Ультразвуково́й дви́гатель (Ультразвуковой мотор, Пьезодвигатель, Пьезомагнитный двигатель, Пьезоэлектрический двигатель), (англ. USM — Ultra Sonic Motor, SWM — Silent Wave Motor, HSM — Hyper Sonic Motor, SDM — Supersonic Direct-drive Motor и др.) — двигатель, в котором рабочим элементом является пьезоэлектрическая керамика, благодаря которой он способен преобразовать электрическую энергию в механическую с очень большим КПД, превышающим у отдельных видов 90 %. Это позволяет получать уникальные приборы, в которых электрические колебания прямо преобразуются во вращательное движение ротора, при этом крутящий момент, развиваемый на валу такого двигателя столь велик, что исключает необходимость применения какого-либо механического редуктора для повышения крутящего момента. Также данный двигатель обладает выпрямительными свойствами гладкого фрикционного контакта. Эти свойства проявляются и на звуковых частотах. Такой контакт является аналогом электрического выпрямительного диода. Поэтому ультразвуковой двигатель можно отнести к фрикционным электромоторам.
В 1947 году были получены первые керамические образцы титаната бария и, уже с этого времени производство пьезоэлектрических моторов стало теоретически возможным. Но первый такой мотор появился лишь спустя 20 лет. Изучая пьезоэлектрические трансформаторы в силовых режимах, сотрудник Киевского политехнического института В. В. Лавриненко обнаружил вращение одного из них в держателе. Разобравшись в причине этого явления, он в 1964 году создаёт первый пьезоэлектрический мотор вращения, а вслед за ним и линейный мотор для привода реле[1][2]. За первым мотором с прямым фрикционным контактом он создаёт группы нереверсивных моторов[3] с механической связью пьезоэлемента с ротором через толкатели. На этой основе он предлагает десятки конструкций нереверсивных моторов, перекрывающих диапазон скоростей от 0 до 10 000 об/мин и диапазон моментов вращения от 0 до 100 Нм. Используя два нереверсивных мотора, Лавриненко оригинально решает проблему реверса. Интегрально на валу одного мотора он устанавливает второй мотор. Проблему ресурса мотора он решает, возбуждая крутильные колебания в пьезоэлементе.
На десятилетия опережая подобные работы в стране и за рубежом, Лавриненко разработал практически все основные принципы построения пьезоэлектрических моторов, не исключив при этом возможность работы их в режиме генераторов электрической энергии.
Учитывая перспективность разработки, Лавриненко совместно с соавторами, помогавшими ему реализовать его предложения, он защищает многочисленными авторскими свидетельствами и патентами. В Киевском Политехническом институте создается отраслевая лаборатория пьезоэлектрических моторов под руководством Лавриненко, организуется первое в мире серийное производство пьезомоторов для видеомагнитофона «Электроника-552». В последующем, серийно производятся моторы для диапроекторов «Днепр-2», кинокамер, приводов шаровых кранов и др. В 1980 году издательство «Энергия» печатает первую книгу по пьезоэлектрическим моторам[4], к ним появляется интерес. Начинаются активные разработки пьезомоторов в Каунасском политехническом институте под руководством проф. Рагульскиса К. М.[5]. Вишневский В. С., в прошлом аспирант Лавриненко, выезжает в Германию, где продолжает работу по внедрению линейных пьезоэлектрических моторов на фирме PHyzical Instryment. Постепенное изучение и разработка пьезоэлектрических моторов выходит за пределы СССР[6]. В Японии и Китае активно разрабатываются и внедряются волновые двигатели, в Америке — сверхминиатюрные двигатели вращения.
Ультразвуковой двигатель имеет значительно меньшие габариты и массу по сравнению с аналогичным по силовым характеристикам электромагнитным двигателем. Отсутствие обмоток, пропитанных склеивающими составами, делает его пригодным для использования в условиях вакуума. Ультразвуковой двигатель обладает значительным моментом самоторможения (до 50 % от величины максимального крутящего момента) при отсутствии питающего напряжения за счёт своих конструктивных особенностей. Это позволяет обеспечивать очень малые дискретные угловые перемещения (от единиц угловых секунд) без применения каких-либо специальных мер. Это свойство связано с квазинепрерывным характером работы пьезодвигателя. Действительно, пьезоэлемент, который преобразует электрические колебания в механические питается не постоянным, а переменным напряжением резонансной частоты. При подаче одного или двух импульсов можно получить очень маленькое угловое перемещение ротора. Например, некоторые образцы ультразвуковых двигателей, имеющие резонансную частоту 2 МГц и рабочую частоту вращения 0,2-6 об/сек, при подаче одиночного импульса на обкладки пьезоэлемента дадут в идеальном случае угловое перемещение ротора в 1/9.900.000-1/330.000 от величины окружности, то есть 0,13-3,9 угловых секунд.[7]
Одним из серьёзных недостатков такого двигателя является значительная чувствительность к попаданию в него твёрдых веществ (н
ru-wiki.ru
Оказывается, там под основным полупрозрачным зеркалом (толстая чёрная линия под 45 градусов на картинке), которое отводит часть света на видоискатель (8), есть ещё одно "вспомогательное" полупрозрачное зеркало (3), забирающее часть света, идущего на матрицу (4), на нужды сенсора автофокуса (7):
Сенсор автофокуса имеет несколько "зон" ("зоны автофокуса", которые соответствуют определённым местам в кадре), над каждой из которых расположена маленькая линза. У каждой "зоны автофокуса" под линзой есть два маленьких сенсора: условно "левый", принимающий только "левую" сторону света, пришедшего из объектива, и условно "правый", принимающий только "правую" сторону света, пришедшего из объектива.
Изображение на этих двух маленьких сенсорах будет совпадать, если объектив сфокусирован правильно (другими словами, если "красный" луч света на картинке попадает точно в центр "красного" сенсора, и "зелёный" луч света на картинке попадает точно в центр "зелёного" сенсора, то изображение на этих двух маленьких сенсорах будет совпадать, объектив сфокусирован правильно).
1. Линза объектива выдвинута слишком близко. Фотоаппарат может это угадать, заметив, что картина распределения интенсивностей такая же, как если бы она состояла из двух одинаковых картин интенсивностей, сдвинутых друг относительно друга (это можно сразу засечь, чуть-чуть сдвинув фокусировочную линзу объектива; алгоритм угадывания выполняется на процессоре фотоаппарата).
2. Объектив сфокусирован точно - две одинаковые световые картины максимально наложились друг на друга.
3. Линза объектива выдвинута слишком далеко.
4. Вообще не в фокусе.
Для того, чтобы этот алгоритм давал верные результаты, очевидно, требуется, чтобы сенсор автофокуса и матрица были равноудалены от "вспомогательного" полупрозрачного зеркала.
А ещё сейчас в моде объективы с "ультразвуковым мотором".Звучит-то как!Прямо как "лазерный принтер"...Наверняка в 90-ых, услышав в первый раз о таких принтерах, первое, что каждый себе представлял — это как принтер выжигает на бумаге изображение разноцветными лазерами из фантастических фильмов...
Оказалось, что, как и ожидалось, маркетологи всех снова обманули, и мотор никакой не ультразвуковой (не крутится с ультразвуковой скоростью).Тем не менее, конструкция очень остроумная.
Ультразвуковой двигатель объектива состоит из двух колец: ротора (синий) сверху и статора (красный) снизу.В свою очередь, статор (красный) состоит из тонкого пьезоэлектрического керамического кольца снизу и толстого (но "эластичного") зубчатого слоя сверху.
Когда на статор (красный) подаётся ток ультразвуковой частоты, в нём возникает резонанс (стоячая волна), и волна эта начинает по кругу путешествовать по статору (красный):
При этом, обратите внимание на то, что статор (красный) стоит не месте и никуда не крутится — он просто "волнуется", как море. А вот ротор (синий) уже как раз крутится. Спрашиваете, почему?А из этой картинки и не поймёте.
Крутится ротор потому что на статоре есть зубцы.Они очень мелкие (порядка 0,001 мм), и их очень много.
halt-hammerzeit.blogspot.com
Ультразвуково́й дви́гатель (Ультразвуковой мотор, Пьезодвигатель, Пьезомагнитный двигатель, Пьезоэлектрический двигатель), (англ. USM — Ultra Sonic Motor, SWM — Silent Wave Motor, HSM — Hyper Sonic Motor, SDM — Supersonic Direct-drive Motor и др.) — двигатель, в котором рабочим элементом является пьезоэлектрическая керамика, благодаря которой он способен преобразовать электрическую энергию в механическую с очень большим КПД, превышающим у отдельных видов 90 %. Это позволяет получать уникальные приборы, в которых электрические колебания прямо преобразуются во вращательное движение ротора, при этом крутящий момент, развиваемый на валу такого двигателя столь велик, что исключает необходимость применения какого-либо механического редуктора для повышения крутящего момента. Также данный двигатель обладает выпрямительными свойствами гладкого фрикционного контакта. Эти свойства проявляются и на звуковых частотах. Такой контакт является аналогом электрического выпрямительного диода. Поэтому ультразвуковой двигатель можно отнести к фрикционным электромоторам.
В 1947 году были получены первые керамические образцы титаната бария и, уже с этого времени производство пьезоэлектрических моторов стало теоретически возможным. Но первый такой мотор появился лишь спустя 20 лет. Изучая пьезоэлектрические трансформаторы в силовых режимах, сотрудник Киевского политехнического института В. В. Лавриненко обнаружил вращение одного из них в держателе. Разобравшись в причине этого явления, он в 1964 году создаёт первый пьезоэлектрический мотор вращения, а вслед за ним и линейный мотор для привода реле[1][2]. За первым мотором с прямым фрикционным контактом он создаёт группы нереверсивных моторов[3] с механической связью пьезоэлемента с ротором через толкатели. На этой основе он предлагает десятки конструкций нереверсивных моторов, перекрывающих диапазон скоростей от 0 до 10 000 об/мин и диапазон моментов вращения от 0 до 100 Нм. Используя два нереверсивных мотора, Лавриненко оригинально решает проблему реверса. Интегрально на валу одного мотора он устанавливает второй мотор. Проблему ресурса мотора он решает, возбуждая крутильные колебания в пьезоэлементе.
На десятилетия опережая подобные работы в стране и за рубежом, Лавриненко разработал практически все основные принципы построения пьезоэлектрических моторов, не исключив при этом возможность работы их в режиме генераторов электрической энергии.
Учитывая перспективность разработки, Лавриненко совместно с соавторами, помогавшими ему реализовать его предложения, он защищает многочисленными авторскими свидетельствами и патентами. В Киевском Политехническом институте создается отраслевая лаборатория пьезоэлектрических моторов под руководством Лавриненко, организуется первое в мире серийное производство пьезомоторов для видеомагнитофона «Электроника-552». В последующем, серийно производятся моторы для диапроекторов «Днепр-2», кинокамер, приводов шаровых кранов и др. В 1980 году издательство «Энергия» печатает первую книгу по пьезоэлектрическим моторам[4], к ним появляется интерес. Начинаются активные разработки пьезомоторов в Каунасском политехническом институте под руководством проф. Рагульскиса К. М.[5]. Вишневский В. С., в прошлом аспирант Лавриненко, выезжает в Германию, где продолжает работу по внедрению линейных пьезоэлектрических моторов на фирме PHyzical Instryment. Постепенное изучение и разработка пьезоэлектрических моторов выходит за пределы СССР[6]. В Японии и Китае активно разрабатываются и внедряются волновые двигатели, в Америке — сверхминиатюрные двигатели вращения.
Ультразвуковой двигатель имеет значительно меньшие габариты и массу по сравнению с аналогичным по силовым характеристикам электромагнитным двигателем. Отсутствие обмоток, пропитанных склеивающими составами, делает его пригодным для использования в условиях вакуума. Ультразвуковой двигатель обладает значительным моментом самоторможения (до 50 % от величины максимального крутящего момента) при отсутствии питающего напряжения за счёт своих конструктивных особенностей. Это позволяет обеспечивать очень малые дискретные угловые перемещения (от единиц угловых секунд) без применения каких-либо специальных мер. Это свойство связано с квазинепрерывным характером работы пьезодвигателя. Действительно, пьезоэлемент, который преобразует электрические колебания в механические питается не постоянным, а переменным напряжением резонансной частоты. При подаче одного или двух импульсов можно получить очень маленькое угловое перемещение ротора. Например, некоторые образцы ультразвуковых двигателей, имеющие резонансную частоту 2 МГц и рабочую частоту вращения 0,2-6 об/сек, при подаче одиночного импульса на обкладки пьезоэлемента дадут в идеальном случае угловое перемещение ротора в 1/9.900.000-1/330.000 от величины окружности, то есть 0,13-3,9 угловых секунд.[7]
Одним из серьёзных недостатков такого двигателя является значительная чувствительность к попаданию в него твёрдых веществ (например песка). С другой стороны, пьезодвигатели могут работать в жидкой среде, например в воде или в масле.
ru-wiki.ru
Ультразвуково́й дви́гатель (Ультразвуковой мотор, Пьезодвигатель, Пьезомагнитный двигатель, Пьезоэлектрический двигатель), (англ. USM — Ultra Sonic Motor, SWM — Silent Wave Motor, HSM — Hyper Sonic Motor, SDM — Supersonic Direct-drive Motor и др.) — двигатель, в котором рабочим элементом является пьезоэлектрическая керамика, благодаря которой он способен преобразовать электрическую энергию в механическую с очень большим КПД, превышающим у отдельных видов 90 %. Это позволяет получать уникальные приборы, в которых электрические колебания прямо преобразуются во вращательное движение ротора, при этом крутящий момент, развиваемый на валу такого двигателя столь велик, что исключает необходимость применения какого-либо механического редуктора для повышения крутящего момента. Также данный двигатель обладает выпрямительными свойствами гладкого фрикционного контакта. Эти свойства проявляются и на звуковых частотах. Такой контакт является аналогом электрического выпрямительного диода. Поэтому ультразвуковой двигатель можно отнести к фрикционным электромоторам.
В 1947 году были получены первые керамические образцы титаната бария и, уже с этого времени производство пьезоэлектрических моторов стало теоретически возможным. Но первый такой мотор появился лишь спустя 20 лет. Изучая пьезоэлектрические трансформаторы в силовых режимах, сотрудник Киевского политехнического института В. В. Лавриненко обнаружил вращение одного из них в держателе. Разобравшись в причине этого явления, он в 1964 году создаёт первый пьезоэлектрический мотор вращения, а вслед за ним и линейный мотор для привода реле[1][2]. За первым мотором с прямым фрикционным контактом он создаёт группы нереверсивных моторов[3] с механической связью пьезоэлемента с ротором через толкатели. На этой основе он предлагает десятки конструкций нереверсивных моторов, перекрывающих диапазон скоростей от 0 до 10 000 об/мин и диапазон моментов вращения от 0 до 100 Нм. Используя два нереверсивных мотора, Лавриненко оригинально решает проблему реверса. Интегрально на валу одного мотора он устанавливает второй мотор. Проблему ресурса мотора он решает, возбуждая крутильные колебания в пьезоэлементе.
На десятилетия опережая подобные работы в стране и за рубежом, Лавриненко разработал практически все основные принципы построения пьезоэлектрических моторов, не исключив при этом возможность работы их в режиме генераторов электрической энергии.
Учитывая перспективность разработки, Лавриненко совместно с соавторами, помогавшими ему реализовать его предложения, он защищает многочисленными авторскими свидетельствами и патентами. В Киевском Политехническом институте создается отраслевая лаборатория пьезоэлектрических моторов под руководством Лавриненко, организуется первое в мире серийное производство пьезомоторов для видеомагнитофона «Электроника-552». В последующем, серийно производятся моторы для диапроекторов «Днепр-2», кинокамер, приводов шаровых кранов и др. В 1980 году издательство «Энергия» печатает первую книгу по пьезоэлектрическим моторам[4], к ним появляется интерес. Начинаются активные разработки пьезомоторов в Каунасском политехническом институте под руководством проф. Рагульскиса К. М.[5]. Вишневский В. С., в прошлом аспирант Лавриненко, выезжает в Германию, где продолжает работу по внедрению линейных пьезоэлектрических моторов на фирме PHyzical Instryment. Постепенное изучение и разработка пьезоэлектрических моторов выходит за пределы СССР[6]. В Японии и Китае активно разрабатываются и внедряются волновые двигатели, в Америке — сверхминиатюрные двигатели вращения.
ruwikiorg.ru
Самые массовые китовые объективы 18-55 у кэнона, никона, сони и других.С этих объективов все начинают.И потом они ломаются. Ломаются, когда уже приходит пора переходить на более продвинутые.Они и сделаны на год не больше и то, если бережно к ним относиться.Даже прибережном отношении со временем пластиковые детали начинают затирать.Прилагается больше усилий, направляющие гнутся и зум ломается.У меня об этом есть в постах по ремонту механики.Этот пост про ремонт ультразвукового мотора, который просто изнашивается со временем.Как извлечь мотор, я не пишу, нет ничего проще.
В моторе нечему ломаться, три детали.
Для усложнения задачи сломаем шлейф.
Ремонтируется прсто, всего три провода, средний земля.И немного о работе самого двигателя, может, кто не знает.На металлическое кольцо с ножками наклеены пъезопластины.Когда к ним подается напряжение с частотой резонанса детали,это статор, он начинает колебаться.Частота примерно 30 кГц, поэтому ультразвуковой мотор.Ножки толкают ротор и происходит фокусировка.
Плата мотора выглядит так. DC-DC блок питания и 2 фазоинвертора, три провода к мотору.
Для сравнения просто электромотор не ультразвуковой, у кэнона выглядит так.
Разводка USM мотора имеет ещё один немаловажный контакт.Это четвёртый контакт подстройки частоты блока питания.Дело в том, что резонансная частота статора меняется в зависимости от температуры.Если частота питания отличается от резонансной частоты, двигатель работает медленнее.Нужно сказать, что с подстройкой частоты заморачивается только кэнон, сигма не особо.
Три контакта у сигмы.
Это кэноновский в процессе ремонта, 4 провода.
По большому счёту при сборке объектива на заводе частота блока питания должна подстраиваться до резонансной частоты статора.В таком случае тупая замена мотора при ремонте невозможна. Нужно подстраивать частоту.
Вернемся к нашему мотору.Поверхность статора очень чувствительна ко всяким инородным предметам, типа песчинок и нужна хорошая чистота поверхности ножек.На работу двигателя влияет чистота поверхности и усилие прижимной пружины.Будем считать, что усилие пружины не изменяется со временем, а вот поверхность истирается.Я пробую шлифовать поверхность несколькими способами.Для начала наждачкой 2500, результат плохой.Ротор сразу нарабатывает задиры и двигатель клинит.Пробую шлифовать в зеркало на войлочном круге.
Поверхность красивая, но ротор, как бы прилипает, пищит и двигатель плохо вращается.
Последний способ и самый результативный шлифовка с пастой гои на зеркале.
Оказалось важно даже не чистота поверхности а её плоскостность.
Нет предела совершенству.
Шлейф меняется просто
Провода напаиваются и покрываются поксиполом.
Здесь одна тонкость, прижим деталей усиливается за счёт увеличения толщины статора и двигатель может не пойти.Лишний клей убираем.
Пружину можно укоротить, но тогда прижим будет совсем непонятный.В сборе, как то так.
И испытания.
Отдельно двигатель вращается.
С редуктором вращается
Тубус объектива вращает
Это для общего развития замер напряжения на двигателе.Пиковое напряжение доходит до 19 вольт, бъет чувствительно.
А знаете как проверить работает ли статор отдельно?Погрузить его в воду и получите фонтан. Я не снял, а сейчас уже лень разбирать двигатель.
Да и ещё, эти двигатели не ремонтопригодны их просто меняют.Причем, если заменить на донорский с поломанного объектива, неизвестно сколько он проработает.
Успехов в фотографии.
nesovet.livejournal.com
1-дневный обучающий курс по пьезоактюаторам и электромагнитным линейным актюаторам пройдет в рамках выставки ACTUATOR2018 (Германия, Бремен). Курс проведет компания CEDRAT TECHNOLOGIES 28 июня 2018 года.
подробнее...
Приглашаем присоединиться к крупнейшей встрече профессионалов ФОТОНИКА МИР ЛАЗЕРОВ И ОПТИКИ 2018 в период с 27 февраля по 02 марта 2018. Мы с радостью встретим вас в Павильоне 7 зала 5 на стенде № 75D10, чтобы обсудить ваши проекты и представить вам изделия технологии CEDRAT TECHNOLOGIES (Франция) и NANOMOTION (Израиль) http://www.photonics-expo.ru/
Преднагруженные пьезоактуаторы с интегрированным рычажным усилителем перемещения (Amplified Piezo Actuators – APA) позволяют увеличить допустимую рабочую частоту пьезокерамики при увеличении ее рабочего хода
подробнее...
140 страниц, теперь доступен на русском языке по запросу. В запросе просьба указывать ФИО, название организации и контактный номер телефона.
Компактный контроллер (Compact Controller Board - CCBu20) обеспечивает все параметры для управления 2-х осевыми пьезомеханизмами с датчиками положения, такими как DDT35XS-SG или XY25XS-SG.
подробнее...
На русском языке на пьезосборки здесь
На русском языке на оптоэлектронные компоненты здесь
подробнее...
metrology-spb.ru