16.05.2010
Система смазки двигателя
Двигатель в процессе работы генерирует большое количество тепла. Количество тепла, выделяющегося между некоторыми движущимися частями, настолько велико, что двигатель внутреннего сгорания не может работать долго и безотказно. Для этого и служит система смазки, которая обеспечивает устойчивую подачу масла под давлением к движущимся частям двигателя. Смазка уменьшает нагрев в результате трения и предотвращает взаимное трение элементов двигателя друг о друга. Кроме того, масло помогает охлаждать двигатель, смывать продукты износа и грязь и уменьшать уровень шума.
Основные элементы системы смазки - это:
• Масляный картер• Фильтрующая сетка• Масляный насос• Масляный фильтр• Масляные уплотнения• Щуп для измерения уровня масла• Манометр для измерения давления масла• Герметизирующие материалы Моторное масло
Современные моторные масла изготавливаются или из сырой нефти или из искусственно синтезированных химических соединений. Некоторые моторные масла изготавливаются из того и другого вместе и называются полусинтетическими.
Моторные масла классифицируются согласно классам вязкости SAE по классификации Общества инженеров-автомобилистов (Society of Automotive Engineers (SAE)). Вязкость - это мера текучести жидкости, т.е. ее способности к перемещению. При данной температуре вязкое (густое) масло не течет так быстро, как менее вязкое масло при той же самой температуре, поэтому более вязкое масло будет иметь более высокий класс вязкости. Масла классифицируются согласно их вязкости в соответствии с наружной температурой. Вязкость - это показатель характеристик масла при данной температуре. Информация о вязкости ничего не говорит о качестве масла.
В настоящее время в двигателях внутреннего сгорания используются масла, рассчитанные только на один интервал температур, и универсальные (всесезонные) масла. Масло для одного интервала температур - это масло, которое работает в соответствии со своим классом вязкости во всем своем диапазоне температур. Всесезонное масло - это масло, которое будучи холодным работает иначе, чем когда оно горячее. Всесезонное масло может работать подобно жидкому маслу, когда при холодной температуре жидкости имеют тенденцию загустевать и действовать подобно вязкому маслу, когда при горячей температуре жидкости имеют склонность к расжижению. Всесезонные масла также называются универсальными маслами или маслами широкого применения.
Номера SAE говорят о температурном интервале, в котором проявляются наилучшие смазочные свойства масла. Масло SAE 10 хорошо смазывает при низкой температуре, но становится жидким при высокой температуре. Масло SAE 30 хорошо смазывает при средней температуре, но становится вязким при низкой температуре. Всесезонные масла охватывают более одного класса вязкости SAE. В их обозначении фигурируют два класса вязкости, которым удовлетворяет масло. Например, масло SAE 10W30 отвечает требованиям, предъявляемым к маслу класса вязкости 10 для запуска из холодного состояния и смазки в холодном состоянии, и требованиям класса вязкости 30 для смазки при средней температуре.
Циркуляция масла
Масло циркулирует по двигателю следующим образом:
• Масло, находящееся в масляном картере, втягивается масляным насосом вверх через фильтрующую сетку. Фильтрующая сетка отфильтровывает крупные инородные частицы.• Масло проходит через масляный фильтр, который отфильтровывает меньшие по величине частицы грязи и продукты износа.• Из масляного фильтра масло поступает в главный смазочный канал и (или галерею) в блоке цилиндров.• Из главной галереи масло проходит по периферийным каналам к распределительному валу, поршням, коленчатому валу и другим движущимся частям. Смазочные отверстия и форсунки направляют поток масла к важнейшим элементам, таким как подшипники и поршни.• По мере того как масло смазывает поверхности движущихся частей, оно непрерывно вытесняется новым маслом. Масло стекает со смазываемых поверхностей обратно в масляный картер. Во многих двигателях используется маслоохладитель, служащий для охлаждения масла прежде, чем оно, повторяя цикл, снова пойдет через фильтрующую сетку.
Масло стекает с движущихся частей в масляный картер. Насос втягивает масло из масляного картера через фильтрующую сетку и подает его под давлением через фильтр. После фильтрации масло проходит к смазочным точкам в головке цилиндров и блоке цилиндров. Предохранительный клапан, имеющийся в масляном насосе, отвечает за то, чтобы давление масла не превысило предписанное значение.
Чтобы прогнать масло по главной смазочной галерее, используется полное давление. Масло из главной галереи смазывает коренные подшипники коленчатого вала, подшипники шатунов, распределительный вал и гидравлические толкатели клапанов (при их наличии). В других частях двигателя давление масла уменьшается, т.к. масло проходит по меньшим каналам. Концы штанг толкателей и клапанные рычаги смазываются с уменьшенным давлением.Нагрузка на масло
Смазочное масло в двигателе вследствие воздействия на него температуры и загрязнения работает в жестких условиях. Масло должно поддерживать свою смазочную способность при температуре вплоть до 150 °С (300 °F). Чтобы предохранить моторное масло от слишком большого нагрева, иногда используются маслоохладители. Маслоохладители передают тепло от масла к наружному воздуху или к охлаждающей жидкости двигателя. Кроме того, масло подвергается химическому воздействию отработавших газов, пыли, частиц - продуктов износа и продуктов сгорания. Высокая температура и загрязняющие примеси ухудшают рабочие качества масла и приводят к образованию отстоя.
Замена масла
Важно заменять моторное масло в предписанные интервалы обслуживания. При замене моторного масла всегда следует заменять масляный фильтр. При добавлении нового масла важно использовать масло правильного типа, в правильном количестве и с качеством, предписанным изготовителем. Переполнение или недостаток моторного масла могут привести к внутреннему повреждению двигателя и высокой токсичности отработавших газов.
Элементы масляного картера
Масляный картер крепится к днищу блока цилиндров. Масляный картер представляет собой емкость для хранения моторного масла и снизу герметично закрывает картер двигателя. Масляный картер помогает отводить часть тепла от масла к наружному воздуху. Некоторые масляные картеры имеют маслоотражатель, который помогает уменьшать перемещение масла в масляном картере в процессе работы двигателя.
Фильтрующая сетка
Фильтрующая сетка - это экран, который предотвращает проникновение грязи и продуктов износа в масляный насос. Фильтрующая сетка располагается в нижней части масляного картера с впускной стороны масляного насоса. Сетка поддерживается полностью погруженной в моторное масло, что препятствует попаданию воздуха в масляный насос. Масло проходит через фильтрующую сетку к впускному порту масляного насоса, а затем распространяется по всему двигателю.
Масляный насос Масляный насос создает "импульс", который обеспечивает циркуляцию масла под давлением по всему двигателю. Масляный насос всасывает масло из масляного картера и прогоняет его по системе смазки. Масляный насос обычно крепится на блоке цилиндров или передней крышке двигателя. Масляный насос обычно приводится в движение коленчатым валом или распределительным валом, используя зубчатую передачу, ремень или приводной вал. Насосы для моторного масла - это объемные насосы без проскальзывания. Это означает, что все масло, входящее во впускной порт насоса, выходит через выпускной порт насоса. Циркуляция масла внутри насоса исключается.
Предохранительный клапан
Чрезмерное давление масла повреждает уплотнения и прокладки, вызывая протечки масла. Чем быстрее работает масляный насос, тем большее количество масла он перекачивает. В системе смазки имеется предохранительный клапан, который ограничивает максимальное давление, которое может вырабатывать насос. Если бы все масло из насоса поступало в смазочные каналы, масло быстро бы нагрелось и разложилось. Чтобы ограничивать давление масла, при предварительно заданном предельном значении открывается предохранительный клапан, который направляет часть масла из выпускного порта насоса обратно во впускной порт или в масляный картер.
Типы масляных насосов
Насос роторного типа
В насосе роторного типа используются два ротора: один вращается внутри другого, создавая давление масла. Оба эти ротора вращаются снебольшой разницей в скорости. Роторы имеют плавные, скругленные выступы. Роторы этого типа называются трохоидными шестернями.
В этой конструкции коленчатый вал приводит в движение внутренний ротор. Внутренний ротор активизирует наружный ротор. Когда эти два ротора вращаются, между выступами на этих двух роторах образуются полости нагнетания. Когда выступы на этих двух роторах входят в зацепление и выходят из него, полости нагнетания уменьшаются и увеличиваются. Отверстие, имеющееся в корпусе насоса, в моменты сцепления (выпуск насоса) и расцепления (впуск насоса) роторов позволяет маслу по мере вращения роторов входить в насос и выходить из него.
Насосы роторного типа очень надежны и могут выдерживать работу с высокой частотой вращения. Насосы роторного типа обеспечивают равномерность подачи масла в отличие от насосов с пульсирующим действием. Насос роторного типа, используемый во многих двигателях, имеет маленькое отверстие на выпуске насоса, которое позволяет выходить воздуху. Если автомобиль не эксплуатировался в течение длительного времени, в насосе отсутствует масло, при запуске двигателя воздух быстро выходит через это отверстие, позволяя маслу почти мгновенно достигнуть важнейших элементов двигателя.
Шестеренный насос
В шестеренном масляном насосе для нагнетания масла используются две шестерни. Привод работает от распределительного или коленчатого вала. Ведущая шестерня сцепляется с ведомой шестерней, которая вращается в направлении, противоположном направлению вращения ведущей шестерни. Т.к. шестерни вращаются внутри корпуса насоса, они создают эффект всасывания во впускном отверстии. Масло втягивается в пространство между шестернями и корпусом насоса и проходит к выпускному порту.
Масляный фильтр
Масляный фильтр улавливает маленькие частицы металла, грязи, которые переносятся маслом, таким образом не давая им рециркулировать через двигатель. Фильтр позволяет сохранять масло в чистоте и уменьшает износ двигателя. Масляный фильтр улавливает очень мелкие частицы, которые могут проходить через фильтрующую сетку. Большинство масляных фильтров - полнопоточного типа. Все масло, которое подает масляный насос, проходит через масляный фильтр. В фильтре находится бумажный элемент, который отсеивает частицы из масла. Масло проходит от масляного насоса и входит в масляный фильтр через несколько отверстий. Сначала масло обтекает наружную часть фильтрующего элемента. Затем масло проходит через материал фильтра к центру элемента. И в конце пути масло вытекает в главную галерею через трубку в центре фильтра.
Фильтр наворачивается на трубку главной смазочной галереи. Утечка масла через соединение между фильтром и блоком цилиндров предотвращается специальным уплотнением.
Байпасный клапан
По мере того, как элемент в масляном фильтре загрязняется, работа масляного насоса при нагнетании масла через фильтр затрудняется. Если фильтр закупоривается и не предусмотрен никакой путь обхода фильтра, может произойти повреждение двигателя. Во избежание такого повреждения в масляных фильтрах большинства фирм-изготовителей оригинального оборудования (OEM) имеется подпружиненный байпасный клапан. Этот клапан предназначается для того, чтобы дать маслу возможность обходить фильтр, если последний закупоривается. Когда противодавление становится достаточно большим, чтобы преодолеть усилие пружины в байпасном клапане, клапан открывается, позволяя части масла обходить фильтр и идти прямо к трубке масляной галереи.
Противосливная диафрагма
Масляные фильтры большинства компаний-изготовителей также имеют противосливную диафрагму, которая удержит масло внутри фильтра, когда двигатель - выключается. Диафрагма закрывает все впускные отверстия фильтра, когда масляный насос останавливается. Когда двигатель выключен, давление масла в фильтре отжимает диафрагму к отверстиям, "запирая" масло в фильтре. Когда двигатель снова запускается, масло незамедлительно выходит из фильтра, позволяя быстро обеспечить смазку важнейших элементов двигателя. Когда давление, создаваемое масляным насосом, растет, диафрагма отводится от отверстий, и снова начинается нормальное прохождение масла.
Масляные уплотнения
Уплотнения и прокладки, расположенные в различных местах двигателя, препятствуют утечке масла из двигателя или его перетеканию в те места двигателя, где масло не должно присутствовать.
Щуп для измерения уровня масла
Щуп для измерения уровня моторного масла используется для измерения уровня масла в масляном картере. Один конец щупа окунается в верхнюю зону масляного картера, а другой конец имеет ручку, позволяющую легко извлекать щуп. Конец, который окунается в масляный картер, имеет шкалу-указатель, которая показывает, когда необходимо добавление моторного масла.
Уровень масла всегда следует поддерживать выше минимальной отметки. Картер двигателя никогда не должен переполнен или слишком мало заполнен. Слишком большое количество масла может привести к окунанию коленчатого вала в масло и в результате при вращении масла к взбалтыванию и вспениванию масла. Масляный насос не может перекачивать пену, и пена не будет смазывать. Низкий уровень масла может привести к чрезмерно высокой температуре масла, что может привести к выходу из строя подшипников. Слишком высокий или слишком низкий уровень масла, также может привести к увеличению расхода масла. За информацией по заправочным объемам и рекомендуемым типам моторного масла обратитесь к Руководству для станций технического обслуживания или Руководству по эксплуатации.
Указатель давления масла
На панели приборов обычно имеется какой-либо указатель давления масла, который предупреждает водителя о том, когда система смазки не может поддерживать давление масла, необходимое двигателю. Этот указатель может быть или стрелочным указателем или контрольной лампой.
автозапчасти в москве
www.mskjapan.ru
Данные конструкции двигателей просуществовали вплоть до 2002 года (до начала выпуска Mazda RX8). В 2003 году был начат выпуск автомобиля Mazda RX8, на который устанавливается третье поколение роторных двигателей, отличительной чертой которого стало расположение впускных и выпускных окон на боковых корпусах двигателя. Толчком к этому послужила необходимость поиска компромисса между топливной экономичность и высоким показателем мощности автомобиля, чего на двигателях предыдущих поколений достигнуть не представлялось невозможным.
Надо отметить, что расположение, геометрия и размер впускных и выпускных окон являются определяющими факторами, влияющими на характеристики роторного двигателя. Фирма Mazda за более чем сорокалетний опыт разработки роторных двигателей добилась достаточно большого прогресса в этой области (на рисунках "Сравнение боковых корпусов двигателей" и "Углы открытия и закрытия впускных и выпускных окон роторных двигателей фирмы Mazda" приведено сравнение впускных и выпускных окон двигателей третьего поколения с окнами двигателей предыдущих поколений).
Сравнение боковых корпусов двигателей.
Годы выпуска | 67-72 | 80-84 | 80-84 | 85-88 | 85-88 | 82-84 | 83-85 | 90-95 | 91-02 | 03 - | 03 - | ||
Модель | CS*5 | RX7 | RX7 Cosmo | RX7 Richie | RX7 | RX7 Cosmo | RX7 Cosmo | RX7 | RX8 | RX8 | |||
Двигатель | 10A-NA | 12A-NA | 12A-NA | 13B-T/C | 13B-NA | 12A-T/C | 13B-NA | 13B-T/C | 13B-T/C | 13B-NA High | 13B-NA Std. | ||
Впуск. окна | 4 | 4 | 6 | 4 | 6 | 4 | 6 | 4 | 4 | 6 | 4 | ||
Впуск | Первичное окно | Открытие*1 | 25 | 32 | 58 | 45 | 32 | 58 | 45 | 58 | 45 | 3 | 3 |
Закрытие *2 | 45 | 50 | 25 | 50 | 40 | 40 | 30 | 50 | 50 | 65 | 60 | ||
Вторичное окно | Открытие*1 | 25 | 32 | 45 | 32 | 32 | 32 | 32 | 32 | 32 | 12 | 12 | |
Закрытие*2 | 45 | 50 | 25 | 50 | 30 | 40 | 30 | 50 | 50 | 36 | 45 | ||
Дополни- тельное окно | Открытие*1 | - | - | 58 | - | 45 | - | 45 | - | - | 38 | - | |
Закрытие*2 | - | - | 70 | - | 80 | - | 70 | - | - | 80 | - | ||
Выпуск | Открытие*3 | 75 | 75 | 75 | 75 | 75 | 75 | 71 | 75 | 75 | 50 | 40 | |
Закрытие*1 | 48 | 48,5 | 38 | 48,5 | 48,5 | 48,5 | 48,5 | 48 | 48 | 3*4 | 3*4 |
Углы открытия и закрытия впускных и выпускных окон роторных двигателей фирмы Mazda. Примечание: *1 - после ВМТ, *2 - после НМТ, *3 - до НМТ, *4 - до ВМТ, *5 - Cosmopolitan Sport.
Для автомобиля Mazda RX8 фирмой Mazda был разработан новый двухроторный двигатель, получивший название 13B- MSP. Данный двигатель был выпущен в двух модификациях: STANDARD POWER - двухроторный двигатель, развивающий мощность 141 кВт/192 л.с. при частоте вращения 7000 об/мин и HIGH POWER - двухроторный двигатель, развивающий мощность 170 кВт/231 л.с. при частоте вращения 8200 об/мин. Двигатели получили название "RENESIS", что подразумевает возрождение роторного двигателя вообще, а так же зарождение нового поколения роторных двигателей в частности. Данный двигатель кардинально отличается от всех разработанных ранее большим количеством технических решений, касающихся как конструкции самого двигателя, так и установленных на него систем. Двигатель вобрал в себя все лучшие разработки, сделанные ранее в этой области, что в совокупности с современными разработками и использованием современных, более прочных и износостойких материалов, позволило придать двигателю хорошие характеристики, такие как соответствие экологическому стандарту EURO 4, большой ресурс, экономичность и высокий крутящий момент в большом диапазоне частот вращения эксцентрикового вала. Роторный двигатель также отличают относительная простота конструкции: в нем имеются только две вращающиеся детали (эксцентриковый вал и ротор), отсутствуют неуравновешенные массы (это позволяет сделать двигатель очень быстроходным без опасности возникновения резонанса) и малые габариты по сравнению с аналогичными по мощности поршневыми двигателями.
По показателю уравновешенности, данный двигатель можно сравнить только с рядным шестицилиндровым двигателем или V-образным восьмицилиндровым, на поршневых двигателях других типов достижение таких показателей плавности хода не возможно. В данном двигателе неуравновешена центробежная сила от вращающихся масс. Для уравновешивания центробежной силы на оба конца эксцентрикового вала установлены противовесы. На автомобилях с МКПП масса заднего противовеса равномерно распределена по периметру маховика.
Основными элементами данного двигателя являются боковые и промежуточный корпуса, два ротора, два статора, эксцентриковый вал, две неподвижные шестерни и система уплотнений рабочих камер.
Неподвижные шестерни изготовлены из специальной стали и подвергаются ионному азотированию для предотвращения разрушения зубьев от сил инерции ротора (от его разгона и торможения) и газовых импульсов, в месте соприкосновения неподвижной шестерни и шестерни внутреннего зацепления ротора. Неподвижные шестерни запрессовываются в боковые корпуса двигателя.
Неподвижные шестерни. 1 - неподвижные шестерни (модели STANDARD POWER), 2 - коренной подшипник, 3 - передняя неподвижная шестерня, 4 - задняя неподвижная шестерня, 5 - фиксирующий выступ, 6 – крышка упорного подшипника, 7 - упорный подшипник, 8 - упорная пластина, 9 - фиксирующий винт (модели HIGH POWER).
В неподвижную шестерню запрессованы коренные подшипники. Коренные подшипники фиксируются от поворота выступом (модели STANDARD POWER) или фиксирующим винтом (модели HIGH POWER).
Эксцентриковый вал изготовлен из высокопрочной углеродистой стали с применением индукционного упрочнения для повышения износостойкости. Эксцентриковый вал неразъемный, с двумя коренными и двумя роторными шейками. Крепление эксцентрикового вала осуществляется с помощью подшипников скольжения в неподвижных шестернях, которые установлены в боковых корпусах. Подшипники скольжения являются неразъемными.
Эксцентриковый вал. 1 - температура моторного масла 60°С или выше, 2 - редукционный клапан эксцентрикового вала, 3 - эксцентриковый вал, 4 - ротор, 5 - масляная форсунка, 6 - моторное масло, 7 - температура моторного масла ниже 60°, 8 - слив масла (снижение давления).
В эксцентриковом валу выполнены каналы для смазки коренных и роторных шеек, а также подачи масла внутрь роторов для их охлаждения, для чего в эксцентриковый вал встроены масляные форсунки. Для облегчения прогрева двигателя при холодном запуске, в эксцентриковый вал встроен редукционный масляный клапан. Когда двигатель не прогрет, редукционный клапан открывается и давление моторного масла снижается, так как часть масла сливается из вала, в результате чего давление становится недостаточным для впрыскивания масла во внутреннюю полость ротора. Когда двигатель прогревается, редукционный клапан закрывается и масло начинает поступать во внутреннюю полость ротора для его охлаждения. От осевого перемещения эксцентриковый вал фиксируется упорным подшипником и упорной шайбой, находящимися в передней неподвижной шестерне.
Боковые и промежуточный корпуса двигателя отлиты из специального чугуна с применением азотирования, это позволило повысить износостойкость рабочих поверхностей.
Основной конструктивной особенностью, отличающей двигатели "RENESIS" от предыдущих поколений роторных двигателей, устанавливаемых на автомобили Mazda, стало так называемое боковое расположение впускных и выпускных окон.
Здесь надо отметить, что ранее все роторные двигатели фирмы Mazda устанавливаемые на серийные автомобили (около десяти моделей двигателей) имели боковое расположение впускных окон, а выпускные окна располагались на статорах. Данная конструкция оптимальна для быстроходных роторных двигателей и обеспечивает достаточно большой крутящий момент на низких частотах вращения эксцентрикового вала и высокую мощность, но не обеспечивает плавность протекания процесса сгорания из-за большого времени перекрытия окон, что ведет к снижению мощности. Расположение впускных и выпускных окон в боковых корпусах позволило сделать по нескольку не только впускных, но и выпускных окон на каждый ротор. Такое расположение окон способствует улучшению пусковых качеств двигателя, уменьшению перекрытия окон, что способствует возникновению эффекта резонансного наддува и предотвращается попадание отработавших газов во впускные окна, также была достигнута стабилизация процесса сгорания. Каждое впускное и выпускное окно имеет индивидуальный размер. Благодаря применению нескольких впускных и выпускных окон специально подобранного размера удалось достигнуть лучшего наполнения рабочей камеры свежим зарядом, улучшить очистку от отработавших газов, снизить время перекрытия окон, что позволило увеличить КПД двигателя, мощность и снизить расход топлива. Количество впускных окон на корпусах зависит от модификации двигателя.
На двигателях "RENESIS" впускные окна расположены в наиболее выгодных местах и их размер увеличен на 30% по сравнению с предыдущими двигателями. Увеличение впускных окон позволило достигнуть более раннего открытия окон и более позднего закрытия без увеличения перекрытия окон (когда впускное и выпускное окно остаются открытыми одновременно), как следствие, в камеру сгорания стало поступать больше рабочей смеси (см. рисунок "Сравнение роторных двигателей с разным расположением выпускных окон").
Боковые и промежуточный корпуса центрируются с помощью полых штифтов. Вес боковых корпусов уменьшен за счет специальных проточек. В боковых корпусах имеются отверстия для установки неподвижных шестерен, через которые роторы приводятся в движение. На переднем корпусе установлен масляный насос и маслоприемник, на промежуточном корпусе имеются проточки для установки основных форсунок, а на задний корпус устанавливаются масляный фильтр и регулятор давления моторного масла.
Статоры изготовлены из алюминия, во внутреннюю поверхность статоров вставлены стальные пластины по технологии SIP (Sheet metal insert process - технология вставки листового металла). Внутренняя поверхность стальных вставок (эпитрохоидная поверхность) хромирована по технологии Micro Channel Porous - покрытие поверхности металлом с образованием микро пор для лучшей приработки и смазки поверхности. Для улучшения приработки эпитрохоидная поверхность покрыта фтороуглеродистым полимером.
Корпуса и статоры двигателя. 1 - установочная поверхность не- подвижной шестерни, 2 - установочная поверхность масляного насоса, 3 - установочная поверхность маслоприемника, 4 - передний корпус двигателя, 5 - уплотнение, 6 - статор переднего ротора, 7 - полый штифт, 8 - выпускное окно, 9 - впускное окно, 10 - промежуточный корпус, 11 - направляющая масляного щупа, 12 - маслозаливная горловина, 13 - статор заднего ротора, 14 - впускное окно системы APV (модели HIGH POWER), 15 - установочная поверхность масляного фильтра, 16 - задний корпус двигателя, 17 - установочная поверхность регулятора давления масла, 18 - установочная поверхность основных форсунок, 19 - порт системы подачи воздуха на выпуск, 20 - вставка, 21 - поперечный разрез заднего корпуса. |
Роторы (и шестерни внутреннего зацепления на роторах) изготавливают из чугуна, для предотвращения поломки зубьев неподвижной шестерни. Роторы изготавливаются пустотелыми с проточками под своеобразные камеры сгорания, также для уменьшения веса роторов была уменьшена толщина внутренних ребер. На торцах ротора имеются выточки под уплотнительные штифты и торцевые уплотнительные пластины. Во внутреннюю поверхность ротора запрессовывается роторный подшипник.
Ротор и система уплотнений рабочих камер. 1 - расширитель торцевой уплотнительной пластины, 2 – торцевая уплотнительная пластина, 3, 16 - ротор, 4 - цветная метка, 5 - уплотнительный штифт, 6 - пробка, 7 – пружинная шайба, 8 - боковой элемент радиального уплотнения, 9 - радиальная уплотнительная пластина, 10 - расширители радиальной уплотнительной пластины, 11 - компрессионное кольцо, 12 - расширитель компрессионного кольца, 13 - уплотнительные кольца, 14 - пружина маслосъемного кольца, 15 - маслосъемное кольцо, 17 - пружинная вставка, 18 - роторный подшипник, 19 - выточки, 20 - выточка для камеры сгорания, 21 – направление вращения ротора, 22 - роторная шестерня внутреннего зацепления.
Ротор имеет форму треугольника с дугообразными сторонами. При вращении ротор совершает сложное планетарное движение. Ротор вращается вместе с эксцентриковым валом и одновременно, из-за обтекания неподвижной шестерни, закрепленной на боковом корпусе двигателя, посредством шестерни внутреннего зацепления, вращается вокруг своей оси. Отношение числа зубьев шестерни внутреннего зацепления ротора и неподвижной шестерни - 3:2 (51:34) При вращении ротора три его вершины постоянно касаются поверхности статора, образуя рабочие камеры, объем которых постоянно изменяется. За один оборот объем каждой рабочей камеры ротора меняется 4 раза от минимального до максимального, что обеспечивает возможность протекания четырехтактного цикла в каждой из трех рабочих камер за один оборот ротора или за три оборота эксцентрикового вала (так как ротор вращается в три раза медленнее эксцентрикового вала). В соседних камерах совершаются аналогичные циклы со сдвигом на 120°.
Таким образом, за один оборот ротора совершается три рабочих хода или один рабочий ход на каждый оборот эксцентрикового вала. Здесь нужно заметить, что в роторном, как и в поршневом двигателе, на тактах впуска и рабочего хода объем между вершинами ротора увеличивается, а на тактах сжатия и выпуска объем уменьшается. Открытие и закрытие впускных и выпускных окон осуществляется боковой поверхностью ротора.
Четыре цикла работы роторного и поршневого двигателя | Протекание рабочего хода в роторном и поршневом двигателе. Давление газов действует на боковую поверхность ротора/головку поршня с силой Pg. Эта сила раскладывается на нормальную составляющую Pb и тангенцианальную Pt. Тангенцианальная сила Pt и обеспечивает вращение ротора или шатуна. |
Такая конструкция позволила достигнуть существенного уменьшения времени перекрытия окон.
Сравнение роторных двигателей с разным расположением выпускных окон. 1 - открытие впускного окна роторных двигателей предыдущих поколений, 2 - открытие выпускного окна роторных двигателей предыдущего поколения , 3 - открытие выпускного окна, 4 - выпускное окно. |
Можно провести сравнение между роторным и поршневым двигателями по объему и производимой мощности. Возьмем для примера рядный четырехцилиндровый двигатель объемом 2 литра (2000 см3). В данном поршневом двигателе рабочий объем 2000 см3 достигается за два оборота коленчатого вала, значит, за один оборот достигается рабочий объем 1000 см3. В роторном же двигателе за один оборот эксцентрикового вала достигается рабочий объем 1308 см3 (654 см3x2, объем двух камер сгорания двух роторов). Следовательно, можно сказать, что роторный двигатель "RENESIS" сопоставим по мощности и уравновешенности с шестицилинровым рядным двигателем объемом 2,6 литра. Охлаждение ротора осуществляется с помощью моторного масла, циркулирующего в эксцентриковом валу и впрыскиваемого во внутреннюю полость ротора через форсунки. На внутренней поверхности ротора сделано оребрение для лучшего отвода тепла. Во внутренней поверхности ротора масло совершает вихревое движение между ребрами ротора, охлаждая его.
Система уплотнений рабочих камер представляет собой совокупность прокладок, уплотнительных пластин и уплотнительных штифтов и создана для обеспечения герметичности рабочих камер, находящихся между торцами ротора. В данном роторном двигателе система уплотнений состоит из радиальных уплотнительных пластин, торцевых уплотнительных пластин, уплотнительных штифтов и расширителей. Для предотвращения попадания масла, охлаждающего и смазывающего ротор, из внутренней полости ротора в камеры сгорания и образования нагара, установлены маслосъемные кольца. Маслосъемные кольца имеют разные диаметры, маслосъемное кольцо состоит из трех деталей: уплотнительного кольца, стального кольца (с хромированной поверхностью) и пружины. Также для предотвращения попадания отработавших газов на впуск, когда ротор находится в верхней мертвой точке, установлено одно компрессионное кольцо с расширителем.
Радиальные уплотнительные пластины изготавливаются из специального чугуна с применением электронно-лучевой обработки для повышения износостойкости. Элементами радиального уплотнения являются радиальная уплотнительная пластина, два расширителя и боковые элементы радиального уплотнения. Под действием расширителей и центробежных сил инерции радиальная уплотнительная пластина прижимается к эпитрохоидной поверхности статора, тем самым, способствуя герметизации рабочих камер.
Торцевые уплотнительные пластины изготовлены из металлокерамики и прижимаются к поверхности бокового корпуса расширителями и под давлением газов, попадающих под пластины. Торцевое уплотнение состоит из дугообразных пластин и расширителей, располагающихся на каждой из боковых поверхностей роторов. Элементы торцевого уплотнения используются для уплотнения торцевого зазора между ротором и боковым корпусом. Форма торцевой уплотнительной пластины так же оптимизирована для удаления углеродистых отложений из канавки торцевого уплотнения на роторе.
Уплотнительные штифты изготовлены из специального чугуна, внешняя сторона уплотнительного штифта хромирована для уменьшения износа. К боковому корпусу уплотнительные штифты прижимаются пружинными шайбами. Уплотнительные штифты различаются по диаметрам, в зависимости от диаметра отверстия под штифт (на ротор нанесена идентификационная метка). В штифтах имеются прорези, в которые вставляются радиальные уплотнительные пластины, а торцевые уплотнительные пластины плотно прилегают к уплотнительным штифтам, тем самым достигается замкнутость системы уплотнений.
Все детали системы уплотнения неподвижны относительно ротора, что дает конструкции следующие преимущества: отсутствие износа деталей от перемещения, износ верхней части уплотнений не вызывает нарушения герметичности системы, расширители и пружины системы работают в статических условиях, что препятствует их усталостному разрушению.
Система охлаждения
В данных двигателях используется жидкостная система охлаждения закрытого типа с принудительной циркуляцией охлаждающей жидкости. Привод насоса охлаждающей жидкости осуществляется ремнём привода навесных агрегатов. Термостат с перепускным клапаном расположен во впускном патрубке охлаждающей жидкости и призван поддерживать оптимальную температуру в системе охлаждения, пуская охлаждающую жидкость по малому или большому (через радиатор) кругу охлаждения.
Система смазки
В двигателе используется система смазки с полнопоточной очисткой масла и с подачей масла под давлением к основным движущимся деталям (подшипникам скольжения, деталям системы уплотнений, роторам и т.д.).
Масляный насос трохоидного типа. Внутри него расположены два ведущих и два ведомых ротора с внутренним зацеплением, которые вращаются в одном направлении. Привод осуществляется цепью от эксцентрикового вала.
1 - уплотнительная канавка, 2 - маслоуспокоитель, 3 - датчик низкого уровня моторного масла.
Масляный фильтр расположен на заднем корпусе. Для уменьшения температуры масла в систему смазки могут быть установлены один или два маслоохладителя.
Для уменьшения высоты двигателя, разработан специальный плоский стальной масляный поддон (высота масляного поддона 40 мм). В масляном поддоне установлен маслоуспокоитель и датчик низкого уровня моторного масла. Для уменьшения веса маслоприемник сделан из пластика.
Двигатель работает на смеси бензина с моторным маслом, так как необходима смазка деталей системы уплотнений рабочих камер. Доля подаваемого в рабочие камеры и участвующего в образовании рабочей смеси масла (по сравнению с количеством подаваемого топлива) невелика. Для регулирования количества подаваемого в рабочие камеры масла разработан дозирующий масляный насос.
Дозирующий масляный насос. 1 - дозирующий масляный насос, 2 - слив масла, 3 - шаговый двигатель, 4 - подача масла, 5 - поверхность прилегающая к двигателю, 6 - разрез насоса, 7 - датчик-выключатель, 8 - плунжер, 9 - дифференциальный плунжер, 10 - вспомогательный плунжер, 11 - регулятор, 12 - червячный механизм, 13 - блок управления двигателем, 14 - обмотка №1, 15 - обмотка №2, 16 - обмотка №3, 17 - обмотка №4, 18 - неиспользуемый вывод. | Масляный насос. 1 - поперечный разрез, 2 - подача масла, 3 - слив масла, 4 - разделитель, 5 - корпус масляного насоса, 6 - вал масляного насоса, 7 - передний ведомый ротор, 8 - передний ведущий ротор, 9 - разделитель, 10 - задний ведущий ротор, 11 - задний ведомый ротор. |
Дозирующий масляный насос управляется блоком управления двигателем с помощью сигналов. Блок управления регулирует количество подаваемого дозирующим масляным насосом масла в зависимости от частоты вращения эксцентрикового вала, показаний датчика температуры ОЖ и датчика массового расхода воздуха. Подача масла в рабочие камеры осуществляется масляными форсунками.
Масляные форсунки. 1 - масляные форсунки, 2 - боковой и промежуточный корпус, 3 - статор, 4 - распылитель форсунки, 5 - подача масла, 6 - обратный клапан, 7 - к воздушному шлангу.
На каждом статоре установлено по две масляные форсунки. Для улучшения смазки корпусов и уплотнений, масляные форсунки установлены под наклоном и впрыскивают масло на боковые корпуса ротора. Чтобы разрежение в двигателе не препятствовало подаче масла к масляным форсункам, на каждую форсунку установлен шланг, связанный с атмосферой. Для предотвращения попадания масла в воздушный шланг, когда во внутренней полости двигателя создается давление, в форсунку установлен обратный клапан.
1 - шаговый двигатель, 2 - датчик- выключатель, 3 - шаг 52, 4 - выключено, 5 - включено.
Механизм, регулирующий количество подаваемого масла, состоит из плунжера и дифференциального плунжера, приводимого червячным механизмом. Червячный механизм приводится от эксцентрикового вала через ведущую шестерню привода дозирующего масляного насоса, находящуюся на передней крышке двигателя. Количество подаваемого масла регулируется по сигналу от блока управления двигателем, изменением хода плунжера и поворотом регулятора, связанного с шаговым двигателем. Положение шагового двигателя отслеживается с помощью датчика-выключателя, показания которого, наравне с параметрами, описанными выше, используются блоком управления двигателем для расчета необходимого количества подаваемого масла. Когда шаговый двигатель находится на шаге 52 или большем, по сигналу от датчика-выключателя в блоке управления двигателем включается алгоритм регулирования подачи масла, проходящего через дозирующий масляный насос. Когда шаговый двигатель находится ниже шага 52, устанавливается максимальная подача масла.
Алгоритм управления дозирующим масляным насосом включает несколько функций (см. таблицу "Функции управления дозирующим масляным насосом").
Таблица. Функции управления дозирующим масляным насосом.
Состояние | Описание |
Замок зажигания в положении "ON", двигатель выключен (сберегающий режим) | При выключенном двигателе управление дозирующим масляным насосом прекращается для сохранения заряда аккумуляторной батареи |
Функция возврата к начальным параметрам | При начале управления дозирующим масляным насосом блок управления распознает, на каком шаге находится шаговый двигатель, и происходит возврат к начальному параметру (нулевому шагу) |
Функция расчета количества подаваемого масла при работе двигателя |
Управление шаговым двигателем в зависимости от режима работы двигателя |
Функция установки начального шага (при повороте замка зажигания в положение "OFF") | При установке замка зажигания в положение "OFF" управление дозирующим масляным насосом прекращается и блок управления принимает шаг, на котором находится шаговый двигатель, как начальный (нулевой) |
Функция контроля положения шагового двигателя | Блок управления двигателем контролирует соответствие шага, на котором находится шаговый двигатель, с необходимым шагом |
Работа в режиме Fail-safe (при какой-либо неисправности) | Если в системе управления дозирующим масляным насосом или в самом насосе выявлена неисправность, блок управления двигателем регулирует подачу топлива, угол опережения зажигания, управляет шаговым двигателем, тем самым регулируя мощность двигателя, для предотвращения его повреждения |
Пример работы системы управления дозирующим масляным насосом. 1 - частота вращения эксцентрикового вала, 2 - шаговый двигатель, 3 - датчик-выключатель, 4 - около 500 об/мин, 5 - выше шага 52, 6 - шаг 0 (начальный), 7 - функция возврата к начальным параметрам, 8 - функция контроля положения шагового двигателя, 9 - функция расчета количества подаваемого масла при работе двигателя. |
Бушин Сергей
© 1999 – 2010 Легион-Автодата
Описание процедур ремонта, диагностики и обслуживания автомобиля Mazda RX-8 Вы можете найти в книге "Mazda RX-8, модели с 2003 г. выпуска с двигателем 13B-MSP (1,3 л)" по адресу: http://autodata.ru/catalog/mazda_rx_8/ |
autodata.ru
Изобретение относится к двигателестроению. Роторный двигатель содержит систему управления с блоком управления, систему смазки, систему охлаждения, корпус, коленчатый вал, шестерню внешнего зацепления, камеру сгорания между корпусом и ротором, радиальные уплотнения, патрубки впуска и выхлопа, форсунку впрыска топлива. Система смазки выполнена с маслобаком, маслонасосом и маслопроводами низкого и высокого давления. Во внутренней полости корпуса размещен ротор. Коленчатый вал выполнен с коренными и шатунной шейками, установленными соответственно на коренных и шатунном подшипниках. Шестерня внешнего зацепления установлена жестко на неподвижной втулке, выполненной коаксиально коренным шейкам коленчатого вала. Форсунка впрыска топлива размещена в патрубке впуска. Система смазки дополнительно содержит систему смазки радиальных уплотнений, которая включает каналы внутри коленчатого вала, отверстия в шатунном подшипнике, полость вне шатунного подшипника и полости под радиальными уплотнениями, соединенные радиальными отверстиями между собой. Каналы внутри коленчатого вала соединены с маслопроводом высокого давления. Маслопровод высокого давления в свою очередь соединен с выходом маслонасоса. Вход маслонасоса соединен с нижней частью внутренней полости. Изобретение направлено на увеличение надежности и экономичности двигателя. 2 з.п. ф-лы, 5 ил.
Изобретение относится к двигателестроению, в частности к роторным двигателям внутреннего сгорания, работающим как на легком, так и на тяжелом углеводородном топливе.
Роторные двигатели применяются на многих моделях автомобилей см. табл. 1.
Табл. 1
Некоторые автомобильные роторно-поршневые двигатели | |||||
Фирма | Год | Марка двигателя | Объем,см3/числосекций | Мощность, л.с./при частоте вращения, об/мин | Марка автомобиля |
NSU | 1964 | ККМ 502 | 498/1 | 64/5000 | Spider |
1967 | ККМ 612 | 498/2 | 129/5800 | Ro80 | |
1970 | ККМ 613 | 498/1 | 49/5500 | Citroen М35 | |
1973 | ККМ 622 | 498/2 | 107/- | Citroen GS birotor | |
Daimler-Benz | 1969 | КЕ Serie 69 | 600/3 | 280/7000 | Clll |
Mazda | 1967 | 10А/0810 | 491/2 | 110/7000 | Cosmo L10A |
1970 | 12А | 573/2 | 120/7000 | RX-2 | |
1972 | 12A/R612 | 573/2 | 90/6000 | RX-3 US | |
1974 | 13В | 654/2 | 110/6000 | RX-4, RX-5 | |
1979 | 12А | 573/2 | 100/6000 | RX-7 | |
1986 | 13В | 654/2 | 146/6500 | RX-7 2nd gen. | |
1992 | 13В Twin | 654/2 | 255/6500 | RX-7 Seq. Turbo | |
1999 | 13В Renesis | 654/2 | 280/8000 | RX-Evolv | |
НАМИ | 1968 | НАМИ-093М | 557/1 | 65/6000 | 3M3-966B |
ВАЗ | 1976 | BA3-311 | 654/1 | 65/6000 | ВАЗ-21019 |
1993 | ВАЗ-1185 | 386/1 | 42/6000 | ВАЗ-1111 (Ока) | |
1998 | ВАЗ-415 | 654/2 | 120/6000 | ВАЗ-2109-91, -2115-91, -21099-91 |
Известен роторный двигатель, оборудованный устройством подготовки топливовоздушной смеси (Патент РФ № 2288366, F02B 55/16, 2006.01). Сущность изобретения заключается в том, что двигатель содержит корпус, внутри которого расположен ротор, в тракте впуска смонтированы дроссельная заслонка и топливоподающее устройство (форсунка). Канал впускного тракта образован внутри корпуса роторного двигателя и огибает корпус. Подогрев топливовоздушной смеси осуществляется за счет теплопередачи от нагретых зон статора, улучшая таким образом эффективность процесса смесеобразования.
Недостатком данного роторного двигателя является значительное ухудшение свойств наполнения камеры сгорания топливовоздушной смесью, увеличивается площадь испарения остатков топлива при неработающем двигателе, что приводит к увеличению уровня содержания углеводородов - СН.
Известен также роторно-поршневой двигатель с впрыском топлива (Патент РФ № 2172851, МПК F02B 55/16). Роторно-поршневой двигатель преимущественно с впрыском топлива, содержащий корпус (статор), внутри которого размещен ротор, тракт впуска, в котором смонтирована дроссельная заслонка и форсунка для впрыска топлива, канал впускного тракта образован внутри корпуса.
Недостатком является невозможность обеспечения подготовки топливовоздушной смеси при работе на тяжелом углеводородном топливе (дизельное топливо, керосин) и его запуск.
Известен многотопливный роторный двигатель (патент РФ № 2334883, от 27.09.2008, F02B 55/16), содержащий корпус (статор), внутри которого размещен трехгранный ротор, тракт впуска, в котором смонтирована дроссельная заслонка, в тракте впуска за дроссельной заслонкой установлен плазменный конвертор топлива, снабженный резьбой и прикрепленный к посадочному месту тракта впуска.
Недостатком является невозможность обеспечения высокой скорости и полноты сгорания топливовоздушной смеси.
Известен роторный двигатель по патенту РФ № 2416726, МПК F02B 53/02, опубл. 20.04.2011 г., прототип.
Этот роторный двигатель содержит корпус (статор), внутри которого размещен ротор, в тракте впуска смонтированную дроссельную заслонку, а за дроссельной заслонкой установлен плазменный конвертор топлива, позволяющий создавать топливовоздушную смесь с заданными физико-химическими свойствами для регулирования подготовки рабочей смеси и имеющий разделенную на две полости камеру сгорания, одна из которых, где расположены свечи зажигания, заполняется обогащенной смесью, а другая - обедненной смесью или чистым воздухом, на корпусе роторного двигателя в районе малой оси эпитрохоид установлена сферическая вихревая камера (форкамера), к которой жестко с помощью резьбы крепятся две свечи зажигания и топливная форсунка.
Недостатками прототипа являются низкая надежность двигателя и его малый ресурс до капитального ремонта, обусловленные износом уплотнений, работающих в тяжелых условия. Кроме того, невозможность обеспечения высокой скорости и полноты сгорания топливовоздушной смеси. Не решена проблема глубокого расслоения заряда в основной камере сгорания. Невозможность использования сильно обедненной смеси.
Задачами создания предлагаемого изобретения является увеличение надежности и экономичности двигателя.
Решение указанных задач достигнуто в роторном двигателе, содержащем систему управления с блоком управления, систему смазки с маслобаком, маслонасосом и маслопроводами низкого и высокого давления и систему охлаждения, корпус, во внутренней полости которого размещен ротор, коленчатый вал с коренными и шатунной шейками, установленными соответственно на коренных и шатунном подшипниках, шестерню внешнего зацепления, установленную жестко на неподвижной втулке, выполненной коаксиально коренным шейкам коленчатого вала, камеру сгорания между корпусом и ротором, радиальные уплотнения, патрубки впуска и выхлопа, размещенную в патрубке впуска форсунку впрыска топлива, тем, что согласно изобретению система смазки дополнительно содержит систему смазки радиальных уплотнений, которая включает каналы внутри коленчатого вала, отверстия в шатунном подшипнике, полость вне шатунного подшипника и полости под радиальными уплотнениями, соединенные радиальными отверстиями между собой каналы внутри коленчатого вала соединены с маслопроводом высокого давления, который в свою очередь соединен с выходом маслонасоса, а вход маслонасоса соединен нижней частью внутренней полости.
В системе управления может быть применен датчик частоты вращения коленчатого вала, соединенный электрической связью с блоком управления. В системе управления может быть применен датчик углового положения ротора, соединенный электрической связью с блоком управления.
Сущность изобретения поясняется на фиг. 1...5, где:
- на фиг. 1 приведена схема двигателя, поперечный разрез,
- на фиг. 2 приведена схема двигателя, продольный разрез,
- на фиг. 3 приведено уплотнение,
- на фиг. 4 приведен разрез А-А на фиг. 3 уплотнения,
- на фиг. 5 приведен фрагмент основных каналов системы смазки уплотнений.
Роторный двигатель (фиг. 1 ...5) содержит: корпус (статор) 1, внутри которого расположен трехгранный ротор 2, впускной коллектор 3, к которому пристыкован патрубок впуска 4, в патрубке впуска 4 смонтирована топливная форсунка 5, задвижка 6 с приводом 7. Кроме того, двигатель имеет выпускной коллектор 8, к которому пристыкован выпускной патрубок 9. Двигатель имеет полости сжатия 10 и камеру сгорания 11.
Двигатель имеет коленчатый вал 12, коренные шейки 13 которого установлены на коренных подшипниках 14, которые уплотнены уплотнениями 15, и шатунную шейку 16, установленную в шатунном подшипнике 17, который установлен внутри ротора 2. На торце ротора 2 закреплена шестерня внутреннего зацепления 18. Неподвижная втулка 19 установлена концентрично коленчатому валу 12. На неподвижной втулке 19 жестко закреплена шестерня внешнего зацепления 20. Шестерни 18 и 20 постоянно находятся в зацеплении (фиг. 1).
Внутри корпуса 1 выполнена внутренняя полость 21 (фиг. 3). Внутренняя полость 21 частично заполнена маслом и обеспечивает подачу масла в зону контакта ротора 2 и внутренней поверхности корпуса 1.
В роторе 2 в прямоугольных пазах 22 установлены три уплотнения 23, подпружиненные к статору 1 при помощи пружин 24, установленных в полостях 25. В роторе 2 вне шатунного подшипника 17 выполнена кольцевая полость 26, а в шатунной шейке 16 и шатунном подшипнике 17 - соответственно радиальные отверстия 27 и 28. В коленчатом валу 12 выполнен маслоканал 29. Отверстия 27 и 28 и три отверстия 30 сообщают маслонакал 29 с тремя полостями 25. Полость 25 продольными и поперечным каналами 31 и 32, для подачи смазки выполненными на поверхности уплотнений 23 (фиг. 3 и 4), сообщается через систему подачи масла с внутренней полостью 21. Уплотнения 23 имеют скругленный торец 33. На боковых торцах ротора 2 выполнены боковые уплотнения 34.
Топливная система содержит бак 35, трубопроводы низкого давления 36, топливный насос 37, к выходу которого подсоединен трубопровод высокого давления 38 и далее - форсунка 5.
Двигатель оборудован маслосистемой. К нижней части внутренней полости 21 присоединен маслопровод низкого давления 39, насос 40, к выходу из которого присоединен маслопровод высокого давления 41, и фильтр 42. Выход маслопровода высокого давления 41 соединен с коллектором 43, установленным концентрично коленчатому валу 12 и уплотненному относительно него. Полость 44 коллектора 43 радиальным отверстием 45, выполненным в коленчатом валу 12, сообщается с маслоканалом 29.
Двигатель может быть оборудован системой охлаждения (фиг. 1 и 2), которая включает нижнюю полость 46 и верхнюю полость 47. Нижняя полость 46 присоединена трубопроводом отбора 48, соединенным с насосом 49, к выходу которого присоединен трубопровод 50, к выходу из которого присоединен теплообменник 51, выход которого соединен с верхней полостью 47 для возврата охлажденной воды (антифриза).
Двигатель оборудован системой управления с блоком управления 52, соединенным электрическими связями 53 с насосами 37, 40 и 49. Двигатель оборудован электросвечой 54, которая электрической связью 53 соединена с блоком управления 52.
Кроме того, система управления оборудована датчиком частоты вращения 55 и датчиком углового положения 56 ротора 2, также соединенными электрическими связями 53 с блоком управления 52.
Работа двигателя осуществляется следующим образом.
В процессе работы роторного двигателя (фиг. 1...5) воздух, проходя через впускной патрубок 3, и топливо, подаваемое через первую топливную форсунку 5, из бака 35 по топливному трубопроводу низкого давления 36 насосом 37 и топливопроводу высокого давления 38 подается в воздушный поток и смешивается с ним. Топливовоздушная смесь заданного состава подается в камеру сгорания 11.
Воспламенение смеси искрой электросвечи 54 осуществляется блоком управления 52 за 10÷25° угла поворота коленчатого вала до прихода трехгранного ротора 2 в верхнюю мертвую точку. Давление в камере сгорания 11 быстро повышается, и сгоревшие газы создают крутящий момент на коленчатом валу 12, а потом выбрасываются через выпускной патрубок 9.
В камере сгорания 11 оказываются способными гореть с достаточно высокими скоростями сильно обедненные смеси при коэффициенте избытка воздуха α =1,1÷1,9. Воспламеняются и значительно более бедные смеси.
Маслосистема работает следующим образом. Масло, предварительно заправленное во внутреннюю полость 21, смазывает все внутренние детали двигателя, в том числе подшипники 14 и 17. Для смазки уплотнений 23 часть масла отбирается из внутренней полости 41 по трубопроводу 39 низкого давления и далее насосом 40 подается в трубопровод 37, далее, в фильтр 42 с каналом 29 и далее, в полость 25 и по каналам 31 и 32 на скругленный торец 33 уплотнений 23.
Система охлаждения работает следующим образом.
Одновременно с запуском двигателя включают насос 49, и вода (антифриз) из полости 46 по трубопроводу 50 через насос 49 поступает в теплообменник 51 для охлаждения и далее возвращается в полость 47.
За счет применения электронного блока управления 52 с использованием микропроцессора (на фиг.1...5 микропроцессоры не показаны) можно выбирать оптимальные варианты подачи топливной смеси, соотношения топлива и воздуха, что делает процесс смесеобразования топливовоздушной смеси регулируемым и эффективным на всех режимах работы роторного двигателя независимо от используемого углеводородного топлива.
Применение изобретения позволило:
1. Повысить надежность двигателя и увеличить его ресурс до капитального ремонта за счет улучшения смазки трущихся частей ротора и его уплотнений с корпусом.
2. Технико-экономическая эффективность заключается в существенной экономии топлива на частичных нагрузках при практически таком же его удельном расходе на максимальной мощности, как в аналогичном двигателе с обычным искровым зажиганием. Это достигнуто применением электронной системы управления и датчиков частоты вращения и углового положения ротора.
1. Роторный двигатель, содержащий систему управления с блоком управления, систему смазки с маслобаком, маслонасосом и маслопроводами низкого и высокого давления и систему охлаждения, корпус, во внутренней полости которого размещен ротор, коленчатый вал с коренными и шатунной шейками, установленными соответственно на коренных и шатунном подшипниках, шестерню внешнего зацепления, установленную жестко на неподвижной втулке, выполненной коаксиально коренным шейкам коленчатого вала, камеру сгорания между корпусом и ротором, радиальные уплотнения, патрубки впуска и выхлопа, размещенную в патрубке впуска форсунку впрыска топлива, отличающийся тем, что система смазки дополнительно содержит систему смазки радиальных уплотнений, которая включает каналы внутри коленчатого вала, отверстия в шатунном подшипнике, полость вне шатунного подшипника и полости под радиальными уплотнениями, соединенные радиальными отверстиями между собой, каналы внутри коленчатого вала соединены с маслопроводом высокого давления, который в свою очередь соединен с выходом маслонасоса, а вход маслонасоса соединен с нижней частью внутренней полости.
2. Роторный двигатель по п.1, отличающийся тем, что в системе управления применен датчик частоты вращения коленчатого вала, соединенный электрической связью с блоком управления.
3. Роторный двигатель по п.1 или 2, отличающийся тем, что в системе управления применен датчик углового положения ротора, соединенный электрической связью с блоком управления.
www.findpatent.ru
Изобретение относится к двигателестроению. Роторный двигатель содержит систему управления с блоком управления, систему смазки, систему охлаждения, корпус, коленчатый вал, шестерню внешнего зацепления, камеру сгорания между корпусом и ротором, радиальные уплотнения, патрубки впуска и выхлопа, форсунку впрыска топлива. Система смазки выполнена с маслобаком, маслонасосом и маслопроводами низкого и высокого давления. Во внутренней полости корпуса размещен ротор. Коленчатый вал выполнен с коренными и шатунной шейками, установленными соответственно на коренных и шатунном подшипниках. Шестерня внешнего зацепления установлена жестко на неподвижной втулке, выполненной коаксиально коренным шейкам коленчатого вала. Форсунка впрыска топлива размещена в патрубке впуска. Система смазки дополнительно содержит систему смазки радиальных уплотнений, которая включает каналы внутри коленчатого вала, отверстия в шатунном подшипнике, полость вне шатунного подшипника и полости под радиальными уплотнениями, соединенные радиальными отверстиями между собой. Каналы внутри коленчатого вала соединены с маслопроводом высокого давления. Маслопровод высокого давления в свою очередь соединен с выходом маслонасоса. Вход маслонасоса соединен с нижней частью внутренней полости. Изобретение направлено на увеличение надежности и экономичности двигателя. 2 з.п. ф-лы, 5 ил.
Изобретение относится к двигателестроению, в частности к роторным двигателям внутреннего сгорания, работающим как на легком, так и на тяжелом углеводородном топливе.
Роторные двигатели применяются на многих моделях автомобилей см. табл. 1.
Табл. 1
Некоторые автомобильные роторно-поршневые двигатели | |||||
Фирма | Год | Марка двигателя | Объем,см3/числосекций | Мощность, л.с./при частоте вращения, об/мин | Марка автомобиля |
NSU | 1964 | ККМ 502 | 498/1 | 64/5000 | Spider |
1967 | ККМ 612 | 498/2 | 129/5800 | Ro80 | |
1970 | ККМ 613 | 498/1 | 49/5500 | Citroen М35 | |
1973 | ККМ 622 | 498/2 | 107/- | Citroen GS birotor | |
Daimler-Benz | 1969 | КЕ Serie 69 | 600/3 | 280/7000 | Clll |
Mazda | 1967 | 10А/0810 | 491/2 | 110/7000 | Cosmo L10A |
1970 | 12А | 573/2 | 120/7000 | RX-2 | |
1972 | 12A/R612 | 573/2 | 90/6000 | RX-3 US | |
1974 | 13В | 654/2 | 110/6000 | RX-4, RX-5 | |
1979 | 12А | 573/2 | 100/6000 | RX-7 | |
1986 | 13В | 654/2 | 146/6500 | RX-7 2nd gen. | |
1992 | 13В Twin | 654/2 | 255/6500 | RX-7 Seq. Turbo | |
1999 | 13В Renesis | 654/2 | 280/8000 | RX-Evolv | |
НАМИ | 1968 | НАМИ-093М | 557/1 | 65/6000 | 3M3-966B |
ВАЗ | 1976 | BA3-311 | 654/1 | 65/6000 | ВАЗ-21019 |
1993 | ВАЗ-1185 | 386/1 | 42/6000 | ВАЗ-1111 (Ока) | |
1998 | ВАЗ-415 | 654/2 | 120/6000 | ВАЗ-2109-91, -2115-91, -21099-91 |
Известен роторный двигатель, оборудованный устройством подготовки топливовоздушной смеси (Патент РФ № 2288366, F02B 55/16, 2006.01). Сущность изобретения заключается в том, что двигатель содержит корпус, внутри которого расположен ротор, в тракте впуска смонтированы дроссельная заслонка и топливоподающее устройство (форсунка). Канал впускного тракта образован внутри корпуса роторного двигателя и огибает корпус. Подогрев топливовоздушной смеси осуществляется за счет теплопередачи от нагретых зон статора, улучшая таким образом эффективность процесса смесеобразования.
Недостатком данного роторного двигателя является значительное ухудшение свойств наполнения камеры сгорания топливовоздушной смесью, увеличивается площадь испарения остатков топлива при неработающем двигателе, что приводит к увеличению уровня содержания углеводородов - СН.
Известен также роторно-поршневой двигатель с впрыском топлива (Патент РФ № 2172851, МПК F02B 55/16). Роторно-поршневой двигатель преимущественно с впрыском топлива, содержащий корпус (статор), внутри которого размещен ротор, тракт впуска, в котором смонтирована дроссельная заслонка и форсунка для впрыска топлива, канал впускного тракта образован внутри корпуса.
Недостатком является невозможность обеспечения подготовки топливовоздушной смеси при работе на тяжелом углеводородном топливе (дизельное топливо, керосин) и его запуск.
Известен многотопливный роторный двигатель (патент РФ № 2334883, от 27.09.2008, F02B 55/16), содержащий корпус (статор), внутри которого размещен трехгранный ротор, тракт впуска, в котором смонтирована дроссельная заслонка, в тракте впуска за дроссельной заслонкой установлен плазменный конвертор топлива, снабженный резьбой и прикрепленный к посадочному месту тракта впуска.
Недостатком является невозможность обеспечения высокой скорости и полноты сгорания топливовоздушной смеси.
Известен роторный двигатель по патенту РФ № 2416726, МПК F02B 53/02, опубл. 20.04.2011 г., прототип.
Этот роторный двигатель содержит корпус (статор), внутри которого размещен ротор, в тракте впуска смонтированную дроссельную заслонку, а за дроссельной заслонкой установлен плазменный конвертор топлива, позволяющий создавать топливовоздушную смесь с заданными физико-химическими свойствами для регулирования подготовки рабочей смеси и имеющий разделенную на две полости камеру сгорания, одна из которых, где расположены свечи зажигания, заполняется обогащенной смесью, а другая - обедненной смесью или чистым воздухом, на корпусе роторного двигателя в районе малой оси эпитрохоид установлена сферическая вихревая камера (форкамера), к которой жестко с помощью резьбы крепятся две свечи зажигания и топливная форсунка.
Недостатками прототипа являются низкая надежность двигателя и его малый ресурс до капитального ремонта, обусловленные износом уплотнений, работающих в тяжелых условия. Кроме того, невозможность обеспечения высокой скорости и полноты сгорания топливовоздушной смеси. Не решена проблема глубокого расслоения заряда в основной камере сгорания. Невозможность использования сильно обедненной смеси.
Задачами создания предлагаемого изобретения является увеличение надежности и экономичности двигателя.
Решение указанных задач достигнуто в роторном двигателе, содержащем систему управления с блоком управления, систему смазки с маслобаком, маслонасосом и маслопроводами низкого и высокого давления и систему охлаждения, корпус, во внутренней полости которого размещен ротор, коленчатый вал с коренными и шатунной шейками, установленными соответственно на коренных и шатунном подшипниках, шестерню внешнего зацепления, установленную жестко на неподвижной втулке, выполненной коаксиально коренным шейкам коленчатого вала, камеру сгорания между корпусом и ротором, радиальные уплотнения, патрубки впуска и выхлопа, размещенную в патрубке впуска форсунку впрыска топлива, тем, что согласно изобретению система смазки дополнительно содержит систему смазки радиальных уплотнений, которая включает каналы внутри коленчатого вала, отверстия в шатунном подшипнике, полость вне шатунного подшипника и полости под радиальными уплотнениями, соединенные радиальными отверстиями между собой каналы внутри коленчатого вала соединены с маслопроводом высокого давления, который в свою очередь соединен с выходом маслонасоса, а вход маслонасоса соединен нижней частью внутренней полости.
В системе управления может быть применен датчик частоты вращения коленчатого вала, соединенный электрической связью с блоком управления. В системе управления может быть применен датчик углового положения ротора, соединенный электрической связью с блоком управления.
Сущность изобретения поясняется на фиг. 1...5, где:
- на фиг. 1 приведена схема двигателя, поперечный разрез,
- на фиг. 2 приведена схема двигателя, продольный разрез,
- на фиг. 3 приведено уплотнение,
- на фиг. 4 приведен разрез А-А на фиг. 3 уплотнения,
- на фиг. 5 приведен фрагмент основных каналов системы смазки уплотнений.
Роторный двигатель (фиг. 1 ...5) содержит: корпус (статор) 1, внутри которого расположен трехгранный ротор 2, впускной коллектор 3, к которому пристыкован патрубок впуска 4, в патрубке впуска 4 смонтирована топливная форсунка 5, задвижка 6 с приводом 7. Кроме того, двигатель имеет выпускной коллектор 8, к которому пристыкован выпускной патрубок 9. Двигатель имеет полости сжатия 10 и камеру сгорания 11.
Двигатель имеет коленчатый вал 12, коренные шейки 13 которого установлены на коренных подшипниках 14, которые уплотнены уплотнениями 15, и шатунную шейку 16, установленную в шатунном подшипнике 17, который установлен внутри ротора 2. На торце ротора 2 закреплена шестерня внутреннего зацепления 18. Неподвижная втулка 19 установлена концентрично коленчатому валу 12. На неподвижной втулке 19 жестко закреплена шестерня внешнего зацепления 20. Шестерни 18 и 20 постоянно находятся в зацеплении (фиг. 1).
Внутри корпуса 1 выполнена внутренняя полость 21 (фиг. 3). Внутренняя полость 21 частично заполнена маслом и обеспечивает подачу масла в зону контакта ротора 2 и внутренней поверхности корпуса 1.
В роторе 2 в прямоугольных пазах 22 установлены три уплотнения 23, подпружиненные к статору 1 при помощи пружин 24, установленных в полостях 25. В роторе 2 вне шатунного подшипника 17 выполнена кольцевая полость 26, а в шатунной шейке 16 и шатунном подшипнике 17 - соответственно радиальные отверстия 27 и 28. В коленчатом валу 12 выполнен маслоканал 29. Отверстия 27 и 28 и три отверстия 30 сообщают маслонакал 29 с тремя полостями 25. Полость 25 продольными и поперечным каналами 31 и 32, для подачи смазки выполненными на поверхности уплотнений 23 (фиг. 3 и 4), сообщается через систему подачи масла с внутренней полостью 21. Уплотнения 23 имеют скругленный торец 33. На боковых торцах ротора 2 выполнены боковые уплотнения 34.
Топливная система содержит бак 35, трубопроводы низкого давления 36, топливный насос 37, к выходу которого подсоединен трубопровод высокого давления 38 и далее - форсунка 5.
Двигатель оборудован маслосистемой. К нижней части внутренней полости 21 присоединен маслопровод низкого давления 39, насос 40, к выходу из которого присоединен маслопровод высокого давления 41, и фильтр 42. Выход маслопровода высокого давления 41 соединен с коллектором 43, установленным концентрично коленчатому валу 12 и уплотненному относительно него. Полость 44 коллектора 43 радиальным отверстием 45, выполненным в коленчатом валу 12, сообщается с маслоканалом 29.
Двигатель может быть оборудован системой охлаждения (фиг. 1 и 2), которая включает нижнюю полость 46 и верхнюю полость 47. Нижняя полость 46 присоединена трубопроводом отбора 48, соединенным с насосом 49, к выходу которого присоединен трубопровод 50, к выходу из которого присоединен теплообменник 51, выход которого соединен с верхней полостью 47 для возврата охлажденной воды (антифриза).
Двигатель оборудован системой управления с блоком управления 52, соединенным электрическими связями 53 с насосами 37, 40 и 49. Двигатель оборудован электросвечой 54, которая электрической связью 53 соединена с блоком управления 52.
Кроме того, система управления оборудована датчиком частоты вращения 55 и датчиком углового положения 56 ротора 2, также соединенными электрическими связями 53 с блоком управления 52.
Работа двигателя осуществляется следующим образом.
В процессе работы роторного двигателя (фиг. 1...5) воздух, проходя через впускной патрубок 3, и топливо, подаваемое через первую топливную форсунку 5, из бака 35 по топливному трубопроводу низкого давления 36 насосом 37 и топливопроводу высокого давления 38 подается в воздушный поток и смешивается с ним. Топливовоздушная смесь заданного состава подается в камеру сгорания 11.
Воспламенение смеси искрой электросвечи 54 осуществляется блоком управления 52 за 10÷25° угла поворота коленчатого вала до прихода трехгранного ротора 2 в верхнюю мертвую точку. Давление в камере сгорания 11 быстро повышается, и сгоревшие газы создают крутящий момент на коленчатом валу 12, а потом выбрасываются через выпускной патрубок 9.
В камере сгорания 11 оказываются способными гореть с достаточно высокими скоростями сильно обедненные смеси при коэффициенте избытка воздуха =1,1÷1,9. Воспламеняются и значительно более бедные смеси.
Маслосистема работает следующим образом. Масло, предварительно заправленное во внутреннюю полость 21, смазывает все внутренние детали двигателя, в том числе подшипники 14 и 17. Для смазки уплотнений 23 часть масла отбирается из внутренней полости 41 по трубопроводу 39 низкого давления и далее насосом 40 подается в трубопровод 37, далее, в фильтр 42 с каналом 29 и далее, в полость 25 и по каналам 31 и 32 на скругленный торец 33 уплотнений 23.
Система охлаждения работает следующим образом.
Одновременно с запуском двигателя включают насос 49, и вода (антифриз) из полости 46 по трубопроводу 50 через насос 49 поступает в теплообменник 51 для охлаждения и далее возвращается в полость 47.
За счет применения электронного блока управления 52 с использованием микропроцессора (на фиг.1...5 микропроцессоры не показаны) можно выбирать оптимальные варианты подачи топливной смеси, соотношения топлива и воздуха, что делает процесс смесеобразования топливовоздушной смеси регулируемым и эффективным на всех режимах работы роторного двигателя независимо от используемого углеводородного топлива.
Применение изобретения позволило:
1. Повысить надежность двигателя и увеличить его ресурс до капитального ремонта за счет улучшения смазки трущихся частей ротора и его уплотнений с корпусом.
2. Технико-экономическая эффективность заключается в существенной экономии топлива на частичных нагрузках при практически таком же его удельном расходе на максимальной мощности, как в аналогичном двигателе с обычным искровым зажиганием. Это достигнуто применением электронной системы управления и датчиков частоты вращения и углового положения ротора.
1. Роторный двигатель, содержащий систему управления с блоком управления, систему смазки с маслобаком, маслонасосом и маслопроводами низкого и высокого давления и систему охлаждения, корпус, во внутренней полости которого размещен ротор, коленчатый вал с коренными и шатунной шейками, установленными соответственно на коренных и шатунном подшипниках, шестерню внешнего зацепления, установленную жестко на неподвижной втулке, выполненной коаксиально коренным шейкам коленчатого вала, камеру сгорания между корпусом и ротором, радиальные уплотнения, патрубки впуска и выхлопа, размещенную в патрубке впуска форсунку впрыска топлива, отличающийся тем, что система смазки дополнительно содержит систему смазки радиальных уплотнений, которая включает каналы внутри коленчатого вала, отверстия в шатунном подшипнике, полость вне шатунного подшипника и полости под радиальными уплотнениями, соединенные радиальными отверстиями между собой, каналы внутри коленчатого вала соединены с маслопроводом высокого давления, который в свою очередь соединен с выходом маслонасоса, а вход маслонасоса соединен с нижней частью внутренней полости.
2. Роторный двигатель по п.1, отличающийся тем, что в системе управления применен датчик частоты вращения коленчатого вала, соединенный электрической связью с блоком управления.
3. Роторный двигатель по п.1 или 2, отличающийся тем, что в системе управления применен датчик углового положения ротора, соединенный электрической связью с блоком управления.
www.freepatent.ru
Система смазки двигателя - общая информация
Конструкция системы смазки и схема распределения потоков представлены на иллюстрациях.Конструкция системы смазки 4-цилиндрового двигателя
Усилия затягивания резьбовых соединений, Нм Т1: 5 Т2: 5 Т3: 6.4 Т4: 10 Т5: 44 Т6: 6.4 Т7: 25 Т8: 44 |
Усилия затягивания резьбовых соединений, Нм Т1: 6.4 Т2: 7.8 Т3: 18 Т4: 25 Т5: 34 Т6: 37 Т7: 44 Т8: 90 |
|
|
Для подачи смазки в двигатель используется масляный насос роторного типа, в рабочей камере которого находятся введенные в постоянное зацепление внутренний и наружный роторы. Привод насоса организован напрямую от коленчатого вала двигателя. Роторы и крышка насоса изготовлены из металлокерамического сплава. Вращение приводимого от коленчатого вала внутреннего ротора заставляет проворачиваться наружный ротор, при этом, за счет асимметричного расположения роторов и различия в количестве зубьев, изменяется величина рабочего зазора между ними, что обеспечивает необходимый напор рабочего тела. Двигательное масло всасывается в большое пространство у входного порта насосной камеры и перекачивается роторами к выпускному порту. По мере вращения роторов объем для забора масла сужается, в результате чего сжимаемое масло под давлением выталкивается через из выпускное отверстие. Давление двигательного масла регулируется редукционным клапаном, встроенным в масляный насос и расположенным в непосредственной близости от выходного отверстия. При повышении развиваемого насосом давления до определенного уровня редукционный клапан открывается, и избыточное масло возвращается к впускному порту.
Нагнетаемое насосом двигательное масло подается к подшипникам распределительных и коленчатого валов, а так же к прочим нуждающимся в смазывании и эффективном охлаждении элементам блока, а также в требуемых пропорциях распределяется между компонентами ГРМ головок цилиндров.
Конструкция масляного насоса 4-цилиндрового двигателя
Конструкция полнопоточного масляного фильтра
Отсутствие мгновенного подъема давления двигательного масла непосредственно после включения зажигания приводит к тому, что диафрагма датчика-выключателя, отжимаемая пружиной (с усилием, эквивалентным давлению в 0.15 кГс/см 2 ) по направлению к блоку цилиндров, замыкает контакты цепи встроенной в приборный щиток контрольной лампы.
После того как давление поднимается до заданного значения, диафрагма смещается, преодолевая сопротивление пружины, и цепь контрольной лампы размыкается.
Конструкция датчика-выключателя давления двигательного масла
В поддоне картера, ближе к блоку цилиндров, предусмотрена дефлекторная пластина, предназначенная для стабилизации уровня двигательного масла и усиления поддона картера.
Конструкция поддона картера 4-цилиндрового двигателя
Опорный кронштейн маслозаборника крепится к верхней секции поддона картера. Герметизация сочленения маслозаборной трубки с масляным насосом обеспечивается за счет применения уплотнительного кольца. Оборудованный сетчатым фильтром маслоприемник расположен в центре задней части поддона картера, где колебания уровня масла минимальны.
Конструкция поддона картера 6-цилиндрового двигателя
carmanz.com
1. Роторный двигатель внешнего нагрева, содержащий систему управления с блоком управления, систему смазки и систему охлаждения, корпус, во внутренней полости которого размещен ротор, на торце которого выполнен цилиндрический уступ, к которому прикреплена шестерня внутреннего зацепления, коленчатый вал с коренными и шатунной шейками, установленными соответственно на коренных и шатунном подшипниках, шестерню внешнего зацепления, установленную жестко на неподвижной втулке, выполненной на одном из торцов корпуса, коаксиально коренным шейкам коленчатого вала, камеру нагрева между корпусом и ротором, радиальные уплотнения, патрубки впуска и выхлопа, отличающийся тем, что на втором торце ротора также выполнен цилиндрический уступ, к которому прикреплена вторая шестерня внутреннего зацепления, на втором торце корпуса также выполнена неподвижная втулка, на которой установлена вторая шестерня внешнего зацепления, при этом одна из неподвижных втулок выполнена с закрытым торцом с образованием полости для подачи масла, боковая стенка корпуса выполнена пустотелой, содержащей между внутренней и внешней стенками полости нагрева и охлаждения, соединенные соответственно с входными и выходными трубопроводами систем нагрева и охлаждения.
2. Роторный двигатель внешнего нагрева по п.1, отличающийся тем, что на внутренней стенке корпуса выполнены ребра.
3. Роторный двигатель внешнего нагрева по п.1 или 2, отличающийся тем, система нагрева содержит трубопроводы низкого и высокого давления, насос и теплообменник нагрева, около которого установлен нагреватель.
4. Роторный двигатель внешнего нагрева по п.1 или 2, отличающийся тем, что система охлаждения содержит трубопроводы низкого и высокого давления, насос и теплообменник охлаждения, к которому присоединены подводящий и отводящий трубопроводы.
5. Система смазки роторного двигателя, которая включает замкнутый контур циркуляции, содержащий внутреннюю полость корпуса, маслопроводы низкого и высокого давления с насосом и фильтром, две системы подачи масла, систему подачи масла в подшипники и к уплотнениям и систему подачи масла к уплотнениям и каналы внутри коленчатого вала, отверстия в шатунном подшипнике, полость вне шатунного подшипника и полости под радиальными уплотнениями, соединенные радиальными отверстиями между собой, каналы внутри коленчатого вала соединены через полость подачи масла с маслопроводом высокого давления, который в свою очередь соединен с выходом маслонасоса, отличающаяся тем, что система подачи масла к уплотнениям выполнена в виде двух негерметичных полостей между торцами ротора и шестернями внутреннего зацепления и дополнительными накалами, сообщающими эти полости с полостями в которых установлены уплотнения.
www.findpatent.ru
МПК F02B 55/16,
РОТОРНЫЙ ДВИГАТЕЛЬ ВНЕШНЕГО НАГРЕВА
И СИСТЕМА СМАЗКИ РОТОРНОГО ДВИГАТЕЛЯ
Группа изобретений относится к двигателестроению, в частности к роторным двигателям внешнего сгорания. Может найти применение на кораблях, подводных лодках, в том числе на атомных подводных лодках – АПЛ и других объектах предпочтительно находящихся на акватории или недалеко от водных ресурсов. Известен роторный двигатель, оборудованный устройством подготовки топливовоздушной смеси (Патент РФ № 2288366, F02B 55/16, 2006.01.). Сущность изобретения заключается в том, что двигатель содержит корпус, внутри которого расположен ротор, в тракте впуска смонтированы дроссельная заслонка и топливоподающее устройство (форсунка). Канал впускного тракта образован внутри корпуса роторного двигателя и огибает корпус. Подогрев топливовоздушной смеси осуществляется за счет теплопередачи от нагретых зон статора, улучшая таким образом эффективность процесса смесеобразования.
Недостатком данного роторного двигателя является значительное ухудшение свойств наполнения камеры сгорания топливовоздушной смесью, увеличивается площадь испарения остатков топлива при неработающем двигателе, что приводит к увеличению уровня СН.
Известен также роторно-поршневой двигатель с впрыском топлива (Патент РФ № 2172851, МПК F02B 55/16). Роторно-поршневой двигатель преимущественно с впрыском топлива содержащий корпус (статор), внутри которого размещен ротор, тракт впуска, в котором смонтирована дроссельная заслонка и форсунка для впрыска топлива, канал впускного тракта образован внутри корпуса.
Недостатком прототипа является невозможность обеспечения подготовки топливовоздушной смеси при работе на тяжелом углеводородном топливе (дизельное топливо, керосин) и его запуск.
Известен многотопливный роторный двигатель (патент РФ № 2334883, от 27.09.2008, F02B 55/16), содержащий корпус (статор), внутри которого размещен трехгранный ротор, тракт впуска, в котором смонтирована дроссельная заслонка, в тракте впуска за дроссельной заслонкой установлен плазменный конвертор топлива, снабженный резьбой и прикрепленный к посадочному месту тракта впуска.
Недостатком невозможность обеспечения высокой скорости и полноты сгорания топливовоздушной смеси.
Известен роторный двигатель по патенту РФ № 2416726, МПК F02B 55/16, опубл. 28.04.2011 г..
Этот роторный двигатель содержит корпус (статор), внутри которого размещен ротор, в тракте впуска смонтированную дроссельную заслонку, а за дроссельной заслонкой установлен плазменный конвертор топлива, позволяющий создавать топливовоздушную смесь с заданными физико-химическими свойствами для регулирования подготовки рабочей смеси и имеющий разделенную на две полости камеру сгорания, одна из которых, где расположены свечи зажигания, заполняется обогащенной смесью, а другая - обедненной смесью или чистым воздухом, на корпусе роторного двигателя в районе малой оси эпитрохоид установлена сферическая вихревая камера (форкамера), к которой жестко с помощью резьбы крепятся две свечи зажигания и топливная форсунка.
Известен роторный двигатель внешнего сгорания патент РФ № 2208176. В этом двигателе все процессы происходят в одной секции, разделенной пластинами на части. В результате холодный газ в части «в» нагревается от соседних частей, через общие разделяющие пластины и корпус двигателя. Что снижает КПД двигателя. Известен патент РФ N 2258824. В этом двигателе также горячая и холодная камеры расположены в одном корпусе. Их разделяет статор. Поэтому горячий газ будет охлаждаться, а холодный нагреваться через общие стенки корпуса и ротор. Что также снизит КПД двигателя.
Известно описание роторного двигателя внешнего сгорания в журнале «Наука и жизнь» № 3 за 2007 г.
Основная идея данного решения состоит в том, что на общем валу установлены два рабочих цилиндра разной длины с эксцентриковыми роторами и подпружиненными разделительными пластинами. Полость нагнетания (условно - сжатия) малого цилиндра соединена с полостью расширения большого цилиндра через канавки в разделительных пластинах, трубопровод, теплообменник-регенератор и нагреватель, а полость расширения малого цилиндра - с полостью нагнетания большого цилиндра через регенератор и холодильник.
Двигатель работает следующим образом. В каждый момент времени из малого цилиндра в ветвь высокого давления поступает некоторый объем газа. Чтобы заполнить полость нагнетания большого цилиндра и при этом сохранить давление, газ нагревают в регенераторе и нагревателе; его объем увеличивается, и давление остается постоянным. То же, но "с обратным знаком" происходит в ветви низкого давления. Из-за разницы в площадях поверхности роторов возникает результирующая сила. Эта сила вращает вал с роторами, и рабочее тело непрерывно циркулирует, последовательно проходя через всю систему. Полезный рабочий объем двигателя равен разности объемов двух цилиндров.
В этом двигателе отсутствует клапан в ветви высокого давления, что не позволяет повысить давление холодного газа перед его подачей в регенератор и нагреватель. Также отсутствие клапана позволяет части горячего газа поступать обратно в секцию короткого ротора. Все это снижает КПД двигателя.
Известен роторный двигатель по патенту РФ на изобретение № 2451811, МПК F02G1/043, опубл. 27.05.2012 г., прототип двигателя.
Этот роторный двигатель внешнего сгорания, состоит из ротора, лопаток, не менее двух корпусов, впускного отверстия, впускного окна камеры сгорания, впускного клапана, камеры сгорания, свечи зажигания, выпускного клапана, выпускного окна, выпускного отверстия, уплотняющих элементов, отличающийся тем, что состоит из двух секций: горячей и холодной, роторы которых жестко закреплены на одном валу, причем ротор горячей секции длиннее, чем ротор холодной секции, а рабочая площадь лопатки и объем полости больше у горячей секции; полости горячей и холодной секций соединены между собой посредством двух труб, одна из которых проходит через полость охлаждения, другая через полость нагревания, и обе пересекают полость регенерации, на пути от которой к холодной секции установлен клапан.
Недостаткам прототипа является низкая надежность двигателя и его малый ресурс до капитального ремонта из-за сложности конструкции.
За прототип системы смазки принята система смазки по патенту РФ № 2286461, МПК F01C1/10, опубл. 27.10.2005 г.
Задачами создания предлагаемого изобретения является увеличение надежности двигателя и улучшение его экономичности.
Решение указанных задач достигнуто в роторном двигателе внешнего нагрева, содержащем систему управления с блоком управления и систему охлаждения, корпус во внутренней полости которого размещен ротор, коленчатый вал с коренными и шатунной шейками, установленными соответственно на коренных и шатунном подшипниках, шестерню внешнего зацепления, установленную жестко на неподвижной втулке выполненной коаксиально коренным шейкам коленчатого вала, камеру сгорания между корпусом и ротором, радиальные уплотнения, патрубки впуска и выхлопа, тем, что согласно изобретению корпус выполнен пустотелым, содержащим полости нагрева и охлаждения, соединенные соответственно с входными и выходными трубопроводами систем нагрева и охлаждения. Двигатель может содержать систему смазки,. которая включает каналы внутри коленчатого вала, отверстия в шатунном подшипнике, полость вне шатунного подшипника и полости под радиальными уплотнениями, соединенные радиальными отверстиями между собой, каналы внутри коленчатого вала соединены с маслопроводом высокого давления, который в свою очередь соединен с выходом маслонасоса, а вход маслонасоса соединен нижней частью внутренней полости. Система нагрева может содержать насос и теплообменник нагрева, около которого установлен нагреватель. Система охлаждения может содержать насос и теплообменник охлаждения
Сущность изобретения поясняется на фиг. 1…5, где:
- на фиг. 1 приведена схема двигателя, поперечный разрез,
- на фиг. 2 приведена схема двигателя, продольный разрез,
- на фиг. 3 приведено уплотнение,
- на фиг. 4 приведено разрез А-А уплотнения,
- на фиг. 5 приведен фрагмент основных каналов системы смазки уплотнений.,
Роторный двигатель (фиг. 1 …5) содержит: корпус (статор) 1, внутри которого расположен ротор 2, впускной коллектор 3. Кроме того, двигатель имеет выпускной коллектор 4. Между впускным и выпускным коллекторами 3 и 4 установлен трубопровод перепуска 5. Двигатель имеет полости сжатия 6 и камеру расширения 7.
Корпус 1 содержит две торцовые стенки 8 и 9 и боковую стенку 10. Ротор 2 содержит два торца первый - 11 и второй -12 и боковую фигурную стенку 13 трехгранной формы.
Двигатель имеет коленчатый вал 14, коренные шейки 15 которого установлены на коренных подшипниках 16 и уплотненных уплотнениями 17, и шатунную шейку 18 установленную в шатунном подшипнике 19, который установлен внутри ротора 2. На первом торце 11 ротора 2 выполнен цилиндрический выступ 20, на котором закреплена первая шестерня внутреннего зацепления 21. Первая неподвижная втулка 22 установлена торцовой стенке 8 корпуса 1 концентрично коленчатому валу 14. На первой неподвижной втулке 22 жестко закреплена первая шестерня внешнего зацепления 23. Шестерни 21 и 23 постоянно находятся в зацеплении.(фиг. 1).
Кроме того, на втором торце 12 ротора 2 выполнен цилиндрический выступ 24, на котором закреплена вторая шестерня внутреннего зацепления 25. Вторая неподвижная втулка 26 установлена торцовой стенке 9 корпуса 1 концентрично коленчатому валу 14. На второй неподвижной втулке 26 жестко закреплена вторая шестерня внешнего зацепления 27. Шестерни 25 и 27 также постоянно находятся в зацеплении.(фиг. 1).
Наличие двух пар шестерен 21 и 23, а также 25 и 27 уменьшает нагрузку на них в 2 раза и кроме того, равномерно распределяют радиальные динамические нагрузки на коренные подшипники 16. Особенно это полезно для мощных двигателей и двигателей, длина которых превышает поперечные размеры.
Внутри корпуса 1 выполнена внутренняя полость 28 (фиг. 3). Внутренняя полость 28 частично заполнена маслом и обеспечивает подачу масла в зону контакта ротора 2 и внутренней поверхности боковой фигурной стенки 13 корпуса 1. Кроме того, внутри шестерен внутреннего зацепления 21 и 25 выполнены две негерметичные полость 29, которые сообщается с внутренней полостью 28 и служат для дополнительной смазки радиальных уплотнений 30, установленных в прямоугольных пазах 31.
В роторе 2 в прямоугольных пазах 31 установлены три уплотнения 30 подпружиненные к корпусу 1 при помощи пружин 32, установленных в полостях 33. В роторе 2 вне шатунного подшипника 13 выполнена кольцевая полость 34, а в шатунной шейке 14 и шатунном подшипнике 13 – соответственно радиальные отверстия 35 и 36. В коленчатом валу 14 выполнен маслоканал 37. Отверстия 35 и 36 и три отверстия 38 сообщают маслоканал 37 с тремя полостями 33. Полости 33 продольными и поперечным каналами 39 и 40 для подачи смазки выполненными на поверхности радиальных уплотнений 30 (фиг. 3 и 4) сообщается через систему подачи масла с внутренней полостью 28. Радиальные уплотнения 30 имеют скругленный торец 41. На боковых торцах ротора 2 выполнены боковые уплотнения 42.
Двигатель оборудован маслосистемой содержащей три системы: системы смазки; основную (для смазки подшипников и уплотнений) и две дополнительные (системы дополнительной смазки радиальных уплотнений).
К нижней части внутренней полости 28 присоединен маслопровод низкого давления 43, насос 44, к выходу из которого присоединен маслопровод высокого давления 45 и фильтр 46. Выход маслопровода высокого давления 45 соединен с полостью 47, образованной первой неподвижной втулкой 22 и глухим ее торцом 48. Полость 47 с маслоканалом 37 выполненным в коленчатом валу 14.
Полости 39 сообщаются с прямоугольными пазами 31 при помощи отверстий 49.
Дополнительные системы смазки радиальных уплотнений 30 содержат присоединенные за фильтром 46 два дополнительных трубопровода 50 и две форсунки 51 в торцовых стенках 8 и 9 корпуса 1 для подачи масла в две негерметичные полости 29.
Двигатель имеет системы нагрева и охлаждения.
Для этого боковая стенка 10 корпуса 1 выполнена пустотелой с полостями нагрева и охлаждения соответственно 52 и 53 между внутренней стенкой 54 и наружной 55. На внутренней стенке 54 могут быть выполнены ребра 56 для интенсификации охлаждения и нагрева рабочего тела.
Система нагрева содержит (фиг. 1 и 2), по меньшей мере, одну полость нагрева 52 в корпусе 1 к которой с одной торцовой стенки 9 присоединен трубопровод отбора 57 с насосом 58, теплообменник нагрева 59 к выходу которого присоединен трубопровод подачи 60, который соединен с полостью нагрева 52 на второй торцовой стенке 8 корпуса 1.
Система охлаждения содержит, по меньшей мере, одну полость охлаждения 53 внутри корпуса 1 к которой присоединен трубопровод отбора 61 содержащий насос 62, к выходу которого присоединен теплообменник охлаждения 63, к выходу которого присоединен трубопровод подачи 64, выход которого присоединен к полости охлаждения 53 в другой торцовой стенке 9 корпуса 1.
Насосы 58 и 63 выполнены с переменной регулируемой производительностью, что достигнуто соединением их с приводами 65 и 66 это позволяет настраивать наиболее оптимальный по экономичности режим работы двигателя. Двигатель оборудован системой управления с блоком управления 67, соединенным электрическими связями 68 с приводами 65 и 66 насосов 58 и 63.
Кроме того, система управления может быть оборудована датчиками температуры нагревающей и охлаждающей среды 69 и 70, соединенными электрическими связями 68 с блоком управления 67.
Двигатель оборудован нагревателем 71 и регулятором режима 72, который соединен с нагревателем 71. (фиг. 2) и электрической связью 68 с блоком управления 67. В качестве нагревателя 71 может быть использованы топливные форсунки, ядерный реактор и т. д.
При использовании изобретения на кораблях или атомных подводных лодках в качестве охлаждающей среды для теплообменника охлаждения 63 (фиг. 2) может использоваться забортная вода которпя подается по заборному трубопроводу 73 и сбрасывается по трубопроводу 74. Это повысит КПД двигателя и позволит использовать бесплатный неограниченный по объему хладоресурс например, морской воды.
Работа двигателя осуществляется следующим образом.
В процессе работы роторного двигателя (фиг. 1…5) циркулирующая среда, проходя через впускной патрубок 3, подается в полость сжатия 6, потом в камеру расширения 7 и нагревается нагревающей средой циркулирующей в каналах нагрева 52. Циркулирующая среда нагревается в нагревающем теплообменнике 59 и насосом 58 по подающему трубопроводу 60 подается в полость нагрева 52.
В нижнем положении рабочей камеры 7 нагретая циркулирующая среда действует на ротор 2, создавая тем самым крутящий момент.
Радиальные уплотнения 30 осуществляют взаимную герметизацию полости 6 и камеры расширения 7.
Работа системы охлаждения осуществляется следующим образом.
Циркулирующая среда отбирается из полостей охлаждения 53 и по трубопроводу 61, насосом 62 подается в теплообменник охлаждения 63, где охлаждается и далее по трубопроводу 64 возвращается в полости охлаждения. 53
Маслосистема работает следующим образом. Масло, предварительно заправленное во внутреннюю полость 28 смазывает все внутренние детали двигателя, в том числе подшипники 16 и 19. Для смазки радиальных родшипников 16,, 18 и трех уплотнений 30 часть масла отбирается из внутренней полости 28 по трубопроводу низкого давления 43 и далее насосом 44 подается в трубопровод 45, далее фильтр 46 потом в полость 47. Через отверстия 48 масло поступает в маслоканал 38 и далее в полость 33 и по трем отверстиям 38 в полости 32. Далее по каналам 39 и 40 на скругленный торец 41 уплотнений 30 (фиг. 3…5)..
Честь числа по двум дополнительным маслопроводам 50 подается в через форсунки 51 в негерметичные полости 29 с обеих сторон двигателя. Используя центробежные силы, масло из негерметичных полостей 29 по отверстиям 49 подается в прямоугольные пазы 31 для смазки радиальных уплотнений 30 на их концах, что особенно важно при большой длине радиальных уплотнений. 30.
Выход их строя одной из систем смазки не приведет к аварии или нарушению работы двигателя так как например при засорении отверстий 49 масло будет поступать на концы радиальных уплотнений по канавкам 40 (фиг.3).
За счет применения электронного блока управления 67 с использованием микропроцессора (на фиг.1…5 микропроцессоры не показаны) и датчиков температуры 60 и 70 можно автоматически выбрать оптимальные (по экономичности) варианты режима работы двигателя за счет воздействия через приводы 65 и 66 на насосы 58 и 62 при постоянном режиме работы нагревателя 71..
Регулирование режима работы осуществляют регулятором режима 72 воздействыя на нагреватель 71 (фиг. 2).
Применение изобретения позволило:
1. Повысить надежность двигателя и увеличить его ресурс до капитального ремонта за счет улучшения смазки трущихся частей ротора и особенно его радиальных уплотнений. Радиальные уплотнения имеют три системы смазки: основную и две дополнительные.
Отказ одной системы смазки или даже двух никак не влияет на его работоспособность.
2. Технико-экономическая эффективность заключается в существенной экономии топлива на частичных нагрузках при практически таком же его удельном расходе на максимальной мощности, как в аналогичном двигателе с обычным искровым зажиганием.
Это достигнуто;
- применением системы охлаждения, содержащей три системы смазки. Нарушения в работе одной системы смазки не приведет к аварийному исходу.
- применением насосов с регулируемой производительностью,
- применением электронной системы управления с блоком управления и воздействием с блока на приводы насосов для повышения КПД до максимума,
- применением датчиков температуры охлаждающей и нагревающей среды, которые контролируют наиболее важные характеристики двигателя, фактически в реальном режиме времени определяющие КПД цикла Стирлинга и КПД двигателя.
Автор-заявитель: Болотин Н. Б.
12. 11.2012 г.
nikobolotin12.narod.ru