Cтраница 1
Тороидальные двигатели с граммовской обмоткой обеспечивают выполнение в малых габаритах многополюсной системы и дают возможность создать асинхронные высокочастотные низкоскоростные двигатели. [1]
Тороидальные двигатели имеют малые потоки. По этой причине они имеют большое число витков в фазе по сравнению с двигателями нормального исполнения. При мощностях, меньших 1 вт, и напряжениях питания 127, 220 в намоточный провод имеет диаметр меньше 0 1 мм. Мотать обмотку тонким проводом трудно. По этой причине выполнять тороидальные двигатели мощностью Pz0j вт на напряжение 127, 220 в целесообразно только для специальных целей. [2]
Гистерезисный тороидальный двигатель с Р4 вт, 2р4, f 50 гц, t / 220 в выполнен по схеме рис. 1 - 4 и имеет синусную обмотку. Статор макетного образца навит из стали Э320 толщиной 0 2 мм. Ротор набран из листов толщиной 0 7 мм. После механической обработки пакет ротора имеет толщину 3 4 мм вместо 3 7 мм по расчету. Воздушный зазор между ротором и статором равен 0 33 мм вместо 0 25 мм по расчету. Увеличение зазора связано с тем, что обычные радиальные подшипники, примененные в двигателе, при нагрузке создают перекос, и при расчетном зазоре ротор залипает. [4]
Гистерезисные тороидальные двигатели наряду с другими двигателями с успехом можно использовать в механизмах, где требуется двигатель небольшой мощности, малой массы и стоимости: в программных механизмах, бытовых магнитофонах и радиолах, в системе единого времени, в реле времени. [5]
Рассматриваемые тороидальные двигатели с постоянными магнитами предназначены для приборов, в которых они нагружены моментом трения. Этот момент сопротивления ( обычно в опорных камнях) очень мал, мала и инерционность ротора. Поэтому такие двигатели пускаются без специальных устройств. [6]
Недостатком торцевых тороидальных двигателей является значительный момент инерции, препятствующий широкому использованию тороидальных асинхронных двигателей в малоинерционных системах автоматики. [7]
Поскольку обмотка тороидального двигателя по принципу выполнения однослойная без укорочения, то при такой обмотке кривая поля в воздушном зазоре имеет значительную третью гармонику, которая особенно нежелательна в двухфазной машине. Для уничтожения этой гармоники целесообразно расположить проводники по пазам неравномерно. [8]
Каждый тип тороидального двигателя имеет свои особенности расчета, речь о которых будет идти ниже. Но независимо от типа и конструктивного варианта общим для всех них является наличие лобовых частей, расположенных по образующим внутренней и наружной поверхностей тороида-статора. Сопротивление рассеяния тороидальной обмотки определяется потоками рассеяния с наружной и внутренней сторон тороида, с ребер торои-да, а при обычном исполнении двигателя и с торцевых поверхностей тороида. [9]
Ввиду особенности тороидального двигателя с торцевыми дисковыми роторами ( наличия двух симметричных роторов на валу по торцам тороида) целесообразно расчет вести на половинную, мощность модели. [10]
Предложенная методика расчетов тороидальных двигателей подходит для постановки их решения на цифровых вычислительных машинах. [11]
Все рассмотренные исполнения тороидальных двигателей имеют простую конструкцию и технологию изготовления. Для сокращения вспомогательного времени на механическую обработку деталей целесообразно использовать литье под давлением, штамповку, пресс-формы. Путем штамповки получаются роторы-зубчатки для двигателей с постоянными магнитами, роторы-диски для асинхронного и гистерезисного двигателей. Значительно упрощает изготовление постоянных магнитов феррито-вых тороидов с пазами использование ультразвука и пресс-форм при изготовлении их из спецпорошков. [12]
Так же как и асинхронные тороидальные двигатели с двусторонним расположением дисков-роторов, гистере-зисные двигатели целесообразно считать на половинную мощность - мощность, приходящуюся на один диск ротора. При этом некоторые коэффициенты, определяющие оптимальное проектирование, будут иметь выражения, отличные от выражений для двигателей нормального исполнения. Эти отличия определяются особенностями геометрии тороидальной конструкции двигателя. Вопрос оптимального проектирования сводится к определению главных размеров тороида и ротора, оптимальной индукции в воздушном зазоре машины и в роторе. [13]
Здесь рассмотрен подход к расчету тороидальных двигателей с постоянными магнитами, конструкции которых рассмотрены в гл. [14]
Страницы: 1 2 3
www.ngpedia.ru
Изобретение относится к двигателестроению. Роторный двигатель тороидального типа содержит неподвижный корпус с впускными и выпускными клапанами, поршни и свечи зажигания. Рабочий цилиндр имеет тороидальную конструкцию, в которой расположены два дугообразных поршня, имеющих компрессионные кольца. Первый поршень жестко закреплен в корпусе двигателя. Второй поршень жестко крепится на роторе. Вал ротора установлен в подшипниках корпуса. Слева и справа на валу установлены обгонные муфты с противоположным моментом срабатывания. На обоймах обгонных муфт закреплены шестерни, контактирующие с зубьями левого и правого редукторов. Редукторы соединены с выходным валом. Левый редуктор имеет дополнительную шестерню для преобразования прямого вращения в обратное в отличие от правого редуктора. Внутри корпуса вставлены уплотнительные кольца, прилегающие к боковым поверхностям ротора и компрессионным кольцам поршней. Техническим результатом является повышение долговечности, мощности и кпд двигателя. 2 ил.
Изобретение относится к двигателестроению, в частности к роторным двигателям внутреннего сгорания.
Известен роторный двигатель внутреннего сгорания, включающий корпус с профилированной рабочей поверхностью и торцевыми крышками, ротор, установленный на валу и снабженный качающимися поршнями, контактирующими с профилированной рабочей поверхностью корпуса (см. а.с. СССР 1017803, МПК3 F02B 53/00, опубл. 15.05.1983 г.).
Недостатком такого двигателя является отсутствие надежного и постоянного контакта уплотнений между гранями поршней и профилированной поверхностью корпуса, что снижает мощность двигателя.
Из известных наиболее близким к заявляемому техническому решению является роторный двигатель внутреннего сгорания, включающий неподвижный тороидальный корпус, в котором расположен впускной канал введения топлива и воздуха в полость и напорный канал для отвода продуктов сгорания от двигателя, включая силовую тороидальную полость, в которой размещены два вращающихся диска с парными жесткозакрепленными поршнями. Каждый диск имеет выходной вал, на котором закреплена силовая шестерня, причем вал первого диска вставлен в полость вала второго диска. Поочередное вращение дисков контролируется подпружиненными стержнями (патент US 6341590 A (BARRERA RENE MANUEL), F02B 53/00, опубл. 29.01.2002 г.).
Недостатками прототипа являются сложность в изготовлении, большие нагрузки со стороны поршней на внутреннюю криволинейную поверхность корпуса в результате действия центробежных сил, возникающих при вращении ротора, наличие значительных сил трения поршней с каркасом ротора, которые ведут к снижению ресурса и к.п.д. двигателя,
Предлагаемое изобретение направлено на повышение долговечности работы двигателя за счет устранений действия центробежных сил поршней на внутреннюю криволинейную поверхность корпуса, улучшение качества уплотнений камер переменного объема, повышение мощности и кпд двигателя.
Решение технической задачи достигается тем, что в роторном двигателе, состоящем из неподвижного корпуса с внутренней тороидальной криволинейной замкнутой поверхностью с впускными и выпускными клапанами, установлен дискообразный ротор и два дугообразных поршня с компрессионными кольцами, один из которых крепится к корпусу двигателя, а второй к дискообразному ротору, вал которого установлен в обгонные муфты, с противоположным моментом срабатывания на обоймах валах.
Введение двух симметричных обгонных муфт позволяет последовательно поочередно передавать крутящий момент с вала дискообразного ротора на выходной вал двигателя. Схема устройства двигателя поясняется чертежами, где на фиг.1 показан разрез двигателя; на фиг.2 - правый и левый редукторы.
Роторный двигатель тороидального типа состоит из корпуса 1 с впускными 6 и выпускными 8 клапанами, поршни 2, 4 и свечи зажигания 7, рабочий цилиндр имеет тороидальную конструкцию, в которой расположены два дугообразных поршня 2, 4, имеющие компрессионные кольца 3, 5, причем первый поршень жестко закреплен в корпусе двигателя, а второй жестко крепится на роторе 11, вал которого установлен в подшипниках корпуса 14, причем слева и справа на валу установлены обгонные муфты 12, 16, на обоймах которых закреплены шестерни 13, 15, контактирующие с зубьями левого 20 и правого 18 редукторов, соединенных с выходным валом 17, причем левый редуктор 20 имеет дополнительную шестерню 19 для преобразования прямого вращения в обратное в отличие от правого редуктора, кроме того, внутри корпуса вставлены уплотнительные кольца 9, прилегающие к боковым поверхностям ротора и компрессионным кольцам поршней.
Работает устройство следующим образом.
Прямой ход. Сгорание. При сгорании топливовоздушной смеси в правой части корпуса 1 давление газа действует на дугообразный поршень 5 ротора 11, создавая крутящий момент на валу ротора 11, при этом застопаривается правая обгонная муфта 12 и крутящий момент через правый редуктор 18 передается на выходной вал 17. Двигаясь внутри корпуса 1, поршень 5 ротора обратной поверхностью сжимает топливовоздушную смесь в левой части корпуса, которая поджигается свечой накаливания 7.
Обратный ход. При сгорании поршень 5 двигается в обратном направлении. В этом случае вращающий момент застопаривает левую обгонную муфту 16 и растопаривает правую 12. При этом открывается выпускной клапан правой части корпуса 1 и происходит выпуск отработавших газов. Вращающий момент передается с вала 10 через обгонную муфту 16, шестерню 15 на левый редуктор 20, имеющий дополнительную шестерню 19, поэтому выходной вал 17 вращается в ту же сторону как в первом случае.
Прямой ход. Всасывание. При движении поршня 5 с правой части корпуса в левую происходит разрежение в запоршневом пространстве при открытом впускном клапане 6. Происходит наполнение правой части рабочего цилиндра. В то же время в левой части открыт выпускной клапан 8. При этом происходит выпуск отработавших газов.
Обратный ход. Поршень 5 двигается в правую часть корпуса. При этом в правой части сжимается топливовоздушная смесь при закрытых клапанах 6, 8, а в левой части происходит наполнение рабочего цилиндра и впускной клапан открыт.
Такие циклы, включающие в работу то левый, то правый редукторы, повторяются в процессе эксплуатации двигателя, обеспечивая постоянное вращение выходного вала.
Обтюрация поршней обеспечивается уплотнительными кольцами 9, надетыми на них, уплотнительными компрессионными кольцами 3, 5.
Подобная конструкция позволяет повысить силовую нагрузку на поршень на протяжении всего хода поршня, повысить мощность и кпд двигателя.
Роторный двигатель тороидального типа, содержащий неподвижный корпус с впускными и выпускными клапанами, поршни и свечи зажигания, отличающийся тем, что рабочий цилиндр имеет тороидальную конструкцию, в которой расположены два дугообразных поршня, имеющих компрессионные кольца, причем первый поршень жестко закреплен в корпусе двигателя, а второй жестко крепится на роторе, вал которого установлен в подшипниках корпуса, причем слева и справа на валу установлены обгонные муфты с противоположным моментом срабатывания, на обоймах которых закреплены шестерни, контактирующие с зубьями левого и правого редукторов, соединенных с выходным валом, причем левый редуктор имеет дополнительную шестерню для преобразования прямого вращения в обратное в отличие от правого редуктора, кроме того, внутри корпуса вставлены уплотнительные кольца, прилегающие к боковым поверхностям ротора и компрессионным кольцам поршней.
www.findpatent.ru
Практически все в нашей жизни зависит от электричества, но существуют определенные технологии, которые позволяют избавиться от локальной проводной энергии. Предлагаем рассмотреть, как сделать магнитный двигатель своими руками, его принцип работы, схема и устройство.
Существует понятие вечных двигателей первого порядка и второго. Первый порядок – это устройства, которые производят энергию сами по себе, из воздуха, второй тип – это двигатели, которым необходимо получать энергию, это может быть ветер, солнечные лучи, вода и т.д., и уже её они преобразовывают в электричество. Согласно первому началу термодинамики, обе эти теории невозможны, но с таким утверждением не согласны многие ученые, которые и начали разработку вечных двигателей второго порядка, работающих на энергии магнитного поля.
Над разработкой «вечного двигателя» трудилось огромное количество ученых во все времена, наиболее большой вклад в развитие теории о магнитном двигателе сделали Никола Тесла, Николай Лазарев, Василий Шкондин, также хорошо известны варианты Лоренца, Говарда Джонсона, Минато и Перендева.
Фото — Магнитный двигатель ЛоренцаУ каждого из них своя технология, но все они основаны на магнитном поле, которое образовывается вокруг источника. Стоит отметить, что «вечных» двигателей не существует в принципе, т.к. магниты теряют свои способности приблизительно через 300-400 лет.
Самым простым считается самодельный антигравитационный магнитный двигатель Лоренца. Он работает за счет двух разнозаряженных дисков, которые подключаются к источнику питания. Диски наполовину помещаются в полусферический магнитный экран, поле чего их начинают аккуратно вращать. Такой сверхпроводник очень легко выталкивает из себя МП.
Простейший асинхронный электромагнитный двигатель Тесла основан на принципе вращающегося магнитного поля, и способен производить электричество из его энергии. Изолированная металлическая пластина помещается как можно выше над уровнем земли. Другая металлическая пластина помещается в землю. Провод пропускается через металлическую пластину, с одной стороны конденсатора и следующий проводник идет от основания пластины к другой стороне конденсатора. Противоположный полюс конденсатора, будучи подключенным к массе, используется как резервуар для хранения отрицательных зарядов энергии.
Фото — Магнитный двигатель ТеслаРоторный кольцар Лазарева пока что считается единственным работающим ВД2, кроме того, он прост в воспроизведении, его можно собрать своими руками в домашних условиях, имея в пользовании подручные средства. На фото показана схема простого кольцевого двигателя Лазарева:
Фото — Кольцар ЛазареваНа схеме видно, что емкость поделена на две части специальной пористой перегородкой, сам Лазарев применял для этого керамический диск. В этот диск установлена трубка, а емкость заполнена жидкостью. Вы для эксперимента можете налить даже простую воду, но желательно применять улетучивающийся раствор, к примеру, бензин.
Работа осуществляется следующим образом: при помощи перегородки, раствор попадает в нижнюю часть емкости, а из-за давления по трубке перемещается наверх. Это пока что только вечное движение, не зависящее от внешних факторов. Для того чтобы соорудить вечный двигатель, нужно под капающей жидкостью расположить колесико. На основе этой технологии и был создан самый простой самовращающийся магнитный электродвигатель постоянного движения, патент зарегистрирован на одну российскую компанию. Нужно под капельницу установить колесико с лопастями, а непосредственно на них разместить магниты. Из-за образовавшегося магнитного поля, колесо начнет вращаться быстрее, быстрее перекачиваться вода и образуется постоянное магнитное поле.
Линейный двигатель Шкондина произвел своего рода революцию в прогрессе. Это устройство очень простой конструкции, но в тоже время невероятно мощное и производительное. Его двигатель называется колесо в колесе, и в основном его используют в современной транспортной отрасли. Согласно отзывам, мотоцикл с мотором Шкондина может проехать 100 километров на паре литров бензина. Магнитная система работает на полное отталкивание. В системе колеса в колесе, есть парные катушки, внутри которых последовательно соединены еще одни катушки, они образовывают двойную пару, у которой разные магнитные поля, за счет чего они двигаются в разные стороны и контрольный клапан. Автономный мотор можно устанавливать на автомобиль, никого не удивит бестопливный мотоцикл на магнитном двигателе, устройства с такой катушкой часто используются для велосипеда или инвалидной коляски. Купить готовый аппарат можно в интернете за 15000 рублей (производство Китай), особенно популярен пускатель V-Gate.
Фото — Двигатель ШкондинаАльтернативный двигатель Перендева – это устройство, которое работает исключительно благодаря магнитам. Используется два круга – статичный и динамичный, на каждом из них в равной последовательности, располагаются магниты. За счет самооталкивающейся свободной силы, внутренний круг вращается бесконечно. Эта система получила широкое применение в обеспечении независимой энергии в домашнем хозяйстве и производстве.
Фото — Двигатель ПерендеваВсе перечисленные выше изобретения находятся в стадии развития, современные ученые продолжают их совершенствовать и искать идеальный вариант для разработки вечного двигателя второго порядка.
Помимо перечисленных устройств, также популярностью у современных исследователей пользуется вихревой двигатель Алексеенко, аппараты Баумана, Дудышева и Стирлинга.
Самоделки пользуются огромным спросом на любом форуме электриков, поэтому давайте рассмотрим, как можно собрать дома магнитный двигатель-генератор. Приспособление, которое мы предлагаем сконструировать, состоит из 3 соединенных между собой валов, они скреплены таким образом, что вал в центре повернут прямо к двум боковым. К середине центрального вала прикреплен диск из люцита диаметров четыре дюйма, толщиной в половину дюйма. Внешние валы также оснащены дисками диаметром два дюйма. На них расположены небольшие магниты, восемь штук на большом диске и по четыре на маленьких.
Фото — Магнитный двигатель на подвескеОсь, на которых расположены отдельные магниты, находится в параллельной валам плоскости. Они установлены таким образом, что концы проходят возле колес с проблеском в минуту. Если эти колеса двигать рукой, то концы магнитной оси будут синхронизироваться. Для ускорения рекомендуется установить алюминиевый брусок в основание системы так, чтобы его конец немного касался магнитных деталей. После таких манипуляций, конструкция должна начать вращаться со скоростью пол оборота в одну секунду.
Приводы установлены специальным образом, при помощи которого валы вращаются аналогично друг другу. Естественно, если воздействовать на систему сторонним предметом, к примеру, пальцем, то она остановится. Этот вечный магнитный двигатель изобрел Бауман, но ему не удалось получить патент, т.к. на тот момент устройство отнесли к разряду непатентуемых ВД.
Для разработки современного варианта такого двигателя многое сделали Черняев и Емельянчиков.
Фото — Принцип работы магнитаДостоинства:
Недостатки:
Работа магнитного двигателя – это чистая правда и она реально, главное правильно рассчитать мощность магнитов.
www.asutpp.ru
Изобретение относится к двигателестроению, в частности к роторным двигателям внутреннего сгорания.
Известен роторный двигатель внутреннего сгорания, включающий корпус с профилированной рабочей поверхностью и торцевыми крышками, ротор, установленный на валу и снабженный качающимися поршнями, контактирующими с профилированной рабочей поверхностью корпуса (см. а.с. СССР 1017803, МПК3 F02B 53/00, опубл. 15.05.1983 г.).
Недостатком такого двигателя является отсутствие надежного и постоянного контакта уплотнений между гранями поршней и профилированной поверхностью корпуса, что снижает мощность двигателя.
Из известных наиболее близким к заявляемому техническому решению является роторный двигатель внутреннего сгорания, включающий неподвижный тороидальный корпус, в котором расположен впускной канал введения топлива и воздуха в полость и напорный канал для отвода продуктов сгорания от двигателя, включая силовую тороидальную полость, в которой размещены два вращающихся диска с парными жесткозакрепленными поршнями. Каждый диск имеет выходной вал, на котором закреплена силовая шестерня, причем вал первого диска вставлен в полость вала второго диска. Поочередное вращение дисков контролируется подпружиненными стержнями (патент US 6341590 A (BARRERA RENE MANUEL), F02B 53/00, опубл. 29.01.2002 г.).
Недостатками прототипа являются сложность в изготовлении, большие нагрузки со стороны поршней на внутреннюю криволинейную поверхность корпуса в результате действия центробежных сил, возникающих при вращении ротора, наличие значительных сил трения поршней с каркасом ротора, которые ведут к снижению ресурса и к.п.д. двигателя,
Предлагаемое изобретение направлено на повышение долговечности работы двигателя за счет устранений действия центробежных сил поршней на внутреннюю криволинейную поверхность корпуса, улучшение качества уплотнений камер переменного объема, повышение мощности и кпд двигателя.
Решение технической задачи достигается тем, что в роторном двигателе, состоящем из неподвижного корпуса с внутренней тороидальной криволинейной замкнутой поверхностью с впускными и выпускными клапанами, установлен дискообразный ротор и два дугообразных поршня с компрессионными кольцами, один из которых крепится к корпусу двигателя, а второй к дискообразному ротору, вал которого установлен в обгонные муфты, с противоположным моментом срабатывания на обоймах валах.
Введение двух симметричных обгонных муфт позволяет последовательно поочередно передавать крутящий момент с вала дискообразного ротора на выходной вал двигателя. Схема устройства двигателя поясняется чертежами, где на фиг.1 показан разрез двигателя; на фиг.2 - правый и левый редукторы.
Роторный двигатель тороидального типа состоит из корпуса 1 с впускными 6 и выпускными 8 клапанами, поршни 2, 4 и свечи зажигания 7, рабочий цилиндр имеет тороидальную конструкцию, в которой расположены два дугообразных поршня 2, 4, имеющие компрессионные кольца 3, 5, причем первый поршень жестко закреплен в корпусе двигателя, а второй жестко крепится на роторе 11, вал которого установлен в подшипниках корпуса 14, причем слева и справа на валу установлены обгонные муфты 12, 16, на обоймах которых закреплены шестерни 13, 15, контактирующие с зубьями левого 20 и правого 18 редукторов, соединенных с выходным валом 17, причем левый редуктор 20 имеет дополнительную шестерню 19 для преобразования прямого вращения в обратное в отличие от правого редуктора, кроме того, внутри корпуса вставлены уплотнительные кольца 9, прилегающие к боковым поверхностям ротора и компрессионным кольцам поршней.
Работает устройство следующим образом.
Прямой ход. Сгорание. При сгорании топливовоздушной смеси в правой части корпуса 1 давление газа действует на дугообразный поршень 5 ротора 11, создавая крутящий момент на валу ротора 11, при этом застопаривается правая обгонная муфта 12 и крутящий момент через правый редуктор 18 передается на выходной вал 17. Двигаясь внутри корпуса 1, поршень 5 ротора обратной поверхностью сжимает топливовоздушную смесь в левой части корпуса, которая поджигается свечой накаливания 7.
Обратный ход. При сгорании поршень 5 двигается в обратном направлении. В этом случае вращающий момент застопаривает левую обгонную муфту 16 и растопаривает правую 12. При этом открывается выпускной клапан правой части корпуса 1 и происходит выпуск отработавших газов. Вращающий момент передается с вала 10 через обгонную муфту 16, шестерню 15 на левый редуктор 20, имеющий дополнительную шестерню 19, поэтому выходной вал 17 вращается в ту же сторону как в первом случае.
Прямой ход. Всасывание. При движении поршня 5 с правой части корпуса в левую происходит разрежение в запоршневом пространстве при открытом впускном клапане 6. Происходит наполнение правой части рабочего цилиндра. В то же время в левой части открыт выпускной клапан 8. При этом происходит выпуск отработавших газов.
Обратный ход. Поршень 5 двигается в правую часть корпуса. При этом в правой части сжимается топливовоздушная смесь при закрытых клапанах 6, 8, а в левой части происходит наполнение рабочего цилиндра и впускной клапан открыт.
Такие циклы, включающие в работу то левый, то правый редукторы, повторяются в процессе эксплуатации двигателя, обеспечивая постоянное вращение выходного вала.
Обтюрация поршней обеспечивается уплотнительными кольцами 9, надетыми на них, уплотнительными компрессионными кольцами 3, 5.
Подобная конструкция позволяет повысить силовую нагрузку на поршень на протяжении всего хода поршня, повысить мощность и кпд двигателя.
Роторный двигатель тороидального типа, содержащий неподвижный корпус с впускными и выпускными клапанами, поршни и свечи зажигания, отличающийся тем, что рабочий цилиндр имеет тороидальную конструкцию, в которой расположены два дугообразных поршня, имеющих компрессионные кольца, причем первый поршень жестко закреплен в корпусе двигателя, а второй жестко крепится на роторе, вал которого установлен в подшипниках корпуса, причем слева и справа на валу установлены обгонные муфты с противоположным моментом срабатывания, на обоймах которых закреплены шестерни, контактирующие с зубьями левого и правого редукторов, соединенных с выходным валом, причем левый редуктор имеет дополнительную шестерню для преобразования прямого вращения в обратное в отличие от правого редуктора, кроме того, внутри корпуса вставлены уплотнительные кольца, прилегающие к боковым поверхностям ротора и компрессионным кольцам поршней.edrid.ru
Изобретение относится к двигателестроению. Одноцилиндровый многопоршневой двигатель внутреннего сгорания содержит дискообразный охлаждаемый корпус, боковые крыши, тороидальный круговой цилиндр с окнами всасывания и выхлопа и два блока поршней, кинематически связанных между собой посредством механизма синхронизации. Механизм синхронизации включает шатунно-кривошипные механизмы с сателлитами и неподвижным зубчатым колесом, непосредственно закрепленным на корпусе двигателя. Окна выхлопа имеют форму продольных щелей в стенке цилиндра и на начальном участке имеют увеличенную площадь. Ведомый и ведущий поршневые блоки выполнены плавающими в цилиндре без подшипниковых опор на вал двигателя или его корпус. Поршни, круглые в своем поперечном сечении и уплотненные компрессионными кольцами, соединены в поршневые блоки с помощью тонких соединительных колец, которые выведены в картер двигателя через щель в охлаждаемой гильзе цилиндра. Соединительные кольца с внешней стороны имеют тороидальную поверхность, сопрягающуюся с внутренней поверхностью гильзы цилиндра и боковой поверхностью поршней. Ведомый поршневой блок соединен с маховиком своим соединительным кольцом через зубчатую полумуфту с бочкообразным зубом. Ведущий блок поршней через свое соединительное кольцо и шатуны связан со штырями кривошипов и совершает вращательно-колебательное движение. Валы кривошипов соединены с сателлитами и проходят сквозь отверстия в маховике, связанном с выходным валом. Техническим результатом является повышение надежности и уменьшение габаритов двигателя. 1 з.п. ф-лы, 8 ил.
Изобретение относится к двигателестроению, в частности к роторно-поршневым двигателям внутреннего сгорания.
Известен роторный двигатель (RU, пат. №2268368 F01С 1/077, 2006), с блоком тороидальных цилиндров и блоком тороидальных поршней, имеющих возможность совершать возвратно-поступательное движение внутри цилиндров и вращаться в одну сторону с блоком цилиндров от пары некруглых шестерен. К недостаткам двигателя можно отнести вращение цилиндрового блока, кроме вращения поршней, наличие обгонной муфты, использование некруглых шестерен в узле синхронизации движения цилиндров и поршней и резкие изменения угловых скоростей шестерен и соответственно инерционных нагрузок в приводимых ими устройствах.
Известен роторный двигатель (RU, пат. №2042037 6 F02В 53/00, 1995), с кольцеобразным тороидальным цилиндром, разделенным подпружиненными заслонками с поворотными рычагами управления, дисковым ротором с поршнями и каналами подвода рабочего тела к средствам его впрыска на днищах поршней. Рабочим телом могут быть пар, сжатый воздух, продукты сгорания топлива. При всей простоте кинематической схемы двигателя в конструкции имеется ряд существенных недостатков, ограничивающих область его применения. Заслонки, пружины, рычаги с возвратно-поступательным движением и привод их от поршня требуют определенного пространства для своего размещения и только по этому уже ограничивают возможности по увеличению количества поршней на одном роторе. Кроме того, рост количества этих механизмов снижает надежность работы двигателя. Для повышения крутящего момента на валу двигателя и наращивании его мощности необходима установка дополнительных роторов. Двигатель имеет сложную систему подвода рабочего тела в рабочую камеру через движущиеся элементы конструкции.
Наиболее близкой к изобретению по устройству и кинематической схеме является объемная машина (RU, пат. №2084641 6 F01С 9/00, F03С 4/00, 1997) при работе ее в режиме 4-тактного двигателя - прототип. Машина содержит цилиндрический корпус с крышками, с всасывающими и выхлопными окнами, соосные втулки с лопастными поршнями, установленные внутри корпуса с образованием рабочих камер, механизм синхронизации движения соосных втулок с поршнями, содержащий тяги, сателлит с диаметрально расположенными кривошипами, водило, жестко соединенное с выходным валом, и солнечное колесо, соединенное с крышкой. Механизм синхронизации размещен в полости втулок.
Недостатком прототипа является большая ширина и соответственно внешняя поверхность соосных втулок, в результате чего, при рабочем ходе, в полость рабочих втулок, через их наружные стенки, не имеющих охлаждения, проникает значительный тепловой поток, способный привести к нарушению теплового режима работы механизма синхронизации и его смазки.
Недостатком прототипа является длинный периметр уплотнения прямоугольных поршней и торцев соосных втулок. Уплотнение прямоугольных поршней в двигателях внутреннего сгорания более сложно и менее надежно, чем уплотнение круглых поршней обычными компрессионными кольцами.
Недостатком прототипа является то, что соосные втулки с лопастными поршнями, приводимые в движение диаметрально расположенными своими кривошипами через тяги, имеют колебательные движения относительно друг друга. При вращении вала двигателя они имеют разные ускорения при прохождении концов кривошипов через линии радиуса цилиндрического корпуса (один ближе к оси, другой - к втулке, что образует разные и противоположно направленные окружные скорости в точках соединения с тягами). Это вызывает ни чем не уравновешенные, инерционные колебательные нагрузки на движущиеся детали механизмов.
Недостатком прототипа является соединение солнечного колеса с неподвижной крышкой цилиндрического корпуса через неподвижный вал, соосный с выходным, что не позволяет сделать двухсторонний выход выходного вала. Это накладывает определенные ограничения на компановку и расположение внешних агрегатов, необходимых для работы двигателя.
В прототипе не определены базовые конструктивные элементы и их параметры для модификации мощностных характеристик двигателя на стадии его проектирования.
Предлагаемым изобретением решаются задачи:
повышения надежности работы двигателя, уменьшения числа механизмов синхронизации и, соответственно, поперечных габаритов двигателя, устройства двухстороннего выхода выходного вала, выделения базовых конструктивных элементов двигателя для модификации мощности и вращающего момента на выходном валу двигателя при его проектировании.
Поставленные задачи решаются тем, что одноцилиндровый многопоршневой двигатель внутреннего сгорания имеет тороидальный круговой цилиндр с окнами всасывания и выхлопа с охлаждаемой гильзой и два плавающих в ней кинематически связанных поршневых блока с образованием рабочих камер. Поршни представляют собой сегменты тора и уплотнены компрессионными кольцами, показавшими свою надежность в автомобильных двигателях внутреннего сгорания. Движения поршневых блоков выводятся в картер двигателя для связи с маховиком и механизмами синхронизации тонкими соединительными кольцами сквозь щель в охлаждаемой гильзе цилиндра, что значительно снижает тепловой поток из рабочих камер в полость картера. Ведомый поршневой блок с помощью зубчатой полумуфты непосредственно соединен с маховиком двигателя и вращается с ним равномерно, что исключает необходимость в одном из диаметрально расположенных кривошипов прототипа. Соответственно упрощается и водило - в нем исключается один из двух выходов оси сателлита к кривошипам и стенка, содержащая этот выход. Функция водила возлагается на маховик, путем размещения в нем оставшейся оси кривошипа, что дополнительно позволяет сместить неподвижное зубчатое колесо (солнечное колесо) к стенке корпуса двигателя и соединить его непосредственно, без вала, с корпусом. Это открывает возможность для создания конструкции корпуса двигателя с двухсторонним выходом выходного вала.
Для изменения величины мощности и крутящего момента на выходном валу двигателя при его разработке или модификации задаются базовые характеристики двух элементов: число поршней в поршневом блоке - n; передаточное отношение зубчатой передачи: неподвижное зубчатое колесо - сателлит i=Z2/Z1, которое должно быть целым и четным, где Z1 - число зубьев сателлита, Z2 - число зубьев неподвижного зубчатого колеса.
Эти параметры определяют следующие характеристики двигателя: число групп окон всасывания - выхлопа WG=i/2; число рабочих ходов, происходящих в двигателе одновременно KS=i/2; число рабочих ходов за один оборот выходного вала двигателя К1=(i/2)*n.
Таким образом одноцилиндровый многопоршневой двигатель внутреннего сгорания, содержащий дискообразный охлаждаемый корпус, с боковыми крышками, с тороидальным круговым цилиндром с окнами всасывания и выхлопа, двумя блоками поршней, размещенных в цилиндре с образованием рабочих камер и возможностью вращения и колебания, кинематически связанных между собой посредством механизма синхронизации, включающего шатунно-кривошипные механизмы с сателлитами и неподвижным зубчатым колесом, непосредственно закрепленным на корпусе двигателя, вал двигателя имеет двухсторонний выход из корпуса двигателя, отличается тем, что окна выхлопа, имеющие форму продольных щелей в стенке цилиндра, на начальном участке имеют увеличенную площадь, ведомый и ведущий поршневые блоки выполнены плавающими в цилиндре без подшипниковых опор на вал двигателя или его корпус, поршни, круглые в своем поперечном сечении и уплотненные компрессионными кольцами, соединены в поршневые блоки с помощью тонких соединительных колец, которые выведены в картер двигателя через щель в охлаждаемой гильзе цилиндра, соединительные кольца с внешней стороны имеют тороидальную поверхность, сопрягающуюся с внутренней поверхностью гильзы цилиндра и боковой поверхностью поршней, ведомый поршневой блок прямо соединен с маховиком своим соединительным кольцом через зубчатую полумуфту с бочкообразным зубом и вращается с ним равномерно, ведущий блок поршней через свое соединительное кольцо и шатуны связан со штырями кривошипов и совершает вращательно-колебательное движение, шатунно-кривошипные механизмы синхронизации равномерно расположены на орбите своего движения в картере двигателя, симметрично относительно оси выходного вала, а движения их элементов оппозитны, валы кривошипов, соединенные с сателлитами, проходят сквозь отверстия в маховике, связанном с выходным валом.
Работа двигателя происходит в режиме 4-тактного цикла в соответствии с базовыми характеристиками: n - число поршней в поршневом блоке, i - передаточное отношение зубчатой передачи: неподвижное зубчатое колесо - сателлит, а модификации двигателя различаются: числом рабочих ходов, происходящих в двигателе одновременно KS=i/2, числом рабочих ходов, происходящих за один оборот выходного вала K1=(i/2)*n, числом групп окон всасывания - выхлопа WG=i/2.
Иллюстрации. На Фиг.1 изображен вид сбоку на двигатель, его детали и механизмы. На Фиг.2 показан разрез А-А на Фиг.1. На Фиг.3 изображен вид сбоку на ведомый поршневой блок. На Фиг.4 изображен вид сбоку на ведущий поршневой блок. На Фиг.5 схематически показаны положения двух взаимодействующих поршней 5 и 8 из ведомого и ведущего поршневых блоков на конец каждого такта 4-тактного цикла работы двигателя при частичном мультицикле.
На Фиг.6 представлен график в координатах t-0-ω изменения угловых скоростей (ω1) ведомого и (ω2) ведущего поршневых блоков во времени (t) за один 4-тактный цикл работы рабочей камеры двигателя. На Фиг.7 показана схема звеньев замыкания силовой цепи ведомого и ведущего поршневых блоков при рабочем ходе. На Фиг.8 показана схема расположения поршней и окон всасывания - выхлопа 4-х поршневых блоков в цилиндре на момент зажигания рабочей смеси при полном мультицикле.
В состав двигателя входят следующие элементы:
дискообразный охлаждаемый корпус с левой литой частью 1 и правой литой частью 2, с каналами охлаждения, с окнами всасывания и выхлопа, крышками 20, 21 подшипников.
Тороидальный круговой цилиндр с тороидальной внутренней поверхностью, состоящий из двух частей 3 и 4, с группами окон 25 и 26 выхлопа и всасывания, совпадающими с аналогичными отверстиями в корпусе двигателя, с плоской щелью с внутренней стороны гильзы цилиндра для выхода соединительных колец 6 и 9 блоков поршней в картер двигателя 31.
Два поршневых блока, ведомого и ведущего, поршни 5 и 8 которых, круглые в поперечном сечении, связаны в блоки с помощью соединительных колец 6 и 9 с проушинами и поршневых пальцев 7 и 10, имеют гибкую связь с валом двигателя и связанно плавают в тороидальном цилиндре.
Поршни представляют собой сегменты тора, по боковой поверхности совпадающие с поверхностью торообразного цилиндра. Головки поршней 5 и 8 имеют сферические выемки для образования камер сгорания рабочей смеси, круглые компрессионные кольца 23, а с противоположной стороны, у юбок поршней, установлены маслосъемные кольца 24.
Соединительные кольца с внешней стороны имеют тороидальную поверхность, сопрягающуюся с внутренней поверхностью гильзы цилиндра, и проушины для соединения их с помощью поршневых пальцев 7 и 10 с поршнями. Соединительные кольца также воспринимают центробежные силы, действующие на поршни при их вращении в цилиндре, уменьшая износ трущихся поверхностей поршней и цилиндра.
Для обеспечения некоторой свободы и самоустановки поршней при движении их в цилиндре они имеют возможность поперечного перемещения с пальцами 7 и 10 в проушинах соединительных колец. Кольцо ведущего поршневого блока на боковой поверхности имеет оси 11 для соединения с головками шатунов.
Динамические рабочие камеры 22. Взаимодействующие элементы двигателя - головки поршней 5 и 8, из ведомого и ведущего блоков поршней со встречными сферическими выемками на торцах и внутренние поверхности частей 3, 4 цилиндра образуют динамические, перемещающиеся по кругу рабочие камеры, в которых происходят рабочие процессы двигателя.
Орбитальные шатунно-кривошипные механизмы с шатунами 12, кривошипами 13 с валами, проходящими сквозь маховик, и соединенными с ними сателлитами 16 с числом зубьев Z1. Одна головка шатуна с помощью оси 11 связана с соединительным кольцом 9 ведущего блока поршней, а другая - со штырем 14 кривошипа 13. Сателлиты 16 находятся в зацеплении с неподвижным зубчатым колесом 17. Шатунно-кривошипные механизмы вращаются на орбите движения внутренних частей соединительных колец поршневых блоков и зубчатой полумуфты, находящихся в картере двигателя. Механизмы располагаются равномерно на орбите своего движения, симметрично относительно оси вала двигателя, а движения их элементов оппозитны, что позволяет уравновешивать центробежные силы от движения и колебаний их элементов. Количество механизмов может быть четным или не четным (но более одного) и зависит от мощности и габаритов двигателя. Шатунно-кривошипные механизмы являются механизмами синхронизации движения поршневых блоков в тороидальном круговом цилиндре для создания 4-тактного мультицикла работы двигателя. Эксцентриситет штырей кривошипов влияет на колебательный ход поршней ведущего поршневого блока и степень сжатия рабочей смеси.
Неподвижное зубчатое колеса 17 с числом зубьев Z2, закрепленное на левой части 1 корпуса двигателя.
Зубчатая полумуфта для передачи мощности двигателя на маховик 15 и выходной вал 18, состоящая из зубьев на внутренней части соединительного кольца 6 ведомого блока поршней и зубьев 29 бочкообразной формы на наружной части маховика 15. Такое соединение кольца ведомого блока с маховиком допускает небольшие боковые и радиальные биения и перекосы кольца, вызванные силовыми и тепловыми деформациями кольца при работе двигателя, кроме того, зубчатая муфта позволяет проводить начальную установку и регулировку поршневых блоков и шатунно-кривошипных механизмов.
Маховик 15, закрепленный на выходном валу 18.
Двухсторонний выходной вал 18, с подшипниками 19.
Картер 31.
Форсунки 27 подачи топлива.
Свечи 28 зажигания (при необходимости).
С помощью шатунно-кривошипных механизмов, сателлитов 16 и неподвижного зубчатого колеса 17 осуществляется синхронизация движения поршневых блоков таким образом, что в определенных, фиксированных участках тора в рабочих камерах выполняются такты 4-тактного цикла двигателя. 4-тактный цикл в рабочей камере выполняется за 2 оборота кривошипа. Положение этих участков и их количество могут изменяться в зависимости от числа поршней в поршневых блоках и передаточного отношения числа зубьев Z2 колеса к числу зубьев Z1 сателлита.
Для описания работы данного изобретения необходимо ввести понятия работы двигателя внутреннего сгорания в целом в режимах 4-тактного частичного или полного мультицикла.
Частичный мультицикл: 4-тактный цикл работы многопоршневого двигателя внутреннего сгорания с тороидальным круговым цилиндром (Фиг.1, Фиг.2) и базовыми характеристиками, например, n=4 и i=4. При данных характеристиках в рабочих камерах 22 цилиндра за каждые 2 оборота кривошипа одновременно выполняются по 2 пары одинаковых тактов 4-тактного цикла в последовательности: 2 рабочих хода и 2 всасывания, 2 выхлопа и 2 сжатия.
Конструкция двигателя, представленная на Фиг.1, Фиг.2, имеет следующие базовые и мощностные характеристики: число поршней в поршневых блоках n=4; передаточное отношение неподвижного зубчатого колеса и сателлита i=4; число групп окон всасывания - выхлопа WG=2; число рабочих ходов, происходящих в двигателе одновременно KS=2; число рабочих ходов за один оборот выходного вала K1=8; режим работы - частичный мультицикл.
Работа двигателя происходит следующим образом: при вращении вала 18 по часовой стрелке (Фиг.1) вращается маховик 15 (Фиг.1, Фиг.2) и соединенный с ним через кольцо 6 ведомый поршневой блок 5. Проходящий через маховик вал кривошипа 13 и сателлит 16 обкатываются по неподвижному зубчатому колесу 17, вызывая вращение кривошипа и колебания шатуна 12. Вращение маховика и колебания шатуна создают вращательно-колебательное движение соединительного кольца 9 ведущего поршневого блока 8 в цилиндре двигателя, выполняя совместно с равномерным вращением поршней 5 ведомого блока в рабочих камерах 22 четыре такта рабочего процесса двигателя за 2 оборота кривошипа. За каждый оборот кривошипа ведущий поршневой блок проходит два положения, в которых его угловая скорость равна угловой скорости ведомого блока поршней (точки пересечения прямой ω1 и кривой ω2 на Фиг.6). Первое положение, в котором объем рабочих камер 22 минимальный, будем называть задней мертвой точкой (ЗМТ), а второе положение, в котором объем рабочих камер максимальный - передней мертвой точкой (ПМТ). На Фиг.1 изображено положение поршневых блоков в середине тактов "Рабочий ход (Рх)" для верхней камеры 22 (по положению на Фиг.1) и диаметрально ей противоположной и "Всасывание (Вс)" для нижней камеры 22 и диаметрально ей противоположной. Скорость ведущего поршневого блока в этот момент имеет максимальное значение (кривые "Рх" и "Вс", Фиг.6). При дальнейшем расширении продуктов сгорания рабочей смеси происходит увеличение объема рабочих камер 22 и движение поршневых блоков по часовой стрелке с разными скоростями. По достижению штырем 14 кривошипа 13 ПМТ, а рабочими камерами своего максимального значения, в верхней рабочей камере и ей противоположной головками поршней 8 ведущего блока открываются отверстия 25 выхлопа в части увеличенного их сечения на начальном участке и начинается процесс выхлопа отработанных газов под давлением рабочей среды, в нижней камере и ей противоположной головками поршней 5 ведомого блока закрываются отверстия 26 всасывания и начинается процесс сжатия воздушной смеси. После прохождения штырем кривошипа ПМТ угловая скорость движения ведущего блока становится меньше угловой скорости ведомого блока (кривые "Вых" (такт "Выхлоп") и "Сж" (такт "Сжатие") Фиг.6). Головки поршней блоков начинают сближаться, выталкивая в двух рабочих камерах отработанные газы в выхлопные отверстия, а в двух других рабочих камерах сжимая воздушную смесь. За некоторое время до достижения ведущим блоком ЗМТ в камеры со сжатой воздушной смесью через форсунки 27 впрыскивается топливо, а в двух других камерах заканчивается процесс выхлопа отработанных газов и головками поршней 5 закрываются отверстия 25 выхлопа. Вблизи ЗМТ в двух рабочих камерах со сжатой воздушно-топливной смесью свечами 28 производится ее воспламенение и начинается такт "Рабочий ход", а в двух других рабочих камерах такт "Всасывание", далее термодинамический цикл работы двигателя повторяется. Таким образом, в режиме частичного мультицикла в двух рабочих камерах двигателя из 4 за 2 оборота кривошипа одновременно происходят такты "Рабочий ход", а в двух других камерах - такты "Всасывание" воздушной смеси. За следующие 2 оборота кривошипа в двух рабочих камерах из 4 одновременно происходят такты "Выхлоп" отработанных газов и в двух других камерах - такты "Сжатие" воздушной смеси. Не рабочие камеры 30, образуемые юбками поршней поршневых блоков, вентилируются через всасывающие, выхлопные или специальные отверстия.
Схема замыкания звеньев силовой цепи ведомого и ведущего поршневых блоков при рабочем ходе показана на Фиг.7. Силы F, действующие на поршень 5 через соединительное кольцо и маховик 15, действуют в виде силы F1 на центр 32, оси кривошипа 13, а силы F, действующие на поршень 8, через соединительное кольцо, шатун 12 (сила F2), штырь кривошипа создают вращательный момент на сателлите 16. В результате действия сил F1 и F2 сателлит обкатывается по часовой стрелке вокруг неподвижного зубчатого колеса 17, вращая в том же направлении маховик.
Смазка трущихся поверхностей соединительных колец поршневых блоков и поверхностей поршней с цилиндром может осуществляться маслом из картера двигателя под напором центробежных сил через специальные канавки в поверхностях трения соединительных колец и внутрипоршневые каналы.
Двигатель (Фиг.1, Фиг.2) может также работать в режиме полного мультицикла при изменении передаточного отношения i и соответственно WG.
Полный мультицикл: 4-тактный цикл работы многопоршневого двигателя внутреннего сгорания с тороидальным круговым цилиндром и базовыми характеристиками, например, n=4 и i=8. При подобных базовых характеристиках во всех 4 рабочих камерах 22 цилиндра за каждые два оборота кривошипа одновременно выполняются 4 одинаковые такта 4-тактного цикла в последовательности: 4 рабочих хода, 4 выхлопа, 4 всасывания, 4 сжатия.
При данном режиме работы двигатель будет иметь следующие характеристики:
- число поршней в поршневых блоках n=4;
- передаточное отношение зубчатого колеса и сателлита i=8;
- число групп окон всасывания - выхлопа WG=4;
- число рабочих ходов, происходящих в двигателе одновременно KS=4;
- число рабочих ходов за один оборот выходного вала K1=16.
На Фиг.8 показана схема расположения поршней 4-х поршневых блоков и окон всасывания - выхлопа в тороидальном цилиндре на момент зажигания рабочей смеси при полном мультицикле.
Представленные материалы показывают технические преимущества данного изобретения по сравнению с аналогами и прототипом, а также принципиально новые технические решения для создания и модернизации многопоршневых двигателей внутреннего сгорания с тороидальным круговым цилиндром.
1. Одноцилиндровый многопоршневой двигатель внутреннего сгорания, содержащий дискообразный охлаждаемый корпус с боковыми крышками, с тороидальным круговым цилиндром с окнами всасывания и выхлопа, двумя блоками поршней, размещенных в цилиндре с образованием рабочих камер и возможностью вращения и колебания, кинематически связанных между собой посредством механизма синхронизации, включающего шатунно-кривошипные механизмы с сателлитами и неподвижным зубчатым колесом, непосредственно закрепленном на корпусе двигателя, вал двигателя имеет двухсторонний выход из корпуса двигателя, отличающийся тем, что окна выхлопа, имеющие форму продольных щелей в стенке цилиндра, на начальном участке имеют увеличенную площадь, ведомый и ведущий поршневые блоки выполнены плавающими в цилиндре без подшипниковых опор на вал двигателя или его корпус, поршни, круглые в своем поперечном сечении и уплотненные компрессионными кольцами, соединены в поршневые блоки с помощью тонких соединительных колец, которые выведены в картер двигателя через щель в охлаждаемой гильзе цилиндра, соединительные кольца с внешней стороны имеют тороидальную поверхность, сопрягающуюся с внутренней поверхностью гильзы цилиндра и боковой поверхностью поршней, ведомый поршневой блок прямо соединен с маховиком своим соединительным кольцом через зубчатую полумуфту с бочкообразным зубом и вращается с ним равномерно, ведущий блок поршней через свое соединительное кольцо и шатуны связан со штырями кривошипов и совершает вращательно-колебательное движение, шатунно-кривошипные механизмы синхронизации равномерно расположены на орбите своего движения в картере двигателя симметрично, относительно оси выходного вала, а движения их элементов оппозитны, валы кривошипов, соединенные с сателлитами, проходят сквозь отверстия в маховике, связанном с выходным валом.
2. Двигатель внутреннего сгорания по п.1, отличающийся тем, что работа двигателя происходит в режиме 4-х тактного цикла в соответствии с базовыми характеристиками: n - число поршней в поршневом блоке, i - передаточное отношение зубчатой передачи: неподвижное зубчатое колесо - сателлит, а модификации двигателя различаются: числом рабочих ходов, происходящих в двигателе одновременно KS=i/2, числом рабочих ходов, происходящих за один оборот выходного вала K1=(i/2)·n, числом групп окон всасывания - выхлопа WG=i/2.
www.findpatent.ru
Изобретение относится к двигателестроению, в частности, к роторным двигателям внутреннего сгорания с неравномерным движением поршней. Техническим результатом является повышение эффективности работы двигателя. Сущность изобретения заключается в том, что биротативный двигатель с тороидальными поршнями содержит блок тороидальных цилиндров с поршнями. Цилиндры расположены по окружности, а поршни объединены в блок поршней и также расположены по окружности. Поршни совершают возвратно-поступательные движения внутри цилиндров и вращаются в одну сторону с блоком цилиндров от пары некруглых шестерен двухвального редуктора с переменным передаточным отношением. Один вал редуктора жестко соединен с блоком цилиндров, а второй - с блоком поршней. Двигатель дополнительно снабжен обгонной муфтой, предохраняющей вал блока цилиндров и вал блока поршней от проворачивания в обратную сторону. 4 ил.
Изобретение относится к двигателям внутреннего сгорания.
Широко известны ДВС с кривошипно-шатунным механизмом привода поршней.
Общим недостатком таких ДВС является болтанка поршня в цилиндре при выполнении рабочих ходов тактов. В результате чего поршень трется своей юбкой о зеркало цилиндра, что приводит к потере полезной мощности и требует усиленной смазки трущихся поверхностей.
Вторым недостатком является кинематика движения поршня. Поршень при смене тактов резко меняет направление своего движения, находясь в верхней и нижней мертвой точке. Возникают большие инерционные нагрузки, что приводит к вибрации двигателя и большим инерционным нагрузкам на шатуны.
Наиболее близким к заявленному является роторный двигатель внутреннего сгорания биротативный с тороидальными поршнями, содержащий систему образования рабочей смеси, систему газораспределения, систему зажигания, систему смазки, блок цилиндров с поршнями, имеющими возможность возвратно-поступательного движения внутри цилиндра, причем цилиндры тороидального типа объединены в блок цилиндров, расположены по окружности, поршни размещены внутри цилиндров и объединены в блок поршней, расположены по окружности с возможностью совершать возвратно-поступательные движения внутри цилиндров и вращаться в одну сторону с блоком цилиндров от пары некруглых шестерен двухвального с коаксиально расположенными валами асинхронного шестеренчатого редуктора с переменным передаточным отношением, один вал которого жестко соединен с блоком цилиндров, а второй - с блоком поршней (заявка ФРГ №3444023, опуб. 13.06.1985).
Недостатком известного двигателя является малая надежность работы механизма.
Техническим результатом заявленного изобретения является повышение надежности работы двигателя.
Поставленная задача достигается тем, что роторный двигатель внутреннего сгорания биротативный с тороидальными поршнями, содержащий систему образования рабочей смеси, систему газораспределения, систему зажигания, систему смазки, блок цилиндров с поршнями, имеющими возможность возвратно-поступательного движения внутри цилиндра, причем цилиндры тороидального типа объединены в блок цилиндров, расположены по окружности, поршни размещены внутри цилиндров и объединены в блок поршней, расположены по окружности с возможностью совершать возвратно-поступательные движения внутри цилиндров и вращаться в одну сторону с блоком цилиндров от пары некруглых шестерен двухвального с коаксиально расположенными валами асинхронного шестеренчатого редуктора с переменным передаточным отношением, один вал которого жестко соединен с блоком цилиндров, а второй - с блоком поршней, согласно изобретению, он дополнительно снабжен обгонной муфтой, предохраняющей вал блока цилиндров и вал блока поршней от проворачивания в обратную сторону.
Поршни при выполнении рабочих ходов тактов не трутся о зеркало цилиндра, а строго следуют по оси цилиндра. После выполнения такта всасывания поршень не возвращается "назад" и продолжает вращаться в том же направлении, поскольку такт сжатия выполняет цилиндр, надвигающийся днищем на поршень. В следующем такте поршень снова отходит от днища цилиндра, но при этом и блок цилиндров и блок поршней вращаются в одну сторону постоянно, то есть никогда не меняют направления своего вращения (см. фиг.4).
Поскольку поршень после выполнения очередного такта назад не возвращается, инерционные нагрузки уменьшаются, что улучшает работу ДВС.
На фиг.1 представлен продольный разрез двигателя.
На фиг.2 - разрез А-А на фиг.1.
На фиг.3 показана схема редуктора с переменным передаточным отношением.
На фиг.4 изображены графики угловых скоростей шестерен Z1 и Z2 .
Гильзы цилиндров 1, имеющие вид сегментов тора, отлиты в один блок 2 совместно с полым валом 3, на котором жестко закреплена круглая шестерня Z4, входящая в зацепление с другой круглой шестерней Z3, сидящей на промежуточном валу 20, причем Z3=Z4. Тогда передаточное отношение пары i=Z3/Z4=1. Внутри полого вала 3 вращается вал 4, на котором закреплены рабочий шкив 6, блок поршней 5, некруглая (эллиптическая или овальная) шестерня Z1 , входящая в зацепление с некруглой шестерней Z2, закрепленной на промежуточном валу 20. Причем Z1=Z 2, но придаточное отношение i=Z1/Z 2const (фиг.3).
На втором конце вала 4 закреплен блок поршней 5, имеющих вид сегментов тора, входящих в цилиндры 1 и совершающих внутри цилиндров возвратно-поступательные движения при вращении валов 3 и 4.
Рабочая смесь образуется в карбюраторе 9, по каналам в теле полого вала 2 поступает во внутреннюю полость диафрагмы 10 и попадает в картер рабочей смеси 11, образованный внутренней полостью блока цилиндров 2 и диафрагмой 10. Оттуда рабочая смесь через окна 12 в гильзе цилиндров засасывается в камеру сгорания 13. Для наддува рабочей смеси ротор блока цилиндров снабжен крыльчаткой 17. Воспламенение смеси происходит от искровой свечи 15 через неподвижный контакт 14 системы зажигания в момент их совмещения при вращении ротора цилиндров. Двигатель охлаждается проточным воздухом, прокачиваемым под кожухом 16 дополнительной крыльчаткой 18 на наружной стороне диафрагмы 10.
На фиг.2 изображена схема расположения тороидальных поршней в тороидальных цилиндрах. С целью увеличения плавности работы ДВС цилиндры попарно развернуты друг к другу, а поршни попарно жестко связаны траверсой 19. Когда в одном цилиндре происходит такт сжатия, то в парном цилиндре идет всасывание. При взрыве рабочей смеси в камере сгорания 13 давление газов проворачивает поршень на угол . Он отходит от днища цилиндра, совершая рабочий ход, вращая при этом вал 4 с рабочим шкивом 6 и некруглой шестерней Z1 , которая через систему шестерен Z2, Z3 , и Z4 поворачивает цилиндр в том же направлении, что и вал блока поршней, возвращая цилиндропоршневую группу в исходное положение. При использовании овала в контуре шестерен Z1 и Z2=30° (фиг.2). В точках а', b', с', d' (фиг.4) Wz 1>=Wz2, поэтому взаимное перемещение поршней и цилиндров отсутствует и происходит смена тактов. Т.е. это "виртуальные" мертвые точки, поскольку возврата поршней "назад" не происходит, а они продолжают вращаться.
Поскольку поршень не меняет направления своего движения и даже останавливается в своем вращении при смене тактов, а его «догоняет» цилиндр, имеющий в этот момент большую скорость, чем поршень. То в описываемом ДВС инерционные силы и вибрация значительно меньше, чем в ДВС с кривошипно-шатунным приводом поршней.
От проворачивания валов 3 и 4 в обратную сторону предохраняет обгонная храповая муфта 8. Слив масла из масляного картера производится через сливную пробку 19.
На (фиг.2) изображен двигатель двухтактного исполнения. При четырехтактном исполнении вместо окон впуска и продувки цилиндров 12 конструктивно предусматриваются впускные и выпускные клапаны с принудительным открытием.
Роторный двигатель внутреннего сгорания биротационный с тороидальными поршнями, содержащий систему образования рабочей смеси, систему газораспределения, систему зажигания, систему смазки, блок цилиндров с поршнями, имеющими возможность возвратно-поступательного движения внутри цилиндра, причем цилиндры тороидального типа объединены в блок цилиндров, расположены по окружности, поршни размещены внутри цилиндров и объединены в блок поршней, расположены по окружности с возможностью совершать возвратно-поступательные движения внутри цилиндров и вращаться в одну сторону с блоком цилиндров от пары некруглых шестерен двухвального с коаксиально расположенными валами асинхронного шестеренчатого редуктора с переменным передаточным отношением, один вал которого жестко соединен с блоком цилиндров, а второй - с блоком поршней, отличающийся тем, что он дополнительно снабжен обгонной муфтой, предохраняющей вал блока цилиндров и вал блока поршней от проворачивания в обратную сторону.
www.freepatent.ru
Cтраница 2
Каждая из рассмотренных конструктивных схем тороидальных двигателей может комбинироваться одна с другой либо использоваться самостоятельно. [16]
Для малых мощностей отдельные модификации тороидальных двигателей с дисковым роторам могут быть вполне конкурентоспособными с некоторыми типами исполнительных двигателей в связи с высокой технологичностью, простотой конструкции и меньшей массой. [17]
Таким образом, при одинаковых объемах тороидальные двигатели имеют лучшие энергетические показатели по сравнению с двигателями нормального исполнения. [18]
Как показывает опыт изготовления опытных образцов торцевых тороидальных двигателей, без особого труда можно выдержать воздушный зазор 0 15 - 0 25 мм. При этом меньшие значения соответствуют меньшим диаметрам тороидов, а большие - большим диаметрам тороидов-статоров. [20]
По результатам расчетов и исследования макетных образцов тороидальных двигателей для них получены границы изменения электромагнитных величин, размеров и энергетических показателей, которые позволили сравнить тороидальные двигатели с другими и определить области их применения. [21]
Представляет интерес сравнение потерь в меди в тороидальном двигателе и в серийном гистерезисном двигателе Г-205. Двигатели имеют одинаковые объемы и мощности. [23]
Рассмотренный принцип образования статорной многополюсной системы положен в основу тороидальных двигателей различных типов: асинхронных, гистерезис-ных и с постоянными магнитами. [25]
Результаты исследований, проведенных выше, позволяют использовать для расчета тороидальных двигателей с массивным ферромагнитным ротором выражения, полученные при постоянстве магнитной проницаемости H const и отсутствии гистерезиса, а нелинейность характеристики намагничивания учитывать коэффициентом х, зависящим от степени возбуждения поверхностного слоя ротора. [26]
Для маломощных приводов в приборах, питаемых повышенной частотой, предназначены тороидальные двигатели с постоянными магнитами и асинхронные. Двигатели питаются через электронную или полупроводниковую схему, имеют небольшую скорость вращения на выходе, что позволяет исключить ряд звеньев в редукторе, упростить прибор и повысить точность передачи. В качестве нагрузки таких маломощных двигателей могут быть ползунки потенциометров, стрелки и прочие индикаторные элементы. [27]
Данными о двигателях с постоянными магнитами тех же мощностей, на которые выполняются тороидальные двигатели, авторы не располагали. [28]
Выбор числа пазов и размеры паза выбираются из тех же соображений, что и в случае асинхронного варианта тороидального двигателя. Расчет обмотки статора и магнитной цепи производится в том же порядке, что и в случае асинхронного тороидального двигателя, рассмотренного в гл. [29]
По результатам расчетов и исследования макетных образцов тороидальных двигателей для них получены границы изменения электромагнитных величин, размеров и энергетических показателей, которые позволили сравнить тороидальные двигатели с другими и определить области их применения. [30]
Страницы: 1 2 3
www.ngpedia.ru