ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Эволюция четырёхтактных двигателей внутреннего сгорания. Эволюция двс


Эволюция двигателя внутреннего сгорания - Best Car News

Как развивался ДВС: основные даты

Но затем при массовом появлении электронного впрыска автопроизводители с помощью компьютера стали применять различные настройки, автоматически регулирующие качество топливной смеси, что позволило существенно улучшить экономичность двигателей и снизить уровень вредных веществ в выхлопе. Но главное, что удалось сделать с помощью компьютерных настроек и регулировки топливной смеси, – это снизить до минимума риск самовоспламенения топлива. В итоге со временем стало невыгодно использовать большие мощные моторы с низкой степенью сжатия.  Так автопромышленность ввела новую моду – уменьшение количества цилиндров. Чтобы сохранить мощность в моторах, автопроизводители стали использовать турбины. Но главное – благодаря электронике, которая управляет качеством топливной смеси, автопроизводители снова могут создавать моторы с большой степенью сжатия, не опасаясь самовоспламенения топлива. 

Но в 2012 году компания Mazda удивила весь мир, представив фантастический мотор SKYACTIV-G, который имеет невероятно высокий коэффициент сжатия для серийного двигателя. Степень сжатия этого мотора составляет 14:1. Это позволяет мотору извлекать энергию почти из каждой капли бензина без образования смога. 

Следующим шагом для Mazda стал новый мотор SKYACTIV-X, который использует контролируемое зажигание (система SPCCI). Благодаря этой системе появилась возможность воспламенять бензин практически за счет одного только сжатия. То есть как в дизельных моторах. Также в двигателях SKYACTIV-X есть возможность воспламенять топливо обычным образом. Причем электроника автоматически выбирает, как выгоднее воспламенять бензин в камере сгорания. Все зависит от потребностей водителя и условий движения.

Например, если вам нужна сила (крутящий момент), то двигатель SKYACTIV-X  будет воспламенять топливо от силы сжатия (почти как дизель). Если вам нужна мощность, то мотор с высокой степенью сжатия будет воспламенять топливо обычным образом. Причем реально для придания мощности будет использована последняя капля бензина.

Даже спустя столетие и даже с появлением альтернативных видов топлива, а также с появлением электрокаров двигатели внутреннего сгорания остаются главными силовыми агрегатами в автопромышленности. И несмотря на то что многие эксперты считают, что ДВС изжил себя и в скором времени должен исчезнуть из автомира, нам кажется, что двигатель внутреннего сгорания еще не развился до конца. Также мы считаем, что мир в ближайшие 100 лет все равно не будет готов полностью отказаться от ДВС, работающих на бензине.

И кто его знает, что нам подготовят автомобильные компании в ближайшем будущем. Ведь их инженеры не зря получают бутерброды с черной икрой. Вполне возможно, что уже скоро очередной автопроизводитель удивит нас какой-нибудь новой технологией в ДВС.

Так что рано сбрасывать со счетов традиционные моторы. Может быть, электрокары – это временное явление? Скорее всего, это более вероятно.

Источник

best-car-news.ru

Эволюция четырёхтактных двигателей внутреннего сгорания

Александр Ильин

Начало пути

Авиационное двигателестроение началось в начале прошлого века. И зачинателями моды стали ротативные двигатели. Это звездообразные двигатели воздушного охлаждения. Охлаждению на малых скоростях полёта, типичных для авиации того времени, способствовало вращение цилиндров с картером относительно неподвижно закреплённого на моторной раме коленчатого вала. Почти всю ПМВ такие двигатели превосходили по удельной массе двигатели водяного охлаждения, поэтому на большинстве истребителей и разведчиков стояли эти моторы.

У ротативных двигателей были крупные недостатки, главным из которых была практическая невозможность достижения мощности более 100 – 130 л.с. Препятствием служили трудности с увеличением размера и числа цилиндров, увеличением нагрузки от центробежных сил и гироскопического момента на картер при увеличении частоты или компоновке второго ряда цилиндров, большие потери мощности на вращение оребрённых цилиндров. Ротативные двигатели страдали очень большим расходом масла. Это было связано с тем, что откачать масло из вращающегося картера было невозможно и оно буквально вылетало в трубу.

Проблемы с ротативными двигателями привели к тому, что к концу ПМВ самыми популярными стали двигатели с водяным охлаждением. Которые хоть и не победили ротативных по удельной массе, но по мощности превзошли в несколько раз.

"Жидкий" или "воздушный"?

Как известно, в двигателестроении в период ВМВ прижились два типа двигателей. Рядные, чаще всего V-образные, двигатели жидкостного охлаждения и звездообразные двигатели воздушного охлаждения. Каждый из этих типов двигателей имеет свои достоинства и недостатки. Конкуренция между двумя типами двигателей на протяжении всей их истории весьма занимательна.

Так "воздушники" проще конструктивно (нет рубашки охлаждения). Поэтому они дешевле в производстве, проще в обслуживании, надёжнее. Так же из-за воздушного охлаждения живучее. У «жидкостника» температура охлаждающей жидкости ограничена точкой кипения. И потому для отвода еденицы тепла через радиатор требуется больший объём воздуха, чем для отвода еденицы тепла от «воздушника». Ибо температура головок цилиндров «воздушника» раза в два выше, чем температура водорадиатора у «жидкостника».

"Жидкостники" имеют другие достоинства. Малый мидель даёт плюс в аэродинамике; из-за острого носа и потенциальной возможности применения мотор-пушки улучшается компоновка фюзеляжного вооружения. В минус «воздушникам» в 20-е гг. была и неотработка капотировки. Верхом аэродинамики считалось кольцо Таунеда.

При равной литровой мощности, из-за присутствия рубашки охлаждения и охлаждающей жидкости, "жидкостник" будет тяжелее воздушника. И самолёт с "воздушником" будет легче. Для манёвренных самолётов, и в горизонтальной и в вертикальных плоскостях, были оптимальней «воздушники», для скоростных «жидкостники».

Так что каждый из типов двигателей имеет свои достоинства, объясняющие их разнообраное применение. Пока моторы были слабомощные, в истребительной авиации на первое место выходил их вес. Поэтому в 30-е годы моторостроение вступило с большим распространением "воздушников". Тут правда сыграла и простота их производства.

Расцвет "жидкостников"

В начале 30-х годов "жидкостники" сделали резкий скачок. А всему виной было принудительное охлаждение, позволяющее форсировать двигатель. Жидкостное охлаждение позволяло хорошо отводить тепло от двигателя. Двухрядные "воздушники" же столкнулись с проблемами отвода тепла от задней кромки поршней второго ряда. Сначала "жидкостники" обогнали "воздушников" в литровой мощности. А затем в удельной массе! Рассмотрим на примерах.

Испано-Сюиза 12Ybrs: мощность - 860 л.с., сухой вес - 470кг.

Райт "Циклон" R-1820-F3: мощность - 625 л.с., сухой вес - 435 кг.

Гном-Рон "Мистраль-Мажор" 14Kdrs: мощность - 850 л.с., сухой вес - 600 кг.

Правда надо учесть, что даётся сухой вес моторов. У жидкостников система охлаждения может прибавлять до 10% веса мотора. И если однорядные звёзды впряглись в гонку с "жидкостниками", то двухрядные звёзды резко просели.

Пока двигатели были слабосильными, а скорости самолётов относительно небольшими, вес мотора играл значительную роль. Так И-16 с "Циклоном" ещё выигрывал в Испании у Bf-109B. Но развязка наступала неизбежно. Во второй половине 30-х моторостроение сделало ещё один шаг и И-16 стало уже проблематично противостоять мессеру с DB-600.

Но не только увеличение мощности сыграло свою роль. Резкий скачок сделала и аэродинамика водорадиаторов. Водорадиаторы мигрировали в туннели. Туннели стали утапливаться в фюзеляж и крылья. Применение этиленгликоля и воды под давлением позволило уменьшить площадь водорадиаторов на 40-50% (и вес охлаждающей жидкости).

Неизбежно в моду вошли истребители с моторами жидкостного охлаждения. Мессершмитт и Спитфайр были первыми. За ними потянулись другие. СССР, Франция, США тут же бросились догонять Германию и Англию. Лишь Италия и Япония остались возиться с "воздушниками". Ибо... так и не сумели создать отечественный мотор жидкостного охлаждения, а с лицензионным производством чужого опоздали.

Но "воздушники" не исчезли. У них оставались определённые преимущества и они нашли свою нишу. Живучесть и надёжность позволила им закрепиться в бомбардировочной и штурмовой авиации. Из-за эксплуатационных преимуществ авианосная авиация США продолжала использовать только "воздушники". До следующего хода надо было подождать несколько лет... К тому же у набравших ход «жидкостников» был скрытый порог – малый литраж. Малый объём цилиндра позволял легче бороться с тепловым режимом и быстрее доводить двигатель. Но за высокие удельные характеристики пришлось заплатить малой мощностью.

Звёзды наносят ответный удар

Но в начале 40-х всё опять переменилось. И имя этим переменам было - мощные двухрядные звёзды.

К этому времени удалось справиться с тепловым режимом двухрядных звёзд. Справлялись с этим по разному. Раздвигали ряды звёзд, что выводило второй ряд из затенения первым, увеличивали мидель двигателя, вводили принудительное охлаждение вентилятором, увеличивали объём маслорадиатора (у "воздушников" бОльшая теплоотдача в масло), увеличивали оребрение цилиндров и оптимальнее подгоняли дефлекторы. Но так или иначе мощные звёзды получились во многих странах на этом рубеже. Решение теплового режима позволило звёздам если не сравняться, так догнать, сократить отставание от "жидкостников" в удельной массе. Хотя "жидкостники" и сохранили преимущество по запасу форсирования.

Но главным преимуществом звёзд была мощность. Что решилось банальным преимуществом в литраже - звёзды были просто объёмнее. Увеличить литраж двигателя без увеличение миделя позволили бывший "порок" - второй ряд поршней. Так М-105П выигрывал по удельной мощности у М-82А. Но Ла-5 выигрывал и ЛаГГ-3, даже несмотря на убогую аэродинамику!

Малолитражные "жидкостники" с этим смириться не могли и уже давно (заранее) бросились догонять. Самым простым решением было спарить два двигателя на один редуктор. Решение оказалось слишком сложным и потому тупиковым. Ни у кого так и не получилось.

Более продуктивным было собрать несколько (4) блоков цилиндров на один коленвал (Н- и Х-образные двигатели). Но такой многоцилиндровый двигатель тоже получался слишком сложным и ненадёжным. И получился только у англичан! Тот самый Сейбр. За конструктивную сложность пришлось заплатить малым ресурсом. К тому же при таком решении "жидкостник" терял своё преимущество - малый мидель. Так что как только англичане довели свой мощный "воздушник" - Центариус, о Сейбре благополучно забыли.

Но не только одной мощностью брали "воздушники". Удалось улучшить аэродинамику звёзд за счёт исследований по капотам (капоты NACA) и применением длинного носка картера. На фоне таких успехов происходит реинкарнация истребителей с моторами воздушного охлаждение. Ла-5, ФВ-190, Р-47 и проч.

Возвращение "джыдая".

Отыграться "жидкостникам" удалось в самом конце ВМВ.

За увеличение литража стали бороться другим путём. Увеличили объём имеющихся 12-ти цилиндров путём увеличение площади поршня. В разным странах примерно синхронно появились "большие горшки": АМ-42, Гриффон, DB-603, Юмо-213.

Но появились эти двигатели поздновато, когда решающие воздушные сражения уже отыграли и шло уже добивание противника. И применение этих двигателей на имеющимся фоне любым из противников никак не меняло баланс сил. Припозднились...

К концу войны вдруг выяснилось, что увеличение мощности моторов приводит не к уменьшению, как раньше, а к увеличению удельной массы моторов. Форсаж не может продолжаться до бесконечности. В конце концов увеличение нагрузок на детали моторов привело к их усилениям, уже не компенсирующимся возрастанием мощности. Маятник качнулся назад…

А как же дизели?

Во ВМВ дизели не завоевали особой славы. Но перед войной разработки широко велись во многих странах. Дизели фирм Паккард, Юнкерс, Клерже, Бристоль тому пример. Почему же тратилось столько труда? Перед карбюраторными моторами дизель имеет ряд преимуществ. Благодаря высокому КПД, дизель очень экономичен. Благодаря впрыску, дизель сохраняет номинальную мощность на более бедной смеси. И потому меньше теряет мощность с высотой. А бОльший крутящий момент позволяет лучше переносить изменение нагрузки и дольше сохранять неизменные обороты или угол атаки лопастей пропеллера.

Но имеется у дизелей один недостаток. Большая степень сжатия вынуждает делать более прочный, но потому и более тяжёлый мотор. Проигрыш перед карбюраторными в удельных параметрах становится уж больно большой. Но это ещё пол беды. Избыток в весе авиадизеля перекрывается экономией топлива через 2-3 часа полёта. Главная беда заключалась в увеличенных сроках доводки мотора в связи с большой сложностью конструкции. На момент доводки дизеля, он был уже никому не нужен из-за своих слабых удельных параметров и малой мощности.

Потому и получились серийные дизели, нашедшие применение на самолётах, только в двух странах. В Германии и СССР. Немцы пошли по пути доводки ресурса и получили надёжные, но маломощные авиадизели Юмо. Мы сделали ставку на высокие удельные параметры и мощность. Получив по циферкам неплохие, но ненадёжные дизели Чаромского и Яковлева.

После войны наработки по авиадизелям нашли применение в танкостроении.

Понагнетаем...

Высотность моторов во ВМВ оставалась краеугольным камнем боевого применения самолётов. Различные задачи перед авиацией требуют различных высот применения. В 20-е гг. проблему пытались решить путём создание т.н. «переразмеренных» моторов. В чём их сущность? Обычный маловысотный двигатель рассчитывается на выдачу максимальной мощности у земли. С ростом высоты, в связи с падением плотности воздуха, его мощность будет понижаться. Получается, что на высоте он излишне прочен. Можно сделать двигатель, рассчитанный на выдачу мощности на высоте. А что бы такой мотор не сломался из-за избыточной мощности у земли, подачу топлива на малой высоте ограничим.

В 30-е гг. на смену пришли нагнетатели. Т.н. ПЦН – приводной центробежный нагнетатель, мощность на работу которого отбиралась от двигателя. Нагнетатели позволяли не только поднять высотность двигателя, но и осуществить его форсирование. Как никак за единицу времени в цилиндр попадал больший заряд смеси. Правда без ложки дёгтя ничего не бывает. Экономичность таких моторов, по сравнению с атмосферными, снизилась. Сказались потеря мощности на привод нагнетателя, потери газа на трение в коллекторе двигателя, увеличение температуры смеси из-за сжатие газа в нагнетателе, а отсюда и работа на более богатой смеси для компенсации возросшей температуры.

Но остался вопрос с расчётной высотой для такого двигателя. Чем больше мощности передать от двигателя к ПЦН, тем большую работу нагнетатель выполнит, и тем выше будет расчётная высота двигателя. Но т.к. двигатель рассчитан на определённую степень форсирования, то до расчётной высоты давление наддува будет избыточным. Решается проблема дросселированием ПЦН. А раз передача мощности от двигателя к нагнетателю постоянна, то на высотах меньше расчётной, эта мощность будет пропадать в туне. Т.е. более высотный двигатель на малых высотах будет проигрывать менее высотному, ибо у последнего на привод нагнетателя тратится меньше мощности.

Проблему узкой заточенности под высоты двигателей с ПЦН конечно начали решать. Самым простым средством стало применение многоскоростных ПЦН. Сначала двухскоростных, а затем трёхскоростных.

Шагом вперед стало применение двухступенчатых нагнетателей. В таком нагнетателе две крыльчатки находятся друг за другом. Это решение позволило поднять высотность моторов, одновременно «срезав» провал мощности между двумя скоростями нагнетателя. Но и это решение оказалось не без отрицательных сторон. КПД двухступенчатого ПЦН стало ниже одноступенчатого (сказались потери мощности на привод второй ступени, нагрев газа из-за большого сжатия в нагнетателе). Что в основном выражалось в повышенном расходе топлива.

Другим направлением разработок являлись турбокомпрессоры. Главным отличием ТК от ПЦН является привод не от двигателя, а использование «дармовой» энергии выхлопных газов. Выхлоп по трубам попадает в турбину, сообщая ей свою энергию, а уже турбина осуществляет привод нагнетателя. Плюсов – куча. Прыгает вверх экономичность такой установки, повышается высотность мотора, исчезают «изломы» мощности по высоте двигателей с ПЦН. Но и минусов оказалось не мало, что обусловило доводку ТК до серии только в одной стране – США. Необходимым условием удовлетворительного функционирования ТК являлись жаропрочные сплавы и высокооборотные подшипники. Но и это не всё. Серийные образцы имели одну особенность: от двигателя до ТК шла длинная жаропрочная труба, где газы охлаждались, а далее сам ТК оказывался немалых размеров. Данный факт выливался в большую массу и габариты установки. Что бомбардировщикам было сносно, но истребителям резко уже не оптимально. И если истребителя с ТК выигрывали у своих оппонентов с ПЦН на больших высотах, то на средних и малых высотах проигрывали из-за явного перетяжеления конструкции. Практика показала, что для высотного истребителя двухступенчатый ПЦН всё таки лучше. Стоит упомянуть ещё одну особенность ТК. В процессе эксплуатации оказалось, что на малых оборотах давления газов не хватает для штатного функционирования ТК. И двигатели часто глохнут. Выходом стало применение связки ПЦН-ТК, т.н. комбинированный наддув. Низковысотный ПЦН сообщал так нехватаемый наддув на низких оборотах.

Напоследок в этой теме стоит упомянуть о промежуточном охлаждении смеси за ПЦН. У высотных двигателей работа, осуществляемая нагнетателем над газом, настолько велика, что смесь весьма сильно нагревается. И по закону термодинамики расширяется, приводя к уменьшению заряда, попадаемого в цилиндры. Выходом стало применение промежуточного радиатора, охлаждающего смесь перед попаданием в двигатель. Но этот шаг приводит к увеличению аэродинамического сопротивления. Что выгодно только для высотных двигателей.

Форсаж? Форсаж. Форсаж!

Работа авиационного мотора проходит большую часть жизни далеко не на максимальных режимах. Режимов много и они предназначены для разных задач. Когда нужна максимальная дальность, когда максимальная мощность на взлёте.

Главным режимом является номинальный. Все остальные режимы двигателя отсчитываются от номинального в процентах. Режимы меньше номинального называются крейсерскими, а больше номинального, форсажными. На форсажных режимах ресурс двигателя уменьшается, а на крейсерских увеличивается. На форсажных режимах применяется богатый состав смеси что бы отодвинуть границу детонации при увеличившемся наддуве и облегчить тепловой режим двигателя. На крейсерских режимах применяется бедный состав смеси, что бы увеличить экономичность двигателя.

Распространение получили специальные форсажные жидкости. Одну группу составляют вода и водоспиртовые смеси. Эти жидкости обеспечивают интенсивное охлаждение смеси. Плюсом является увеличение заряда, попадающего в цилиндры двигателя, отодвиганием границы детонации и охлаждение самого двигателя. Эта группа применяется для форсирование на малых высотах.

Вторую группу составляет закись азота. Плюсом закиси азота является принос в цилиндры двигателя «халявного» кислорода, которого так нахватает на больших высотах. Естественно закись азота применяется для форсирования на больших высотах.

Минусами всех этих жидкостей является их вес и снижение ресурса двигателя.

Сами форсажные режимы получили наибольшее распространении в период ВМВ и в основном на истребителях. Гонка за мощностью привела к применению высокооктанового топлива (позволяющего отодвинуть границу детонации) и форсажных жидкостей.

Рассмотрим режимы двигателя.

На номинальном режиме двигатель должен работать около 40-50% общего срока службы периодами непрерывной работы не больше часа.

Взлётный режим применяется естественно при взлёте. Взлётная мощность достигается увеличением наддува и оборотов. Мощность двигателя на этом режиме составляет 110-120% от номинальной, а иногда и больше. На взлётном режиме двигатель должен работать не более 5% общего срока службы периодами непрерывной работы не более 5 мин. Ограничение вызвано недостаточным охлаждением двигателя на малой скорости.

Боевой режим применяется естественно в бою. И, как и взлётный, достигается увеличением наддува и оборотов. Мощность на таком режиме примерно равна взлётной мощности. На этом режиме двигатель должен работать не более 15-25% общего срока службы периодами непрерывной работы не более 10-15 мин.

Чрезвычайный режим применяется, естественно, в чрезвычайных ситуациях. Когда требуется от кого-то убежать или кого-то догнать. Мощность на этом режиме достигает 130-160% от номинальной мощности. И в основном достигается увеличением наддува. Тепловые и механические нагрузки на двигатель при таком режиме настолько велики, что его применение ограничивается рядом условий, а само применение ведёт к уменьшению ресурса. На этом режиме двигатель должен работать не более 3% общего срока службы периодами непрерывной работы не более 1-5 мин.

После войны

Мощнейшую конкуренцию после войны двигателям внутреннего сгорания составили ТРД. Проигрыш по удельным параметрам и КПД ВМГ на трансзвуке был непоправим. Двигатели внутреннего сгорания сохранились только для задач, связанных с дальностью. Ибо по КПД, а следовательно экономичности, выигрывали у ТРД почти в два раза.

В это время происходит развитие мощных многорядных воздушного и многоблочных жидкостного охлаждение моторов. Эволюция термодинамических процессов и нагрузки у этого типа моторов привела к тому, что «жидкостники» и «воздушники» сравнялись практически по своим параметрам. Так же эти моторы отличала т.н. «комбинированная схема», когда энергия выхлопных газов тратится ещё и на вращение турбины, мощность которой передаётся на вал мотора.

Но в 50-е с развитием ТВД и ТРД нового поколения и барьер экономичности тоже рухнул. Двигатели внутреннего сгорания ждала только лёгкая (и сверхлёгкая) авиация. Где большим тепловым режимом в связи с малыми мощностями и не пахло. И "жидкостники" окончательно вымерли. Звёзды же остались в основном в спортивной авиации, в основной массе потеснённые рядными и оппозитными двигателями.

Эволюция завершилась. Современные четырёхтактники давно уже конструктивно не развиваются (в отличие от автомобильных двигателей). Реликты...

Список литературы:

www.airpages.ru

Эволюция ДВС: Больше сил при меньшем объеме

Полтора десятка лет – немалый срок в развитиии автомобильных технологий: некоторые изобретения можно назвать революционными. Но и техника, совершенствовавшаяся постепенно, существенно улучшила наш транспорт. Сегодня мы вспомним, как развивались двигатели внутреннего сгорания.

Полтора десятка лет – немалый срок в развитиии автомобильных технологий: некоторые изобретения можно назвать революционными. Но и техника, совершенствовавшаяся постепенно, существенно улучшила наш транспорт. Сегодня мы вспомним, как развивались двигатели внутреннего сгорания.

Последние пятнадцать лет для ДВС можно назвать прогрессивными. Борьба за мощность, экономичность и экологичность обеспечила этому типу моторов ранее невиданный прорыв. В конструкции самых массовых силовых агрегатов появились сложнейшие узлы, в конце прошлого века доступные только в премиум-классе. В самых популярных классах авто привычные многолит­ражные двигатели все чаще уступают место малообъемным, но мощным и тяговитым моторам. Сегодня не редкость 1,4-литровая «четверка» под капотом престижного внедорожника или 1,0-литровый «движок» в седане С-класса. Двигатели теряют не только рабочий объем, но и цилиндры – 3- и даже 2-цилиндровые моторчики со своими характерными тарахтением и вибрациями совершенствуются и неторопливо, но уверенно покоряют рынки развитых стран.

В нашей стране не все подобные тенденции получили активное развитие, но сколько мы продержимся при почти европейских ценах на топливо? Кстати, о топливе: его качество в Украине все реже служит причиной отказа в поставках той или иной модели силового агрегата. Мы давно эксплуатируем получающие широкое распространение двигатели с непосредственным впрыском, в последние 5-6 лет большинство импортеров завозят в страну самые современные дизели и обеспечивают их европейской гарантией. Однако не все моторостроительные новации минувшего 15-летия попали на конвейер – часть осталась на конструкторских кульманах и под капотами опытных машин, к примеру, ДВС с изменяемой степенью сжатия. Навсегда или до лучших времен – об этом мы обязательно напишем на страницах «Автоцентра», если не в рубрике «Новости», то в нашем следующем юбилейном обзоре.

Революция в моторостроении позволила создать малообъемные, но мощные и экологичные моторы с уникальными характеристиками.

Система впуска

Уже в своих первых номерах «Автоцентр» писал о двигателях с изменяемыми фазами газораспределения – дорогих и потому малораспространенных. И если тогда моментом и временем открытия клапанов могли управлять только такие продвинутые «мотористы», как Honda, BMW и Mitsubishi, то к 2003 году это умели даже неторопливые в новациях американцы из GM. Сегодня системы изменения фаз газораспределения применяются и на массовых автомобилях ведущих производителей: VTEC, VANOS, AVS, CVVT, VVT-i… Еще дальше пошел BMW – с 2001 года некоторые его моторы обходятся без дроссельной заслонки: ее заменяет система Valvetronic, регулирующая высоту подъема клапанов. Бездроссельный вариант подхватили и другие автопроизводители, например, тот же Fiat с его новым двухцилиндровым мотором AirTwin мощностью 85 л. с.

Правильный впуск улучшает экономичность и увеличивает мощность моторов. Система впуска

Правильный впуск улучшает экономичность и увеличивает мощность моторов.

 

Система питания

В 1997 году, в первых номерах «Автоцентра», мы рассказывали о многообещающей серийной новинке – бензиновом двигателе GDI с непосредственным впрыском топлива от Mitsubishi. Послойное смесе­образование и сверхобедненные смеси (40:1) обеспечивали высокие удельную мощность, экономичность и экологичность. К 2000 году и позже такой технологией уже обзавелись Toyota (D-4), Nissan (DI), Peugeot-Citroёn (HPi), BMW (HPi), Mercedes-Benz (CGI), VW (TSI). Однако GDI и его аналоги опередили свое время: в 2007-м даже сама Mitsubishi сократила выпуск этого мотора до одной модели. Но через пару лет двигатели с непосредственным впрыском массово выпускали уже несколько компаний, и сегодня они есть у большинства ведущих производителей. В 2004 г. VW дал новый толчок развитию систем питания и моторных технологий: компания смогла совместить непосредственный впрыск и наддув. Еще более эффективными оказались появившиеся в 2006-м моторы семейства TSI c турбо- и механическим компрессорами, эффективно нагнетающими воздух в цилинд­ры, начиная с холостых оборотов, причем каждый на разных режимах. Совмещение непосредственного впрыска и турбонаддува позволило получать моторы с очень большой удельной мощностью, что послужило точком к созданию малообъемных 3- и 2-цилиндровых моторов. Но не только непосредственный впрыск в паре с турбонаддувом совершили революцию. Параллельно с ними совершенствовались все компоненты системы питания. Росло давление впрыска бензина: если в обычных системах впрыска рабочее давление 3–5 бар, то в 2006 г. VW TSI впрыскивал бензин под давлением 150 бар. Еще в 2003 г. Siemens показал форсунку для системы питания с давлением впрыска бензина 200 бар. Для лучшего смесеобразования конструкторы увеличили число отверстий распылителя инжекторов. Сначала у инжекторов было по одному распылительному отверстию, в 2004 году их стало шесть, а в 2005-м появились форсунки с восемью отверстиями.

Быстродействие пьезофорсунок позволило более точно дозировать топливо и подавать несколько порций за время двух тактов – впуск-сжатие. Система питания

Быстродействие пьезофорсунок позволило более точно дозировать топливо и подавать несколько порций за время двух тактов – впуск-сжатие.

 

! Силы и силенки

Удельная мощность силовых агрегатов за минувшие 15 лет выросла радикально. Благодаря совершенным системам питания и эффективным системам наддува при меньшем рабочем объеме (а значит – массе) силового агрегата мощность повысилась.

VW Golf 1997 г.: 2,3 л VR5 150 л. с. 205 Нм – VW Golf 2012 г.: 1,4 л TSI 160 л. с. 240 Нм.Ford Escort 1997 г.: 1,8 л 116 л. с. 160 Нм – Ford Focus 2012 г.: 1,0 л 125 л. с. 200 Нм.

Наддув

В «детские» годы «Автоцентра» в любом каталоге можно было найти дюжину моделей с атмосферным дизелем, а наддувный бензиновый агрегат считался прерогативой едва ли не спорткаров. Сегодня наддувные агрегаты стоят во главе прогресса: они творят чудеса, превращая малолитражные моторчики в силовые агрегаты для авто В- и С-класса.Старую идею объединения двух типов наддува – турбины и приводного компрессора – общедоступной сделал VW в 2006 г. Новый 1,4-литровый бензиновый двигатель с непосредственным впрыском VW TSI получил характеристики на уровне 2,5-литровых «атмосферников», демонстрируя пример экономичности и экологичности. Электронный блок управления, активируя компрессор на «низах» и чуть «выше» и турбину на средних и высоких оборотах, обеспечивает максимальный крутящий момент в широком диапазоне оборотов. В 2009-м BMW усовершенствовал турбину типа Twin Scroll, добавив к разделенной трубе, подводящей выхлопные газы к лопаткам «горячего» колеса, вторую «улитку». Грядет эра электрокомпрессоров. Так, компания Valeo приобрела одного из разработчиков и изготовителей подобных нагнетателей.

В Twin Scroll-е ротор-турбина эффективнее раскручивается во всем диапазоне оборотов, обеспечивая ровную тягу без турбоямы.

В Twin Scroll-е ротор-турбина эффективнее раскручивается во всем диапазоне оборотов, обеспечивая ровную тягу без турбоямы.

Особая архитектура

С точки зрения компоновки силовых агрегатов за последние 15 лет мало что изменилось. Очень интересны своим высоким уровнем технологий и компактностью многолитровые силовые агрегаты необычных схем – VR6, W8, W12 – все так же остаются достоянием малотиражных моделей и версий. Однако в 2011 г. компания BMW, одна из законодательниц моторостроительной моды, объявила о применении нового принципа конструирования своих моторов. Отныне баварские агрегаты будут «собираться» из унифицированных цилиндров и прочих стандартизированных узлов – как из кубиков: так дешевле. Совершенно оригинальные, мощные и компактные роторные «Ванкели» в 1997 году выпускались лишь «ВАЗом» и Mazda. Но даже «японка» RX-8 образца 2003-го (на фото внизу) не дожила до наших дней. Так и не прописались под капотами серийных авто моторы с изменяемой степенью сжатия типа SVC (2000 г.), FEV Motorentechnik и MCE-5 (2008 г.): высокая отдача (1,6 л – 225 л. с. и 305 Нм), бензиновая всеядность и экономичность так и не перевесили сложностей конструкции. В той же копилке интересных идей остались пока двигатели типа DiesOtto и HCCI, разработанные Mercedes и GM, функционирующие одновременно по принципу дизеля и искрового зажигания. Характеристики их хороши (1,8 л – 238 л. с. и 400 Нм), но затраты на доводку пока непозволительно высоки. Одним словом, ни один из двигателей нестандартной компоновки, которые наблюдал «Автоцентр» в течение своих первых пятнадцати лет, не стал массовым.

Чтобы продлить жизнь двигателю Ванкеля, японцы пытались перевести его на водородное топливо. Mazda RX-8

Чтобы продлить жизнь двигателю Ванкеля, японцы пытались перевести его на водородное топливо.

Mazda RX-8

Дизелизация

ДизелизацияС начала «Автоцентр» писал о дизелях исключительно в рубрике «Подержанные автомобили» – новые машины с такими моторами в Украину практически не завозились из-за некачественного топлива. Однако с середины 2000-х топливо улучшилось, а дизельные авто превратились в динамичные машины. На наших глазах совершенствовалась систе­ма впрыска топлива. В 1997-м появляется управляемая электроникой система Common Rail, в 1998-м – насос-форсунки. Следом за электромагнитными форсунками с 2003-го начинается внедрение быстродействующих пьезоэлектрических. В 2005 г. они успевают впрыскивать до 5 порций топлива за один цикл, 2010 г. – 6 порций, чем смягчают работу дизеля и повышают его эффективность. Форсунки стали оснащаться распылителями со все большим числом отверстий – шесть, затем восемь. Растет и давление топлива: 1350, 1800, 2000, 2500 бар.

Пьезоэлектрические форсунки совершили революцию в дизелестроении, дав шанс этому типу мотора и дальше служить человечеству. Насос-форсунки «уходят» из-за наличия только однофазного впрыска.

Пьезоэлектрические форсунки совершили революцию в дизелестроении, дав шанс этому типу мотора и дальше служить человечеству.

Насос-форсунки «уходят» из-за наличия только однофазного впрыска.

Игорь Широкун Фото из архива редакции

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

www.autocentre.ua

ЭВОЛЮЦИЯ АВТОМОБИЛЬНЫХ ДВИГАТЕЛЕЙ

За более чем столетнюю историю своего существования ДВС прошли значительную эволю­ цию, они стали более мощными, экономичными, легкими и экологически чистыми, чем их предшественники. И хотя за это время предлагалось много альтернативных вариантов авто­ мобильных двигателей, на сегодняшний день реальной экономически целесообразной за­ мены существующим двигателям нет. Это, главным образом, обусловлено тем, что топливо, которое используют эти двигатели, можно хранить в компактном виде и его запаса хватает на достаточно большой пробег автомобиля.

Первые автомобили приводились в движение паровыми двигателями, которые появи­ лись в XVIII веке и являлись двигателями внешнего сгорания. В этих двигателях топливо сжи­ галось вне цилиндра двигателя и использовалось для получения водяного пара, а точнее, газа, который поступал под давлением в цилиндр двигателя и приводил в движение пор­ шень. Изобретателем первого работоспособного парового двигателя является англичанин Джеймс Уатт, который получил патент на свое изобретение в 1784 г. Паровые двигатели то­ го времени были тяжелыми и громоздкими, а главное — они имели очень низкий коэффици­ ент полезного действия (КПД).

Попытки создания более эффективного двигателя (внутреннего сгорания), в котором топ­ ливо сжигается внутри цилиндра, а расширяющиеся газы приводят в движение поршень, увенчались успехом только в 1860 г., когда французский механик Жан-Этьен Ленуар создал и запатентовал первый работоспособный ДВС. В этом двигателе движущийся поршень заса­ сывал внутрь цилиндра смесь горючего газа с воздухом, и в середине хода поршня смесь воспламенялась электрической искрой.

Возможность практического использования ДВС возникла только после того, как было использовано сжатие газа в цилиндре. В 1866 г. немецкий изобретатель Никола- ус Август Отто получил патент на четырехтактный двигатель внутреннего сгорания, в ко-

тором использовался принцип сжатия горючей смеси перед зажиганием. Рабочий процесс, происходящий в таких двигателях, получил название «цикл Отто». ДВС, рабо­ тающие на этом принципе, имели значительно более высокий КПД, чем паровые дви­ гатели, и, естественно, вытеснив последние, остаются самыми распространенными до сегодняшнего дня.

Позднее, англичанин Дуглас Кларк изобрел двигатель, работающий по двухтактному циклу, но такие двигатели не нашли широкого применения на автомобилях.

В 1892 г. Рудольф Дизель получил патент на двигатель, в котором использовался четы­ рехтактный цикл Отто. Отличие заключалось в том, что в цилиндр подавалась не смесь топ­ лива с воздухом, а чистый воздух, который сильно сжимался, нагреваясь при этом до высо­ кой температуры, достаточной для воспламенения топлива, подаваемого затем в цилиндр, без необходимости применения для этого электрической искры. Сегодня такие двигатели, называемые по имени создателя дизелями, широко применяются в качестве силовых агре­ гатов автомобилей.

По конструкции все автомобильные двигатели внутреннего сгорания можно разделить на поршневые и роторные. В поршневых двигателях расширяющиеся при сгорании топлива газы приводят в движение поршень, возвратно-поступательное движение которого преоб­ разуется во вращение коленчатого вала. В зависимости от способа воспламенения такие двигатели можно разделить на две группы: с воспламенением от искры (бензиновые) и с воспламенением от сжатия (дизели). В роторных двигателях расширяющиеся газы воз­ действуют на вращающуюся деталь — ротор. Роторные двигатели подразделяются на га­ зотурбинные и роторно-поршневые. Наибольшее применение на автомобилях получили поршневые ДВС.

 

§6

Похожие статьи:

poznayka.org

Эволюция двигателя внутреннего сгорания - Mashin Car

Как развивался ДВС: основные даты

Но затем при массовом появлении электронного впрыска автопроизводители с помощью компьютера стали применять различные настройки, автоматически регулирующие качество топливной смеси, что позволило существенно улучшить экономичность двигателей и снизить уровень вредных веществ в выхлопе. Но главное, что удалось сделать с помощью компьютерных настроек и регулировки топливной смеси, – это снизить до минимума риск самовоспламенения топлива. В итоге со временем стало невыгодно использовать большие мощные моторы с низкой степенью сжатия.  Так автопромышленность ввела новую моду – уменьшение количества цилиндров. Чтобы сохранить мощность в моторах, автопроизводители стали использовать турбины. Но главное – благодаря электронике, которая управляет качеством топливной смеси, автопроизводители снова могут создавать моторы с большой степенью сжатия, не опасаясь самовоспламенения топлива. 

Но в 2012 году компания Mazda удивила весь мир, представив фантастический мотор SKYACTIV-G, который имеет невероятно высокий коэффициент сжатия для серийного двигателя. Степень сжатия этого мотора составляет 14:1. Это позволяет мотору извлекать энергию почти из каждой капли бензина без образования смога. 

Следующим шагом для Mazda стал новый мотор SKYACTIV-X, который использует контролируемое зажигание (система SPCCI). Благодаря этой системе появилась возможность воспламенять бензин практически за счет одного только сжатия. То есть как в дизельных моторах. Также в двигателях SKYACTIV-X есть возможность воспламенять топливо обычным образом. Причем электроника автоматически выбирает, как выгоднее воспламенять бензин в камере сгорания. Все зависит от потребностей водителя и условий движения.

Например, если вам нужна сила (крутящий момент), то двигатель SKYACTIV-X  будет воспламенять топливо от силы сжатия (почти как дизель). Если вам нужна мощность, то мотор с высокой степенью сжатия будет воспламенять топливо обычным образом. Причем реально для придания мощности будет использована последняя капля бензина.

Даже спустя столетие и даже с появлением альтернативных видов топлива, а также с появлением электрокаров двигатели внутреннего сгорания остаются главными силовыми агрегатами в автопромышленности. И несмотря на то что многие эксперты считают, что ДВС изжил себя и в скором времени должен исчезнуть из автомира, нам кажется, что двигатель внутреннего сгорания еще не развился до конца. Также мы считаем, что мир в ближайшие 100 лет все равно не будет готов полностью отказаться от ДВС, работающих на бензине.

И кто его знает, что нам подготовят автомобильные компании в ближайшем будущем. Ведь их инженеры не зря получают бутерброды с черной икрой. Вполне возможно, что уже скоро очередной автопроизводитель удивит нас какой-нибудь новой технологией в ДВС.

Так что рано сбрасывать со счетов традиционные моторы. Может быть, электрокары – это временное явление? Скорее всего, это более вероятно.

Источник

autotorservice.ru

Эволюция автомобильных двигателей

Большинство двигателей за свою историю весьма усовершенствовались. После первой моторной системы производители вскоре создали сервомотор, заменивший реле, которое устанавливало соединение. Впоследствии цены на электронные компоненты стали более низкими и улучшилось радиооборудование, которое заставляет двигатель регулироваться импульсами переменной ширины. В результате получают изменение скорости без чрезмерного снижения момента электродвигателя. Но, несмотря на все эти достижения и улучшения, они все еще менее эффективны, чем бесщеточные двигатели.

Люди всегда искали новые модели автомобилей, чтобы обеспечить лучшую производительность. Электродвигатели сменялись бензиновыми, дизельными и наоборот. Ремонтопригодность каждого типа двигателя тоже важна при эксплуатации, всегда надо  рассматривать такие возможности как купить восстановленные турбины, способность сделать капремонт, продлить жизнь мотору. Стоимость работ должна соотноситься к стоимости разных двигателей, чтобы сделать выбор среди лучших.

Бесщеточные электродвигатели имеют особое отношение к двигателям автомобилей с высокой производительностью и низким потреблением энергии.

Эти двигатели бывают двух типов:

С инвертором, или внутренним ротором. Был впервые применен к самолету. У таких двигателей отверстие находится в наружном корпусе, а ротор внутри, они имеют более малый диаметр и низкий крутящий момент, но более высокую скорость. В настоящее время его чаще всего используют в турбинах EDF и редукторах гребного винта, особенно планетарных.

С излучателем, или вращающимся корпусом. Они моделируются на двигателях, в которых постоянные магниты расположены в кольце вокруг группы катушек, размещенных радиально. Эти двигатели по диаметру больше, чем rs, пара намного выше. Они работают со схемами, которые позволяют прямое использование пропеллеров, даже с довольно большими диаметрами относительно общего веса, применимыми к любому самолету.

Чтобы распределить мощность этих электродвигателей, важно использовать специальные приводы, которые генерируют трехфазный ток, изменяющийся по частоте. Автомобили с двигателями rc питаются от батареек, которые должны быть независимы от питания других электрических устройств внутри автомобиля, таких как приемник и сервоприводы. Хотя почти все приводы общего назначения имеют источник питания от аккумуляторного двигателя и отвечают за низкое напряжение батареи при разрядке, а также за резание мощности двигателя для поддержания радиооборудования.

interesnyeknigi.ru

Двигатель эволюции — не борьба за выживание, а взаимопомощь, считают ученые 

Двигатель эволюции — не борьба за выживание, а взаимопомощь, считают ученые Вся сложность процесса эволюции, как правило, сводится к заключению «выживает сильнейший». Множество теорий и гипотез говорят о том, что соперничество видов является главным двигателем эволюции и динамики биоразнообразия.

Однако, если принять за истину, что выживает сильнейший, возникают определенные вопросы. Самый глупый из них: если выживает самый сильный, то почему динозавры вымерли, а тараканы живут по сей день? Неужели тараканы сильнее?

Здесь и заключается ошибка: выживает отнюдь не сильнейший, а наиболее приспособленный (survival of the fittest). Современные исследователи процесса эволюции склоняются к тому, что выживает тот вид, который сумел хорошо приспособиться к окружающим реалиям.

Двигатель эволюции — взаимопомощь

Однако, этого объяснения ученым недостаточно. Им важно понять, что движет процессом биологического разнообразия. Только изучив механизмы происхождения видов, можно понять, как сохранить разнообразие видов животных и растений, населяющих нашу планету.

Доцент биологического института Томского государственного университета (Россия) Роберто Кацолла Гатти опубликовал статью о том, что, по его мнению, соперничество и борьба за выживание не являются основными двигателями эволюции. Согласно его теории, избежание конкуренции, взаимопомощь и кооперация позволяют развиваться новым видам, сообщает Science Daily.

В течение нескольких месяцев его модель оставалась без подтверждения.

Между тем несколько недель назад, исследователи из университета Берна в Швейцарии, опубликовали данные эмпирического эксперимента, которые помогают доказать верность рассуждений Кацолла Гатти.

Дэвид Маркес и его коллеги наблюдали за популяцией колюшек в Констанцском озере, которая разводилась там уже 150 лет. Ученые наблюдали, как популяция рыб прямо перед их глазами достаточно быстро разделилась на два вида. Исследование демонстрирует, что даже если популяция рыб живет в одном месте в один и тот же отрезок времени и подвергается межвидовому скрещиванию, они все равно могут разделиться на 2 генетических подвида. “Эволюция на наших глазах” оказалась возможной не только для микроскопических бактерий и микробов, которые успешно меняются, становясь устойчивыми к антибиотикам, но и существ, которых реально разглядеть без микроскопа.

Маркес заключает, что пока неясно, продолжат ли колюшки эволюционировать и полностью разделятся на два нескрещивающихся вида. В любом случае, этот пример служит еще одним доказательством возможности симпатрического видообразования.

Об этом и заявляет Кацолло. Суть его рассуждений сводится к тому, что симпатрическое видообразование (возникновение видов внутри одного места обитания) выступает главным механизмом совместного обитания видов и ведет к образованию новых. Тогда как конкуренция между видами означает невозможность сосуществования. В этом случае, выживает наиболее конкурентоспособная особь. С другой стороны, для этого она накапливает множество мутаций, направленных на адаптацию, а не на разнообразие. Более того, в дальнейшем это приводит к вымиранию (исчезновению) изначального вида.

Двигатель эволюции — взаимопомощь

Ученые считают, что главным двигателем процесса эволюции является взаимопомощь, а вовсе не конкуренция между видами.

Сосуществование видов симпатрическим путем предполагает низкую конкуренцию либо ее отсутствие. Это приводит к небольшим смещениям ниши обитания метапопуляции при помощи накопления фенотипических различий (они образуются под воздействием окружающей среды). Таким образом, мирное обитание в пределах одной территории позволяет животным постепенно разделяться на различные подвиды, меняя постепенно нишу обитания и накапливая фенотипические различия. Самое главное, этот процесс не мешает сохранению всех видов животных, что выгодно отличает ее от модели конкуренции.

Безусловно, конкуренция и накапливание мутаций (классическая идея естественного отбора) ведут к сохранению и адаптации видов, что также немаловажно.

Таким образом, оба процесса имеют место быть в окружающем мире. Для биологического разнообразия необходима кооперация, сосуществование и взаимопомощь. Для сохранения вида принципиальна конкуренция.

Эти исследования важны не только для понимания возникновения биологического разнообразия, но и показательны для людей.

Исследования ученого дают больше ясности относительно того, сколько времени требуется для образования новых видов. Если люди не изменят свое «неестественное» поведение, которое до сих пор сводилось к конкуренции и вело к разрушению окружающего мира, то понадобятся миллионы лет для восстановления видового разнообразия планеты.

На самом деле человечество должно понять, что только взаимопомощь ведет к эволюции и прогрессу. Получается, до сих пор мы двигались в обратном направлении.

 

vzaimnyi-vybor-partneraПрочтите также:

Share this articleFacebooktwitterpinterestmail

blogs.elenasmodels.com


Смотрите также