ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Степень сжатия дизельного двигателя – как увеличить параметры? Давление в камере сгорания двс


Температура в камере сгорания дизельного двигателя и давление

Температура и давление в дизельном двигателе

Дизельный двигатель сегодня является вторым по степени распространенности типом ДВС после бензинового агрегата. Конструктивно дизельный мотор похож на бензиновый аналог, так как имеет все те же цилиндры, шатуны, поршни, коленвал  и т.д. При этом все детали более массивные и тяжелые, ведь они должны выдерживать повышенные нагрузки.

Дело в том, что степень сжатия в дизеле выше, чем в агрегатах на бензине. Если в бензиновом моторе указанный средний показатель составляет от 9-и до 11-и единиц, то в дизельном уже целых 20-24. По этой причине дизельный двигатель тяжелее и крупнее бензинового агрегата.

Главным же отличием является способ приготовления, подачи и воспламенения топливно-воздушной смеси. В большинстве моторов на бензине рабочая смесь образуется во впускном коллекторе и «засасывается» в цилиндры.

После подачи в цилиндры рабочая смесь воспламеняется в камере сгорания от искры. При этом в дизельном двигателе топливо и воздух подаются отдельно, при этом смесь воспламеняется самостоятельно от резкого сжатия и нагрева.

Далее мы поговорим о том, какие процессы протекают в камере сгорания дизельного двигателя, как реализована подача дизтоплива, каким образом происходит смесеобразование и воспламенение заряда, а также какое давление и температура в камере сгорания дизеля.

Читайте в этой статье

Камеры сгорания дизельных двигателей и особенности работы такого ДВС

Камеры сгорания дизельных двигателей

Начнем с того, что камеры сгорания дизельных двигателей несколько отличаются от бензиновых. Существует два основных типа камер:

Неразделенный тип является однообъемной камерой, как правило, простой формы, которая согласована с расположением форсунок. Такие камеры обычно выполняются в днище поршней, также могут быть изготовлены частично в днище и частично в ГБЦ, редко только в головке блока.

Разделенный тип камеры сгорания предполагает два отдельных друг от друга объема, которые соединены посредством особых каналов. Таких каналов может быть от одного и больше.

Если говорить о плюсах и минусах, первый тип позволяет обеспечить двигателю лучший КПД, однако температуры в такой камере сгорания выше. Также растут и ударные нагрузки. Что касается разделенных камер сгорания, КПД меньше, однако удается реализовать более полноценное сгорание топлива, такой дизель меньше коксуется, дымит и т.д.

Читайте также

Как сгорает топливо в дизельном двигателе

Сгорание топлива в дизельном двигателе

Теперь давайте рассмотрим сам процесс горения. Как известно, для горения топлива необходимо определенное количество кислорода, а также источник, который позволит смеси воспламениться.

В дизеле вместо внешней искры таким источником является высокая температура, то есть нагрев.

Указанный нагрев достигается благодаря тому, что воздух в цилиндре сильно сжимается, а дизтопливо подается в самый последний момент. Это обусловлено тем, что температура, необходимая для воспламенения, растет с ростом давления, при этом температура самовоспламенения топлива в подобных условиях понижается.

Другими словами, топливно-воздушная смесь в дизельном двигателе самовоспламеняется от высокого давления и нагрева. При этом нормальная работа мотора сильно зависит от правильно настроенного впрыска, качественного сжатия смеси, а также от полноты сгорания заряда в цилиндрах.

В самом начале в цилиндр подается воздух, сжимается и нагревается. Далее топливо впрыскивается в камеру сгорания дизельного двигателя, во время впрыска происходит его распыление.

Затем возникает самовоспламенение, пламя распространяется по цилиндру. Впрыск горючего останавливается, а остатки топлива продолжают гореть. Далее процесс повторяется.

Как видно, хотя подача и горение заряда в дизеле протекает за очень короткий промежуток времени, этот отрезок можно разделить на этапы:

Фактически туман представляет собой мельчайшие капли топлива, но они не воспламеняются. Дело в том, что сначала горючее должно испариться.

Только после этого произойдет смешивание испаренного дизтоплива с воздухом, а сама смесь нагреется до температуры, необходимой для самостоятельного воспламенения. Отметим, что задержка воспламенения должна быть короткой.

Такое начальное горение приводит к повышению температуры и давления в цилиндре. В результате топливо, которое еще не загорелось, активно испаряется и смешивается с воздухом. В этот момент фактически происходит полное возгорание смеси в цилиндре, при этом резко увеличивается давление.

Именно на данном этапе давление в результате сгорающего топлива с большой силой толкает поршень, заставляя двигатель совершать полезную работу. Что касается температуры, показатель растет до 2200 К.

Как видно, давление в камере сгорания дизельного двигателя играет первостепенную роль для реализации самовоспламенение топлива. Что касается впрыска, необходимо, чтобы солярка подавалась в строго определенный момент, в нужном количестве, а также качественно распылялась.

Если возникнут сбои, распространение пламени будет нарушено, температура в камере сгорания дизельного двигателя  повышается,  возникает риск детонации, топливо не сгорает в полном объеме и т.д.

Частые проблемы дизелей: момент впрыска и компрессия

Компрессия в дизельном двигателе

Если сжатие смеси в цилиндре оказывается недостаточным, во время работы двигателя можно услышать шумы и металлические стуки. Дело в том, что в таком случае смеси нужно больше времени, чтобы нагреться до температуры воспламенения.

Получается, снижение компрессии дизельного двигателя увеличивает время до воспламенения заряда.

При этом в цилиндре несгоревшей смеси будет больше, чем нужно. В результате в момент возгорания такого заряда процесс горения приобретает взрывной характер, давление резко увеличивается, появляется ударная волна и детонация, разрушая ЦПГ и оказывая значительные нагрузки на детали мотора.

Также снижение компрессии приводит к тому, что дизель начинает дымить. Выхлоп может быть черным или серовато-белым. В случае с белым дымом из выхлопной трубы, дизтопливо попросту неэффективно воспламеняется в момент, когда поршень доходит до ВМТ.

Затем поршень идет вниз, температура и давление дополнительно снижаются, нет условий для горения. Получается, несгоревшая солярка испаряется и далее попадает в выпускную систему

То же самое происходит и в том случае, если впрыск дизтоплива слишком поздний. Другими словами, компрессия в цилиндрах нормальная, но подача топлива с опозданием приводит к тому, что поршень уже идет вниз, нет нужного сжатия и давления для самовоспламенения.

Если же выхлоп черный, это может указывать на то, что форсунки «переливают», то есть подача горючего происходит в большем объеме, чем необходимо. Простыми словами, дизтоплива много, а кислорода просто недостаточно на такое количество горючего.

Имеющийся кислород позволяет выгореть только части топлива, а несгоревшие остатки превращаются в углерод, что и проявляется в виде характерного черного дыма из выхлопной трубы.

Степень сжатия что это такое Рекомендуем также прочитать статью о том, что такое степень сжатия двигателя. Из этой статьи вы узнаете о данном параметре применительно к двигателю внутреннего сгорания и особенностям его работы.

Еще отметим, что к похожим проблемам может приводить недостаточная подача воздуха (например, забит воздушный фильтр), завоздушивание системы питания дизельного двигателя и т.д.

В итоге, если нарушается нормальный процесс смесеобразования, это закономерно влияет на момент воспламенения и последующую эффективность сгорания топливного заряда в цилиндрах.

Что в итоге

С учетом вышесказанного становится понятно, что дизель особенно нуждается в высокоточном топливном впрыске. От этого напрямую завит КПД, ресурс мотора, экономичность, уровень токсичности отработавших газов и ряд других важных параметров.

По этой причине дизельные форсунки на современных типах указанных моторов способны обеспечить так называемый фазированный (многофазный) впрыск,  подавая дизтопливо до 10 раз за один рабочий такт мотора.

Напоследок отметим, что сегодня привычный ТНВД с механическими форсунками активно заменяется насос-форсунками или системой Common Rail, позволяя добиться максимальной эффективности впрыска горючего на всех этапах подачи топлива в камеру сгорания.

Подобные решения в сочетании с турбокомпрессором позволяют современному дизельному мотору уверенно конкурировать на рынке с бензиновыми аналогами, при этом высокая топливная экономичность остается главным преимуществом дизельного двигателя.

Читайте также

krutimotor.ru

Принцип работы двигателей внутреннего сгорания

В современной технике широко используются двигатели внутреннего сгорания (ДВС) трех основных типов. Горючая топливовоздушная смесь (ТВС) может подаваться в камеру сгорания периодически (циклически) в ДВС карбюраторных и дизельных или непрерывно в ДВС турбокомпрессорных воздушно-реактивных. В карбюраторных и дизельных ДВС в цилиндровопоршневой группе четырехтактного (или реже двухтактного) принципа реализуется рабочий цикл в четыре (или два) хода поршня (такта).

В карбюраторном ДВС (N.Otto, 1880 г.) карбюратор дозирует и мелко распыляет через жиклер порцию топлива в поток воздуха во всасывающем патрубке двигателя для образования ТВС. В первом такте (всасывание) ТВС засасывается поршнем в цилиндр через открытый впускной клапан (выпускной клапан цилиндра закрыт, поршень движется вниз). Во втором такте (впускной и выпускной клапаны закрыты, поршень движется вверх) ТВС сжимается поршнем только лишь до 0,7-1,0 МПа (превышение этого давления вызывает взрывное самовоспламенение топлива), температура в цилиндре повышается до 200-400 °С, заканчивается испарение мельчайших капель топлива и перемешивание ТВС. В конце сжатия с некоторым опережением нагретая ТВС воспламеняется от электрической искры между электродами свечи. ТВС начинает гореть, при этом давление в цилиндре (впускной и выпускной клапаны закрыты) быстро растет до 3-6 МПа за счет образования большого количества газов (продуктов) сгорания - поршень вынужденно движется вниз, совершает рабочий ход (третий такт) и вращает через шатунно-поршневой механизм коленчатый вал двигателя, который совершает полезную работу. После этого поршень движется вверх и через открытый выпускной клапан (впускной клапан закрыт) выталкивает горячие отработанные продукты сгорания из цилиндра - это четвертый такт (выхлоп) рабочего цикла двигателя. С помощью коленчатого вала и шатунно-поршневой группы в каждом из цилиндров (их может быть 4, 6, 8 и больше) двигателя последовательно друг за другом осуществляются все четыре такта рабочего цикла.

Время сгорания ТВС в цилиндре карбюраторного двигателя очень мало -тысячные доли секунды, поэтому к топливу предъявляется основное требование - сгорать постепенно (но не в форме взрыва) по мере продвижения фронта пламени по камере сгорания в верхней части цилиндра. Фронтом пламени называют тонкий слой газа (пара), в котором протекает реакция горения топлива. При нормальном горении фронт пламени распространяется со скоростью 20-30 м/с. Давление газов во время сгорания плавно поднимается до 3-6 МПа, а их температура повышается до 1600-1800 °С (в ракетном двигателе температура сгорания топлива может быть 3400 °С).

ДВС любой конструкции имеет надежную систему охлаждения (воздушного или жидкостного) для исключения перегрева деталей и узлов, которые соприкасаются с горячими продуктами сгорания. Топливом карбюраторных ДВС являются бензины. Расширяется использование в этих ДВС сжиженных углеводородных газов и сжатого природного газа. В настоящее время ожидается массовый переход ведущих автомобилестроительных фирм мира на бензиновые двигатели с прямым впрыском топлива или с карбюратором и системой впрыска (совместно), при этом переход на систему впрыска бензина с повышением его октанового числа позволит сократить расход топлива в целом минимум на 10 %.

В дизельных ДВС (R. Diesel, 1897 г.), в отличие от карбюраторных, вначале цилиндр заполняется только окислителем - воздухом (первый такт - всасывание воздуха). Затем во втором такте воздух сжимается до 6-8 МПа (здесь нет ограничений по сжатию и нагреву воздуха без топлива) и в результате этого нагревается до 550-650 °С. В третьем такте в сжатый и сильно нагретый воздух дозировочным насосом высокого давления впрыскивается через форсунку мелко распыленная порция топлива. Мельчайшие капли топлива испаряются и равномерно распределяются в воздухе с образованием ТВС. Через определенный весьма незначительный момент времени ТВС самовоспламеняется и полностью сгорает. Время между началом впрыска топлива и самовоспламенением ТВС называется периодом задержки самовоспламенения. В быстроходных (высокооборотных) дизельных двигателях этот период длится не более 0,002 с. В результате сгорания ТВС давление образовавшихся продуктов сгорания достигает 6-10 МПа, они двигают поршень - происходит третий такт (рабочий ход поршня). Потом поршень выталкивает отработанные продукты сгорания из цилиндра - четвертый такт рабочего цикла двигателя. Опять же к топливу предъявляется основное требование - способность быстро самовоспламеняться и плавно (без взрыва) сгорать, обеспечивая этим постепенное нарастание давления и «мягкую» без стука работу двигателя.

Если степень сжатия (отношение объема цилиндра над поршнем в крайнем нижнем его положении к объему цилиндра над поршнем в крайнем верхнем его положении) карбюраторных ДВС обычно 8-12, то для дизельных ДВС она достигает 40-60, причем чем выше степень сжатия, тем экономичнее ДВС. Поэтому дизельные ДВС расходуют обычно на 20-30 % меньше топлива, чем карбюраторные ДВС. Однако новые бензиновые двигатели легковых автомобилей со степенью сжатия 10,5-11,6, использующие лучшие автобензины с исследовательским октановым числом 98-100 (супер и суперплюс) расходуют на единицу мощности на 15-20 % меньше топлива, чем дизельные двигатели равной мощности. При этом размеры бензиновых ДВС в 1,5 раза меньше, а расход металла на их изготовление в 2-3 раза ниже, чем дизельных. Топливом дизельных ДВС является дизельное топливо. Для стационарных дизельных ДВС, например судовых, применяют и более тяжелые нефтяные топлива (флотские мазуты). Для дизельных газомоторных компрессоров используют природный и нефтяной газы. Эксплуатируются стационарные дизельные ДВС мощностью до 30 МВт.

Третий тип ДВС с непрерывной подачей топлива в камеру сгорания используется в авиации (турбокомпрессорный воздушно-реактивный двигатель - ТКВРД) или на стационарных газотурбинных установках (ГТУ) для привода мощных газовых центробежных компрессоров (турбокомпрессоров), на газотурбинных электростанциях и на транспорте (газотурбовозы). У этих ДВС рабочий цикл работает не во времени, а по длине двигателя, т. е. отдельные стадии цикла передаются в двигателе по его длине, за счет чего обеспечивается непрерывность подачи топлива и достигается значительно большая мощность в единице объема двигателя. Осевой компрессор, вал которого вращается со скоростью 15 000-30 000 об/мин, засасывает окружающий воздух и сжимает его до 0,8-1,2 МПа, в результате чего сжатый воздух разогревается. Сжатый и нагретый воздух поступает в 6-8 камер сгорания из жаропрочной стали, расположенных вокруг вала двигателя. По оси камеры сгорания имеются форсунки, через которые насосами высокого давления подается топливо в виде мелких капель в поток сжатого и горячего воздуха. Капли топлива испаряются, смешиваются с воздухом с образованием ТВС, которая сгорает и образует продукты сгорания. Продукты сгорания, охлажденные от температуры горения 1600-1800 °С до температуры 730-830 °С, из камеры сгорания направляются на лопатки газовой турбины и вращают ее. Турбина имеет один вал с компрессором, поэтому мощность турбины должна быть достаточной для компримирования воздуха до необходимого давления. На выходе из турбины продукты сгорания имеют еще достаточное давление, поэтому они, расширяясь при падении их давления в сопле двигателя, создают реактивную тягу для движения самолета.

На стационарных ГТУ или вертолетных ТКВРД, где реактивная тяга не нужна, всю энергию движущихся продуктов сгорания «срабатывают» на газовой турбине (в этом случае она многоступенчатая), которая не только вращает вал своего воздушного компрессора, но приводит во вращение вал внешнего источника (электрогенератора, газового компрессора, винта вертолета и т.п.). Топливом стационарных ГТУ являются различные газотурбинные топлива. Для привода мощных газовых турбокомпрессоров как на магистральных газопроводах, так и на ряде технологических установок (например, сжижения природного газа) в качестве топлива ГТУ используют природный газ. Эксплуатируются газовые турбины турбокомпрессоров для магистральных газопроводов и ГПЗ мощностью до 25 МВт. Газотурбинные двигатели нового поколения для электростанций могут иметь к.п.д 50 % и мощность до 110 МВт.

Самыми уникальными являются современные двигатели пилотируемой космической техники. Жидкостный ракетный двигатель (ЖРД) работает в разреженных слоях атмосферы, где кислорода очень мало, и в космическом пространстве, где его практически нет. Поэтому ракета и космический корабль должны иметь на борту не только топливо, но и окислитель. Для мощных ракетных двигателей окислителем служат сжиженный кислород, тетраоксид азота (четырехокись азота), пероксид водорода и др. В качестве топлива используются сжиженный водород, жидкие ракетные топлива (например, на основе керосиновых фракций и др.), диметилгидразин (гидразин, «геп-тил») и т. д. Основные части ЖРД: баки - емкости для топлива и окислителя, парогенератор, турбонасосный агрегат, форсунки, камера сгорания, сопло, система управления и др.

Масса окислителя и топлива составляет до 90 % массы ракеты-носителя. Многоступенчатая управляемая баллистическая ракета диаметром до 4-5 м и общей высотой более 50 м для выведения в космос полезного груза до 140 т имеет стартовую массу около 3000 т (1985 г.). Ракетные двигатели работают на активном участке траектории около 15 мин. Температура продуктов сгорания, например керосина в смеси с кислородом, - до 3400 °С. Давление в камере сгорания ракетных двигателей первого поколения для космического корабля «Восток» было около 3,5 МПа, а для космических кораблей типа «Союз» - более 30 МПа. В 1970 г. американец Г. Габелиш установил рекорд скорости на суше - 1001 км/ч. Четырехколесная гоночная машина «Голубое пламя» длиной 12 м имела ракетный двигатель на топливе - сжиженном природном газе с окислителем (пероксидом водорода). В 1997 г. британец Э. Грин увеличил этот рекорд до 1228 км/ч на сверхзвуковом автомобиле «Thrust Super Sonic Саг» с двумя турбореактивными двигателями Rolls-Royce мощностью по 53 000 л.с.

enciklopediya-tehniki.ru

Что происходит в камере сгорания дизельного двигателя?

Сам процесс горения происходит при наличии нескольких компонентов – материала горения, кислорода в нужном объеме и источника воспламенения. Помимо пламени или искры источником воспламенения может стать нагрев. Как известно, дизельное топливо самовоспламеняется именно от нагрева. Воспламенение происходит в результате сжатия воздуха в цилиндре до нужной температуры. При этом температура воспламенения растет по мере роста давления, а температура самовоспламенения топлива уменьшается с ростом давления. Таким образом, топливовоздушная смесь в дизельном двигателе легко воспламеняется при высоком давлении, и это происходит тем лучше, чем больше разница этих температур.

Стоит сразу оговориться, что дизельный двигатель работает с хорошей отдачей только тогда, когда в нем хорошо сгорает топливо. При этом высокое давление в цилиндре и правильный впрыск топлива являются ключевыми факторами для горения дизтоплива.

Что происходит в камере сгорания дизельного двигателя?

Этот процесс можно описать так. Топливо из форсунки впрыскивается в цилиндр дизельного двигателя, распыляется и самовоспламеняется, и пламя распространяется по всему цилиндру. В этот момент впрыск прекращается, а несгоревшее топливо продолжает догорать. Таким образом, весь процесс горения, которое продолжается совсем короткое время, можно разбить на несколько отдельных этапов.

Этап от впрыска топлива до начала его горения – период задержки воспламенения. В этой фазе форсунки впрыскивают горючее, оно распространяется в виде тумана в воздухе, нагретом высоким давлением. Этот туман состоит из микроскопических капель топлива, но мгновенно оно не воспламеняется, так как прежде ему нужно испариться под воздействием горячего воздуха. Топливо перемешивается с воздухом и нагревается до температуры самовоспламенения. Очень важно, чтобы период задержки воспламенения был максимально коротким, так как именно от эффективности этого этапа зависят последующие этапы горения.

С начала воспламенения и до момента, когда пламя распространилось по всему цилиндру, – это второй этап, называемый периодом распространения пламени. В этот момент смесь воздуха с топливом, образовавшаяся в предыдущий период, начинает возгорать. Она воспламеняется именно в тех местах, где топливо хорошо перемешалось с воздухом. Горение воздушно-топливной смеси повышает температуру внутри цилиндра, а это увеличивает давление в камере сгорания. Из-за этого ускоряются испарение топлива и его перемешивание с воздухом. В это время пламя быстро распространяется по всей топливной смеси, образовавшейся в период задержки воспламенения. В момент начала горения топлива давление в камере сгорания резко увеличивается. Однако, если период задержки воспламенения длится слишком долго, это приводит к неправильной работе всего мотора.

Решения для ремонта

Одна из ключевых особенностей современной системы впрыска дизельных двигателей Common Rail – высокое давление в топливной рампе, достигающее 2500 и более бар. Для его поддержания во многих современных автомобилях (как легковых, так и легких коммерческих) используется топливный насос высокого давления Bosch CP4. Помимо высокой эффективности он обладает еще целым рядом преимуществ по сравнению с моделями предыдущего поколения, включая небольшие габариты и вес. Bosch предлагает эффективные комплексные решения в области обслуживания систем Common Rail в целом, позволяя дизельным мастерским выполнять весь спектр услуг – от первичной диагностики систем впрыска до ремонта инжекторов и ТНВД. Задачу первичной диагностики успешно выполняют системные сканеры Bosch KTS, позволяющие определить неисправность в системе Common Rail благодаря высокоэффективному программному обеспечению Bosch ESI[tronic] 2.0. Дальнейшая локализация проблемы в системе проводится при помощи комплекта Bosch Diesel Set 3.1, который содержит все необходимое для оценки работоспособности ТНВД и клапана регулировки давления. После выявления неисправных узлов и демонтажа инжекторов или топливного насоса высокого давления проводится их проверка на стенде Bosch EPS 708 или 815. Благодаря выпуску специальных наборов дооснащения диагностические стенды Bosch позволяют проводить испытания насосов любых поколений. Новый комплект оборудования Bosch для ремонта ТНВД CP4 позволяет производить проверку, полную разборку и ремонт насоса в точном соответствии с утвержденной технологией ремонта. В состав комплекта входят специализированные инструменты и инструкции для выполнения требуемых процедур.

Третий этап – до момента окончания впрыска – период прямого горения. Форсунка продолжает впрыскивать топливо, которое сгорает немедленно, контактируя с открытым пламенем в камере сгорания. К этому этапу пламя распространяется уже по всей камере, а давление достигает максимального показателя.

Четвертый этап – до окончания горения – называется догорание. На этом этапе несгоревшее топливо должно полностью сгореть. Поршень движется вниз, в результате давление и температура падают. Однако для полного сгорания топлива нужно высокое давление в камере сгорания, которое обеспечивает самовоспламенение топлива, а также правильный впрыск топлива, произошедший в нужный момент и в требуемом объеме. В противном случае распространение пламени существенно повышает температуру в камере сгорания, и топливо загорается немедленно. А когда впрыск заканчивается, оставшееся топливо продолжает гореть.

В случае, когда давление в цилиндре меняется, водитель может услышать длительный стук или металлический звук. Такое возникает в условиях, когда давление в цилиндре понижается и смеси требуется больше времени, чтобы достичь температуры воспламенения. Из-за низкой компрессии удлиняется период самовоспламенения. И когда смесь все же возгорится, количество топлива в камере будет больше, чем то, что необходимо для нормального режима работы. Одномоментно воспламенится большое количество топлива, что приведет к резкому увеличению давления и росту температуры в камере. По этой причине возникает ударная волна, которая действует на днище поршня и стенки цилиндра и производит металлический стук.

По причине низкой компрессии может возникать и белый дым. Это происходит тогда, когда давление падает и топливо не самовоспламеняется при достижении поршня самой высокой мертвой точки. Когда поршень идет вниз, температура падает, и пламя не успевает распространиться. Дизтопливо продолжает испаряться в периоды прямого горения и догорания. Несгоревшее горючее выбрасывается из цилиндра в конце периода дожига, и именно поэтому возникает белый дым. Он может также появиться при позднем впрыске топлива. Компрессия и температура в камере сгорания достигают необходимого уровня, однако из-за слишком позднего впрыска у топлива не остается достаточно времени для того, чтобы испариться. И тогда воспламенение дизтоплива происходит, когда поршень начинает движение вниз. В этот момент давление и температура начинают падать, и пламя не успевает распространиться по всей камере сгорания, а потому и горение быстро прекращается. При этом испарение топлива продолжается, и его несгоревший остаток выбрасывается из цилиндра.

По причине большого объема впрыскиваемого топлива возникает черный дым. Если в камеру сгорания впрыскивается нормальный объем топлива, капли перемешиваются с воздухом, и топливо эффективно сгорает. Но при большом количестве топлива в условиях ограниченного объема кислород в камере полностью выгорает в период горения, а у оставшегося топлива просто не остается достаточно воздуха для перемешивания. А несгоревшее топливо преобразуется в углерод, который и вызывает черный дым.

Повысить КПД

Современные конструкторы ищут способы, чтобы увеличить КПД дизельного двигателя и понизить при этом токсичность отработавших газов в течение всего срока службы автомобиля. Одним из способов повысить КПД двигателя и снизить уровень вредных выбросов является более точное управление системой впрыска топлива. Дизельные форсунки могут распылять топливо до 10 раз в каждом рабочем цикле двигателя, поэтому прецизионное управление каждым отдельным моментом впрыска позволяет еще больше повысить топливную экономичность, снизить уровень вредных выбросов и уменьшить уровень шума в течение всего срока службы двигателя. 

Инженеры Delphi разработали технологию управления насос-форсункой с обратной связью, реализуемую посредством аппаратного и программного обеспечения. С ее помощью поддерживается максимальная эффективность впрыска в течение продолжительного времени. Это достигается за счет использования дополнительного электрического провода внутри корпуса насос-форсунки, игла которой действует в качестве «электрического выключателя». Данный процесс обеспечивает передачу сигнала управления в реальном времени, что является более точным и более экономически выгодным решением, чем те, что реализованы в аналогичных системах.

Посылая электрический ток по игле распылителя, Delphi распознает моменты контакта иглы с седлом, ограничителем подъема или нахождения между этими двумя положениями. Этот процесс позволяет системе непрерывно перекалибровывать все моменты подачи топлива на протяжении всего срока службы автомобиля. Сочетание электрического выключателя и нового алгоритма управления создает уникальное решение, которое обеспечивает высокую точность многофазного впрыска. Такая конструкция работает независимо от настроек параметров впрыска и сгорания топлива, а также сложности конструкции двигателя или силовой установки. 

Использование в конструкции форсунки «выключателя» и нового алгоритма работы электронного блока управления позволило инженерам добиться снижения уровня вредных выбросов и предложить эффективное решение для сложных технических задач.

источник информации a-kt.ru

xn--80abdxm6c.xn--p1ai

3.5. Давление сжатия

Если вы хотите узнать, в хорошем ли состоянии с точки зрения механики находится двигатель автомобиля, вы должны проверить давление сжатия в отдельных цилиндрах. При сгорании топливно-воздушной смеси в камерах сгорания возникает огромное давление. Это означает большие нагрузки на поршни и поршневые кольца, стенки цилиндров, седла клапанов и на прокладки стержней клапанов.

Дефектные прокладки камер сгорания приводят к повышенному расходу масла и топлива, ухудшению показателей отработавших газов, снижению мощности и неудовлетворительному запуску холодного двигателя. Если эти симптомы уже появляются, то при выявлении причины вам поможет проверка давления сжатия. Контрольные величины покажут вам, нужно ли менять двигатель или его как минимум нужно полностью ремонтировать.

Различие в давлении между отдельными цилиндрами в бензиновом двигателе должно быть максимум 3,0 бар, в дизельном двигателе TDI максимум 5,0 бар. Если один или несколько цилиндров по сравнению с другими цилиндрами показывают большее различие в показателях давления, то это является признаком целого ряда явлений износа.

Ориентировочные величины давления сжатия

Показатели компрессии (давления сжатия) приводятся для двигателя в безупречном состоянии. Хотя в оценке состояния двигателя не все зависит только от абсолютной высоты давления сжатия. Намного важнее то, чтобы показатели во всех цилиндрах были приблизительно одинаковыми.

В более старом двигателе давление сжатия понижается. Равномерно пониженное давление сжатия во всех цилиндрах нормально. Только если показатели достигают предела износа, то вы должны ориентироваться на ремонт или на замену вашего двигателя. Если между отдельными измерительными величинами цилиндров существуют различия более чем в 3…5 бар, то это, как правило, указывает на следующие причины:

Если у вас есть манометр, вы можете проверить давление сжатия сами. Volkswagen предписывает использовать контрольный прибор V.A.G. 1763. Далее нужны: для бензинового двигателя ключ для свечей (3122 В) и съемник (для катушек зажигания) Т10094; для дизельного двигателя шарнирный ключ 3220 для свечей накаливания, а также переходник V.A.G. 1381/12. При проверке вам нужен помощник, который приводит в действие стартер и нажимает на педаль газа в то время, как вы работаете с измерительным прибором.

Так можно найти неисправности

Проверка давления сжатия

  1. Прогрейте двигатель перед началом работы. Температура масла должна быть минимум 30°С (масляный фильтр теплый на ощупь). Поршневые кольца лучше уплотняют при теплом масле. С другой стороны, температура масла не должна быть слишком высокой. Напряжение аккумулятора должно быть минимум 11,5 В, а лучше немного больше 12,0 В.
  2. Демонтируйте нижнюю облицовку двигателя. Бензиновые двигатели
  3. Демонтируйте воздушный фильтр. В трехцилиндровых двигателях AWY и AZQ отсоедините четырехштырьковые разъемы на катушках зажигания и снимите съемником Т10094 все катушки зажигания со свеч зажигания. В четырехцилиндровых двигателях с буквенными обозначениями AUA и AUB демонтируйте разъемы свечей зажигания вместе с направляющими проводов зажигания; в двигателях с буквенными обозначениями BBY и BBZ отсоедините на катушках зажигания четырехштырьковые разъемы, снимите катушки зажигания, используя съемник Т10094, со свечей зажигания и демонтируйте направляющую провода на корпусе распределительного вала.
  4. Вывинтите все свечи зажигания (с помощью 3122 В).
  5. Выньте предохранитель 25 (для клапанов впрыска) из кронштейна предохранителя. Дизельные двигатели
  6. В автомобилях с двигателями SDI (буквенное обозначение ASY) отсоедините десятиполюсный штекерный разъем к насосу впрыска. В автомобилях с двигателями TDI (буквенные обозначения AMF/BAY и ATD/AXR) отсоедините центральный разъем модулей насос-форсунка.
  7. Демонтируйте с помощью шарнирного ключа 3220 все свечи накаливания. Для всех двигателей
  8. Ввинтите вместо свечей зажигания или накаливания согласно инструкции по эксплуатации контрольного прибора переходник и подключите к нему контрольный прибор для измерения давления сжатия. Пусть ваш помощник приводит в действие стартер до тех пор, пока контрольный прибор не перестанет регистрировать подъем давления. Считайте показатель каждого цилиндра. Ориентировочные величины давления сжатия (в бар повышенного давления)
  9. После проверки снова ввинтите свечи и затяните их моментом 15 Нм (свечи накаливания) или 30 Нм (свечи зажигания) в головке блока цилиндров.

    Двигатели

    Новый

    Предел износа

    Разница в цилиндрах

    Бензиновые двигатели AWY, AZQ, AUA, AUB, BBY, BBZ

    10…15

    7

    3

    Дизельные двигатели ASY, AMF, BAY, ATD, AXR

    25…31

    19

    5

  10. Отсоединения штекерных разъемов блоком управления воспринимаются и запоминаются как дефекты. Они должны быть считаны (прибором для считывания неисправностей или диагностическим прибором) и стерты.

Если сжатый воздух вытекает в одном из перечисленных ниже узлов, то чаще всего причина в следующем:

  • Впускной коллектор или его звукоизоляция: дефектный впускной клапан.
  • Открытый радиатор или расширительный бачок с охлаждающей жидкостью: дефектная прокладка головки блока цилиндров или трещина в головке блока цилиндров.
  • Открытый маслоналивной патрубок или трубка для щупа для измерения уровня масла: изношенные стенки цилиндров, направляющие поршней или поршневые кольца.
  • Пузырящийся шум в глушителе: негерметичный выпускной клапан.

carmanz.com

Фазы процесса сгорания в судовом двигателе внутреннего сгорания

Факторы, влияющие на все фазы процесса сгорания, и в первую очередь на период задержки самовоспламенения τi можно подразделить на физико-химические, конструктивные и эксплуатационные.

К физико-химическим факторам можно отнести физические свойства и химический состав топлива, давление и температуру заряда воздуха, концентрацию кислорода и остаточных газов в камере сгорания, наличие в топливе катализаторов в виде присадок, улучшающих горение. Физико-химические свойства топлива находят свое выражение в цетановом числе. Чем больше цетановое число, выше концентрация кислорода и меньше содержание отработавших газов, тем меньше период задержки самовоспламенения. При наличии катализаторов, стимулирующих горение, а также с ростом давления и температуры в камере сгорания τi также уменьшается, что делает процесс сгорания «мягче», жесткость работы ΔP/Δφ и максимальное давление Pz уменьшаются.

К числу основных конструктивных факторов, влияющих на процесс воспламенения и сгорания, можно отнести степень сжатия ε, конструкцию камеры сгорания, конструкцию топливной аппаратуры, материал поршня и характер его охлаждения.

Увеличение ε повышает давление Pc и температуру Tc в конце сжатия, что уменьшает τi. Однако, как об этом говорилось ранее, с увеличением Pc растет и Pz, что повышает механическую напряженность деталей двигателя.

Конструкция камеры сгорания и топливной аппаратуры, определяющая качество смесеобразования — тонкость и однородность распыливания топлива, его испарение, однородность перемешивания частиц топлива и воздуха по всему объему камеры сгорания, — определяют интенсивность подвода тепла к топливу и период задержки самовоспламенения τi. Любое улучшение качества смесеобразования приводит к уменьшению τi снижению Pz, ΔP/Δφ и сокращению IV-й фазы (догорания).

В том же направлении влияет наличие неохлаждаемых поршней и накладок на поршни. У чугунных поршней коэффициент теплопроводности меньше, чем у алюминиевых; поэтому выше температура их поверхности. В 2-тактных дизелях и в форсированных 4-тактных приходится, однако, заботиться не о повышении температуры поршня, а о ее понижении. Поршни обычно охлаждаются маслом или водой, что увеличивает период τi.

Конструкция элементов топливной аппаратуры определяет не только качество смесеобразования и через смесеобразование — качество сгорания. Большое влияние на фазы процесса сгорания оказывает закон впрыска топлива — весовое или объемное распределение подаваемого в цилиндр топлива по времени (или углу поворота коленчатого вала q(φ) см. рис. ниже). При прочих равных условиях закон впрыска определяется скоростью впрыскиваемого топлива.

Обычно стремятся осуществить впрыск с возрастающей скоростью с тем, чтобы уменьшить динамические показатели цикла Pz и ΔP/Δφ, а также более рационально использовать воздушный заряд, находящийся в дальних «углах» камеры сгорания (последние порции топлива, имеющие максимальную скорость, проникают в самые отдаленные углы). Динамические показатели цикла будут тем меньше, чем меньшее количество топлива будет подано за время τi.

Рис. 1 Связь закона впрыска топлива q(φ) с характером изменения давления в цилиндре P(φ)

К числу эксплуатационных факторов можно отнести угол опережения подачи топлива φнп, продолжительность впрыска φп, текущее техническое состояние топливной аппаратуры, органов воздухоснабжения и газовоздушного тракта.

Угол опережения подачи топлива φнп является наиболее гибким фактором, позволяющим в условиях эксплуатации влиять на характер процесса сгорания. Слишком раннее опережение подачи, когда впрыск осуществляется при низкой температуре сжимаемого в цилиндре заряда, увеличивает τi, что повышает Pz, ΔP/Δφ (см. рис. ниже, кривая 1). Слишком поздняя подача (кривая 3) приводит к переносу процесса сгорания на линию догорания, повышению давления и температуры отработавших газов, что увеличивает температуру цилиндропоршневой группы и снижает термический КПД.

Рис. 2 Характер изменения развернутой индикаторной диаграммы при изменении угла опережения подачи топлива

Увеличение продолжительности впрыска топлива φп„ в условиях эксплуатации является средством повышения мощности дизеля. Если опережение подачи неизменно, то при увеличении φп, относительная длительность III-ей и IV-ой фаз процесса сгорания увеличивается, возрастает температура отработавших газов, повышается температура стенок цилиндра. При этом термический КПД может повысится, если относительное приращение полезной мощности больше относительного приращения тепла, переданного холодному источнику (уносимого с отработавшими газами).

Любое ухудшение технического состояния топливной аппаратуры, органов воздухоснабжения и газовоздушного тракта — засорение сопловых отверстий или загорание распылителя, зависание иглы форсунки, разработка сопловых отверстий, повышение гидравлического сопротивления газовоздушного тракта, снижение КПД и мощности турбокомпрессора — приводит в конечном итоге к ухудшению процесса сгорания, переносу сгорания на линию догорания, снижению термического КПД и перегреву цилиндропоршневой группы.

Смотрите также:

а) Общая схема физических явлений при сгорании топлива

б) Характеристика процесса сгорания по индикаторной диаграмме

г) Критерии оценки характера сгорания

sea-man.org

Степень сжатия дизельного двигателя – что нужно знать? + Видео » АвтоНоватор

Знаете ли вы, как работает сердце вашего автомобиля – двигатель? Какие процессы происходят, когда вы давите на педаль газа или когда переключаете скорости? Не стоит открещиваться от этих знаний – чем лучше вы узнаете свой автомобиль, тем раньше почувствуете возможную неисправность. Одна из важных характеристик – степень сжатия двигателя.

Изучаем теорию – что происходит внутри камеры сгорания?

Степень сжатия в теории – это соотношение объема в пространстве над рабочим поршнем в момент, когда он проходит нижнюю мертвую точку,  к объему в камере над поршнем в момент прохождения верхней мертвой точки. Это определение выражает разницу давления в самой камере сгорания в момент, когда происходит впрыск топлива в цилиндр.

Фото камеры сгорания дизельного двигателя, auto-myinfo.ru

В повседневной жизни часто путают степень сжатия с другим понятием, а именно с компрессией дизельного двигателя, однако на практике это два разных термина. Компрессия – это наибольшее давление поршнем в цилиндре на момент его прохождения от нижней мертвой точки к верхней. Эту величину измеряют в атмосферах.

На фото - дизельный двигатель, autoshcool.ru

Степень сжатия измеряют математическим соотношением, к примеру, 19:1. Для дизельных двигателей наилучшим считается соотношение в рамках от 18 до 22 к 1. При такой степени сжатия сердце автомобиля будет работать наиболее эффективно. Использование топлива связано напрямую со степенью сжатия. Чем больше давление поднимается в камере и больше сжатие, тем экономичней будет расход топлива, при этом полученная мощность может увеличиваться.

Степень сжатия на практике – как это происходит?

Сгорание топливной смеси в двигателе происходит при взаимодействии смешанных паров топлива и воздуха. При возгорании смеси происходит ее расширение, в результате чего увеличивается давление в камере. Коленчатый вал при этом выполняет обороты, соответственно двигатель выполняет один такт полезной работы. В наше время уже практически не выпускаются дизельные двигатели с низкой степенью сжатия, так как в этом нет необходимости, также и низкооктановое топливо практически исчезло с рынка. Все стремятся к более экономичным и высокооборотистым двигателям с большей степенью сжатия.

Фото принципа сжатия в двигателе, avtoshar.ru

Увеличения степени сжатия можно добиться за счет уменьшения камеры сгорания дизельного двигателя. Но при таких изменениях инженерам на заводах приходятся искать компромиссное решение, потому что нужно сохранить давление в камере, а также уменьшить объем сжигания топлива. Одним из способов увеличения сжатия является расточка блоков головки цилиндра – степень сжатия при этом увеличивается, а объем сгорания топлива в камере уменьшается. При этом цилиндр сохраняет свой рабочий объем, и объем двигателя не меняется.

На фото - расточка блоков головки цилиндра, autostuling.ru

Изменение степени сжатия – как улучшить показатели?

В наше время инженеры нашли альтернативный способ повысить давление в камере сгорания – это установка турбо-нагнетателя. Установка данного устройства приводит к увеличению давления в камере внутреннего сгорания, при этом объемы самой камеры изменять не нужно. Появление подобных устройств привело к существенному увеличению мощности, вплоть до 50 % от изначальных цифр. Достоинством нагнетателей является возможность их установки своими руками, хотя лучше всего поручить эту задачу специалистам.

Принцип работы нагнетателей всех типов сводится к одному простому действию, которое понятно даже детям. Мы знаем, что мотор автомобиля работает благодаря постоянному сгоранию топливно-воздушной смеси, поступающей в цилиндры двигателя. Производители устанавливают оптимальное соотношение поступающих в цилиндры топлива и воздуха – последний попадает в камеру сгорания благодаря созданию разреженной атмосферы на такте впуска. Нагнетатели же позволяют в тот же объем камеры сгорания подать на впуске больше горючего и воздуха. Соответственно, увеличивается количество энергии при сгорании, растет мощность агрегата.

Фото турбо-нагнетателя, ecoconceptcars.ru

Однако автолюбителям не стоит увлекаться чрезмерным увеличением исходных показателей своего «железного коня» – при возрастании количества тепловой энергии увеличивается и амортизация деталей двигателя.

Быстрее прогорают поршни, изнашиваются клапаны, выходит из строя система охлаждения. Причем если турбонаддув можно установить своими руками, то ликвидировать последствия этого эксперимента далеко не всегда возможно даже в хорошей автомастерской. В особо неудачных случаях модернизации авто его «сердце» может попросту взорваться. Вряд ли нужно объяснять, что страховая компания откажется выплачивать вам какие-либо компенсации по этому прецеденту, возложив всю ответственность исключительно на вас.

В дизельных двигателях отсутствует дроссельная заслонка, в результате этого появилась возможность лучше и эффективней наполнять цилиндры независимо от оборотов. На очень многих современных автомобилях устанавливают такое устройство, как интеркулер. Он позволяет увеличить массу наполнения в цилиндрах на 20 %, что и поднимает мощность двигателя.

На фото - установка интеркулера на дизель, tuningkod.ru

Увеличенное давление степени сжатия дизельного двигателя не всегда носит положительный характер и не всегда поднимает его мощность. Рабочая степень сжатия может находиться уже возле своего предела детонации для данного типа топлива, и дальнейшие её увеличение способно снизить мощность и время работы двигателя. В современных автомобилях давление в камере сгорания постоянно находится под управлением и контролем электроники, которая быстро реагирует на изменения работы в двигателе. Прежде, чем выполнить какие-либо операции по увеличению параметров современного «железного коня», обязательно проконсультируйтесь со специалистами.

Оцените статью: Поделитесь с друзьями!

carnovato.ru

Процесс сгорания топлива в двигателе

При сгорании рабочей смеси в поршневых двигателях увеличивается температура и повышается давление в цилиндрах. Для повышения эффективности работы двигателя желательно, чтобы сгорание происходило вблизи в.м.т. поршня, когда рабочая смесь занимает минимальный объем, имеет наименьшую поверхность соприкосновения со стенками цилиндра. Чем меньше поверхность теплоотвода, тем меньше тепла уходит в окружающую среду и тем большая доля его превращается в полезную работу.

Смесь сгорает не мгновенно, а в течение некоторого времени. Продолжительность и характер протекания процесса сгорания зависят от типа смесеобразования. Рассмотрим процесс сгорания рабочей смеси для двигателей с искровым зажиганием и для дизелей.

Сгорание рабочей смеси в двигателях с искровым зажиганием

О протекании процесса сгорания можно судить по индикаторным диаграммам, показывающим графически изменение давления Р в цилиндре в зависимости от угла ф поворота коленчатого вала. Площадь индикаторной диаграммы пропорциональна работе, совершенной при сгорании рабочей смеси внутри цилиндра за один цикл. Если зажигание выключено, то давление в цилиндре при вращении коленчатого вала изменяется почти симметрично относительно в.м.т. (нижняя кривая). Для нормальной работы двигателя зажигание должно включаться тогда, когда должна возникнуть искра между электродами свечи. Момент искрообразования соответствует положению точки 1 на диаграмме, а давление в камере сжатия — ординате P1.

Индикаторная диаграмма карбюраторного двигателя

Рис. Индикаторная диаграмма карбюраторного двигателя: ф3 — угол опережения зажигания; Q1 — начальная фаза сгорания; Q2 — основная фаза сгорания; Q3 — завершающая фаза сгорания; 1 — начало образования искры; 2 — начало отрыва линии сгорания от линии сжатия; 3 — момент достижения максимального давления в цилиндре.

Процесс сгорания условно делят на три фазы.

Начальная фаза — Q1 начинается в момент образования искры. Возле электродов свечи зажигания воспламеняется небольшой объем рабочей смеси. Она горит сравнительно медленно. Давление в цилиндре на протяжении этого периода остается практически таким же, как и при выключенном зажигании.

Заканчивается первая фаза тогда, когда сгорает 6…8% общего объема смеси, находящейся в камере сгорания. Температура повышается настолько, что начиная от точки 2 давление резко возрастает, наступает основная фаза быстрого сгорания (участок 2… 3). Скорость распространения пламени в средней части камеры сгорания достигает 60…80 м/с. Вдоль стенок камеры скорость сгорания ниже, а сгорание — неполное. Продолжительность второй фазы для быстроходных двигателей составляет 25…30° угла поворота коленчатого вала. В этой фазе выделяется основная часть тепла.

Третья фаза Q3 — фаза сгорания смеси на периферийных участках камеры в такте расширения. За начало этой фазы принимают точку 3. Давление в цилиндре в этот момент будет максимальным.

От интенсивности тепловыделения в основной фазе зависит скорость нарастания давления по углу поворота коленчатого вала, или, иначе, жесткость работы двигателя. В современных автомобильных двигателях скорость повышения давления колеблется в пределах 0,12…0,25 МПа на 1° угла поворота вала. Чем круче нарастает давление на участке 2..3, тем жестче работает двигатель и тем больше износ кривошипно-шатунного механизма.

Продолжительность первой фазы зависит от ряда факторов.

Чем ближе величина коэффициента избытка воздуха а к оптимальному значению, тем лучше состав смеси и тем короче продолжительность первой фазы. При значительном обеднении смеси воспламенение ее ухудшается и экономичность работы двигателя снижается. Чем мощнее искровой разряд, тем интенсивнее распространение пламени и тем короче первая фаза.

На продолжительность второй фазы сгорания оказывают влияние те же факторы, что и на продолжительность первой фазы. Кроме того, вторая фаза зависит от величины угла опережения зажигания и частоты вращения коленчатого вала.

Влияние степени сжатия

При изменении степени сжатия Е изменяется качество подготовленности рабочей смеси к сгоранию. Степень сжатия может быть нарушена неправильно подобранной толщиной прокладки, устанавливаемой между головкой цилиндров и блоком, при срезании плоскости головки цилиндра или поршня, изменении длины шатуна или радиуса кривошипа в процессе ремонта.

Увеличение степени сжатия по сравнению с оптимальным значением сопровождается повышением жесткости работы двигателя и максимального давления сгорания.

Снижение величины Е замедляет процесс сгорания и ухудшает экономичность работы.

Влияние угла опережения зажигания

Влияние угла фз, опережения зажигания

Рис. Влияние угла фз, опережения зажигания на форму индикаторной диаграммы карбюраторного двигателя: 1 — ф1 = 0°; 2 — ф2 = 7°; 3 — ф3 = 22°; 4 — ф4 = 27°.

Величину угла опережения зажигания фз устанавливают при конструировании двигателя. Оптимальное его значение указывают в руководстве по эксплуатации. Нарушение этого угла ведет к ухудшению процесса сгорания и снижению эксплуатационных показателей двигателя.

При уменьшении угла опережения (запаздывании зажигания) период задержки воспламенения увеличивается. В результате этого рабочая смесь сгорает после прохождения поршнем в.м.т., когда объем над ним увеличится. Это приводит к увеличению поверхности теплоотдачи и снижению вихревых движений в камере. Так, например, при оптимальном значении угла фз опережения зажигания, равном 27° до в.м.т., максимальное давление сгорания Pz равно 4 МПа и находится у в.м.т. По мере запаздывания зажигания, в нашем случае при фз = 0°, давление сгорания снижается до 2,6 МПа и смещается в сторону запаздывания.

Вследствие этого двигатель перегревается, а мощность и экономичность его снижаются. Оптимальное значение угла опережения зажигания для данного двигателя составляет 22° (кривая 5). При этом ф3 рабочая смесь хорошо подготовлена к сгоранию, вихревые движения обеспечивают перемешивание горючей смеси. Все это способствует наиболее полному сгоранию топлива вблизи в.м.т., когда объем камеры минимальный.

Влияние состава рабочей смеси

Состав рабочей смеси оценивается коэффициентом избытка воздуха а. Состав влияет на скорость сгорания, количество выделяемого тепла, вследствие чего изменяются давление и температура газов в цилиндре. Минимальное значение угла опережения зажигания, периода задержки воспламенения и максимальное давление в цилиндре достигаются при а =0,85…0,9. При этом значении коэффициента избытка воздуха двигатель развивает максимальную мощность. По мере обеднения состава смеси (а>0,9) изменяется величина оптимального значения Фз, уменьшается величина максимального давления сгорания.

Для каждого двигателя принят свой оптимальный состав рабочей смеси, при котором на данном режиме достигается минимальный удельный расход топлива. Для двигателей со степенью сжатия около 8 при почти полном открытии дроссельной заслонки экономичный состав смеси получается при и =1,15…1,2. Для каждого скоростного и нагрузочного режима работы двигателя с искровым зажиганием существует также свое оптимальное значение угла опережения зажигания. Поэтому в конструкции таких двигателей предусмотрено устройство, обеспечивающее автоматически в зависимости от режима работы двигателя оптимальное значение ф3.

Влияние частоты вращения коленчатого вала

Влияние частоты вращения n и угла фз

Рис. Влияние частоты вращения n и угла фз, опережения зажигания на характер индикторных диаграмм карбюраторного двигателя: а — угол фз — неизменный на всех скоростных режимах; б — углы ф2 и ф3 — подобраны для каждого скоростного режима: 1 — n = 1000 об/мин; 2 — n = 2000 об/мин; 3 — n = 3000 об/мин.

При увеличении частоты вращения n коленчатого вала увеличивается скорость движения топливовоздушной смеси во впускном трубопроводе и усиливаются вихревые движения смеси в камере сжатия. Опыты показывают, что с увеличением n длительность первой фазы Q1 сгорания, выраженная в градусах угла поворота коленчатого вала Ф, возрастает, процесс сгорания развивается с запаздыванием. Максимальное давление Р цикла снижается и все больше смещается на такт расширения. Экономичность двигателя ухудшается. Если же при увеличении n увеличить на определенную величину фз, то основная фаза сгорания приблизится к в.м.т., давление Р цикла увеличится, и несмотря на то, что третья фаза сгорания (догорание) заканчивается позже, чем при меньших значениях n, экономичность цикла улучшается (кривые 3 к 1, рис. б). Следовательно, для получения максимальной мощности и эффективности двигателя необходимо автоматически обеспечивать оптимальное значение угла опережения зажигания для каждого скоростного режима.

Детонация

В двигателях с искровым зажиганием при определенных условиях работы двигателя возникает быстрый, приближающийся к взрыву процесс сгорания рабочей смеси. Называется он детонацией. Признаки, указывающие на детонацию при работе двигателя: звонкие металлические стуки в цилиндрах, перегрев двигателя, снижение мощности, появление черного дыма (сажи) в отработавших газах.

Основные причины появления детонации:

На появление детонации также влияет материал головки цилиндров и поршней. Двигатели, у которых эти детали изготовлены из алюминиевых сплавов, меньше склонны к детонации, чем двигатели, у которых эти детали изготовлены из чугуна. Так как чугун обладает худшей теплоотдачей, то в жаркую погоду детали перегреваются, и это приводит к детонации.

Детонация повышает давление и температуру в цилиндрах, вызывает вибрацию двигателя. Вследствие этого ухудшается смазка трущихся поверхностей, обгорают клапаны, поршни, разрушаются подшипники коленчатого вала.

Преждевременное воспламенение рабочей смеси

В процессе работы двигателя иногда возникают такие условия, при которых отдельные детали внутри камеры сгорания (электроды свечи зажигания, клапаны) нагреваются выше 700…800°С. Соприкасаясь с нагретыми деталями, рабочая смесь воспламеняется раньше, чем возникает искра зажигания. Сгорание начинается до прихода поршня в в.м.т. Происходит так называемое калильное зажигание. Детали при калильном зажигании нагреваются еще больше. Воспламенение смеси при последующих циклах начинается еще раньше. В результате детали настолько перегреваются, что начинают оплавляться, увеличивается сопротивление их движению, и двигатель теряет мощность. Одной из причин возникновения калильного зажигания является применение свечей зажигания, не соответствующих конструкции двигателя.

Воспламенение от сжатия при выключенном зажигании

При работе двигателей наблюдаются случаи, когда после того, как выключено зажигание, двигатель продолжает некоторое время работать. Объясняется это тем, что при прикрытой дроссельной заслонке температура рабочей смеси в конце такта сжатия повышается и смесь самовоспламеняется, если частота вращения коленчатого вала прогретого двигателя составляет 300…400 об/мин. Чтобы предотвратить это явление, в конструкцию карбюратора вводят устройство, которое автоматически прекращает подачу топлива при выключении зажигания.

Сгорание рабочей смеси в дизелях

Индикаторная диаграмма дизеля

Рис. Индикаторная диаграмма дизеля: Q1 , Q2 и Q3 — фазы сгорания топлива; Фвц — угол опережении впрыска топлива.

Топливо впрыскивается в камеру сгорания дизеля за несколько градусов угла фвп поворота коленчатого вала до прихода поршня в в.м.т. К этому времени воздух в камере сжимается до 3…4 МПа и нагревается в результате этого до 450…550°С. Заканчивается подача топлива после в.м.т. На участке 1…2 давление в камере изменяется за счет сжатия воздуха поршнем — горение топлива еще не началось. Температура в камере немного понижается вследствие ввода в камеру холодного топлива. Затем топливо самовоспламеняется, пламя начинает распространяться по камере, и давление, начиная от точки 2, повышается за счет горения топлива. Угол фвп между началом впрыска (точка 1) и в.м.т. называется углом опережения впрыска. Угол Qi между началом впрыска и моментом начала подъема давления (точка 2) называется периодом задержки воспламенения. В этот период топливо под действием температуры и вихревых движений в камере переходит из жидкого состояния в газообразное, появляются отдельные очаги самовоспламенения.

Период сгорания топлива в цилиндре дизеля условно делят на три фазы:

Величина максимального давления Pz и момент достижения его зависят от того, как протекает сгорание в первой и во второй фазах.

Экономичность цикла зависит от характера и продолжительности протекания процесса подготовки топлива к самовоспламенению (период Qi — задержки самовоспламенения) и характера сгорания (первая Q1, вторая Q2 и третья Q3 фазы сгорания).

Период задержки воспламенения

За этот период в камеру сгорания поступает незначительная часть впрыскиваемого за цикл топлива. На индикаторной диаграмме в течение этого периода не наблюдается заметных изменений в протекании линии сжатия: давление в цилиндре продолжает увеличиваться так, как будто топливо не поступает в него. При увеличении Qi в камере сгорания к моменту воспламенения накапливается много топлива. Это повышает жесткость работы дизеля. Продолжительность периода задержки воспламенения зависит от следующих основных факторов: качества топлива, угла опережения впрыска топлива, давления и температуры сжатого воздуха в момент начала впрыска топлива, давления начала впрыска, нагрузки на дизель и частоты вращения коленчатого вала.

Рассмотрим влияние каждого фактора на величину Qi.

Химический состав дизельного топлива сильно влияет на продолжительность Qi. Лучшими дизельными топливами являются топлива парафинового ряда, обладающие более высоким цетановым числом и обеспечивающие наименьшую продолжительность Qi и мягкую работу дизеля.

Для каждой конструкции дизеля принят свой угол опережения впрыска топлива фвп. Оптимальное его значение зависит от нагрузки, теплового режима, частоты вращения коленчатого вала, давления и температуры воздуха. При увеличении фвп топливо, впрыскиваемое в камеру сгорания, попадает в холодную среду с низким давлением, т. е. меньшей объемной концентрацией кислорода. Воспламенение топлива вследствие этого задерживается. В цилиндре накапливается топливо, которое сгорает до прихода поршня в в.м.т. Это вызывает повышение жесткости работы дизеля и давления Pz. При малой величине фвп топливо сгорает не полностью, ббльшая его часть сгорает в процессе расширения (в третьей фазе), увеличивается теплоотдача в стенки цилиндров, мощность дизеля снижается.

Увеличение давления и температуры сжатого воздуха в момент начала впрыска способствуют более раннему самовоспламенению топлива, сокращению периода задержки воспламенения, более мягкой работе двигателя.

Увеличение давления начала впрыска приводит к дополнительному запаздыванию начала впрыска, сокращается продолжительность впрыска. При уменьшении давления начала впрыска ухудшается качество распыливания топлива и смесеобразования, что приводит к ухудшению рабочего процесса.

Увеличение нагрузки сопровождается большей подачей топлива за цикл, улучшаются условия подготовки рабочей смеси к сгоранию. Следовательно, продолжительность Qi с увеличением нагрузки сокращается.

Частота вращения коленчатого вала n влияет следующим образом на величину Qi. При изменении n изменяются фвп, давление и продолжительность впрыска топлива, качество его распыливания. Давление и температура воздуха в камере сжатия к моменту начала впрыска также изменяются. На быстроходных дизелях, предназначенных для работы с часто меняющимися скоростными режимами, устанавливают устройства, обеспечивающие автоматическое изменение величины фвп при изменении n.

Из сказанного видно, что момент начала впрыска и период задержки воспламенения оказывают большое влияние на процесс сгорания, на мощность и экономичность дизелей. Поэтому при их эксплуатации эти показатели надо поддерживать в заданных пределах.

Средняя скорость нарастания давления на участке 2…3 определяет жесткость работы дизеля. Ее считают нежесткой, если средняя скорость нарастания давления дельта_Р/дельта_ф не превышает 0,5 МПа на 1° угла поворота коленчатого вала.

Чем больше поступает топлива в цилиндр в течение периода Qi задержки воспламенения, тем жестче работа двигателя и тем большей величины достигает максимальное давление сгорания Рz.

Характер поступления топлива определяется профилем кулачка, диаметром и величиной хода плунжера топливного насоса, конструкцией дизеля и качеством топлива. Так, например, применение бензина вместо дизельного топлива вызывает появление ударных волн и вибрацию давления в цилиндре дизеля.

ustroistvo-avtomobilya.ru


Смотрите также