаются накоротко торцевыми кольцами. Эта конструкция называется "беличьей клеткой". В двигателях большой мощности вместо алюминия может применяться медь. Беличья клетка представляет собой короткозамкнутую обмотку ротора, откуда собственно название.

Фазный ротор имеет трёхфазную обмотку, которая практически не отличается от обмотки статора. В большинстве случаев концы обмоток фазного ротора соединяются в звезду, а свободные концы подводятся к контактным кольцам. С помощью щёток, которые подключены к кольцам, в цепь обмотки ротора можно вводить добавочный резистор. Это нужно для того, чтобы можно было изменять активное сопротивление в цепи ротора, потому что это способствует уменьшению больших пусковых токов.

Принцип работы

При подаче к обмотке статора напряжения, в каждой фазе создаётся магнитный поток, который изменяется с частотой подаваемого напряжения. Эти магнитные потоки сдвинуты относительно друг друга на 120°, как во времени, так и в пространстве. Результирующий магнитный поток оказывается при этом вращающимся.

Результирующий магнитный поток статора вращается и тем самым создаёт в проводниках ротора ЭДС. Так как обмотка ротора, имеет замкнутую электрическую цепь, в ней возникает ток, который в свою очередь взаимодействуя с магнитным потоком статора, создаёт пусковой момент двигателя, стремящийся повернуть ротор в направлении вращения магнитного поля статора. Когда он достигает значения, тормозного момента ротора, а затем превышает его, ротор начинает вращаться. При этом возникает так называемое скольжение.

Скольжение s - это величина, которая показывает, насколько синхронная частота n1 магнитного поля статора больше, чем частота вращения ротора n2, в процентном соотношении.

Скольжение это крайне важная величина. В начальный момент времени она равна единице, но по мере возрастания частоты вращения n2 ротора относительная разность частот n1-n2 становится меньше, вследствие чего уменьшаются ЭДС и ток в проводниках ротора, что влечёт за собой уменьшение вращающего момента. В режиме холостого хода, когда двигатель работает без нагрузки на валу, скольжение минимально, но с увеличением статического момента, оно возрастает до величины sкр -критического скольжения. Если двигатель превысит это значение, то может произойти так называемое опрокидывание двигателя, и привести в последствии к его нестабильной работе. Значения скольжения лежит в диапазоне от 0 до 1, для асинхронных двигателей общего назначения оно составляет в номинальном режиме - 1 - 8 %.

Как только наступит равновесие между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом создаваемым нагрузкой на валу двигателя процессы изменения величин прекратятся.

Выходит, что принцип работы асинхронного двигателя заключается во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. Причём вращающий момент может возникнуть только в том случае, если существует разность частот вращения магнитных полей.

Вращающееся магнитное поле.

В основе работы асинхронных двигателей лежит вращающееся магнитное поле, создаваемое МДС обмоток статора.

Принцип получения вращающегося магнитного поля с помощью неподвижной системы проводников заключается в том, что если по системе неподвижных проводников, распределенных в пространстве по окружности, протекают токи, сдвинутые по фазе, то в пространстве создается вращающееся поле. Если система проводников симметрична, а угол сдвига фаз между токами соседних проводников одинаков, то амплитуда индукции вращающегося магнитного поля и скорость постоянны. Если окружность с проводниками развернуть на плоскость, то с помощью подобной системы можно получить «бегущее» поле.

Вращающееся поле переменного тока трехфазной цепи. Рассмотрим получение вращающегося поля на примере трехфазного асинхронного двигателя с тремя обмотками, сдвинутыми по окружности на 120° (рис.3.5) и соединенными звездой. Пусть обмотки статора питаются симметричным трехфазным напряжением со сдвигом фаз напряжений и токов на 120°.

Если для обмотки АХ принять начальную фазу тока равной нулю, тогда мгновенные значения токов имеют вид

Графики токов представлены на рис. 3.6. Примем, что в каждой обмотке всего два провода, занимающие два диаметрально расположенные паза.

Рис. 3.5 Рис. 3.6

Как видно из рис. 3.6, в момент времени to ток в фазе А положительный, а в фазах В и С – отрицательны

 



infopedia.su


Смотрите также