ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Баланс активных и реактивных мощностей. Реактивная мощность двигателя


Реактивная мощность: от возникновения к практике

Реактивная мощность – часть электрической энергии, возращенная нагрузкой источнику. Явление возникновения ситуации считается вредным.

Возникновение реактивная мощность

Допустим, цепь содержит источник питания постоянного тока и идеальную индуктивность. Включение цепи порождает переходный процесс. Напряжение стремится достичь номинального значения, росту активно мешает собственное потокосцепление индуктивности. Каждый виток провода согнут круговой траекторией. Образуемое магнитное поле будет пересекать соседствующий сегмент. Если витки расположены один за другим, характер взаимодействия усилится. Рассмотренное называется собственным потокосцеплением.

Характер процесса таков: наводимая ЭДС препятствует изменениям поля. Ток пытается стремительно вырасти, потокосцепление тянет обратно. Вместо ступеньки видим сглаженный выступ. Энергия магнитного поля потрачена, чтобы воспрепятствовать процессу создавшему. Случай возникновения реактивной мощности. Фазой отличается от полезной, вредит. Идеально: направление вектора перпендикулярно активной составляющей. Подразумевается, сопротивление провода нулевое (фантастический расклад).

При выключении цепи процесс повторится обратным порядком. Ток стремится мгновенно упасть до нуля, в магнитном поле запасена энергия. Пропади индуктивность, переход пройдет внезапно, потокосцепление придает процессу иную окраску:

  1. Уменьшение тока вызывает снижение напряженности магнитного поля.
  2. Произведенный эффект наводит противо-ЭДС витков.
  3. В результате после отключения источника питания ток продолжает существовать, понемногу затухая.
Возвращённая электрическая энергия

Графики напряжения, тока, мощности

Реактивная мощность некое звено инерции, постоянно запаздывающее, мешающее. Первый вопрос: зачем тогда нужны индуктивности? О, у них хватает полезных качеств. Польза заставляет мириться с реактивной мощностью. Распространенным положительным эффектом назовем работу электрических двигателей. Передача энергии идет через магнитный поток. Меж витками одной катушки, как было показано выше. Взаимодействию подвержены постоянный магнит, дроссель, все, способное захватить вектором индукции.

Случаи нельзя назвать в смысле описательном всеобъемлющими. Иногда применяется поток сцепления в виде, показанном для примера. Принцип используют пускорегулирующие аппараты газоразрядных ламп. Дроссель снабжен несметным количеством витков: отключение напряжения вызывает не плавное снижение тока, но выброс большой амплитуды противоположной полярности. Индуктивность велика: отклик поистине потрясающий. Превышает исходные 230 вольт на порядок. Достаточно, чтобы возникла искра, лампочка зажглась.

Реактивная мощность и конденсаторы

Реактивная мощность запасается энергией магнитного поля индуктивностями. А конденсатор? Выступает источником возникновения реактивной составляющей. Дополним обзор теорией сложения векторов. Поймет рядовой читатель. В физике электрических сетей часто используются колебательные процессы. Всем известные 220 вольт (теперь принятые 230) в розетке частотой 50 Гц. Синусоида, амплитуда которой равна 315 вольт. Анализируя цепи, удобно представить вращающимся по часовой стрелке вектором.

Анализ цепей на графике

Анализ цепей графическим методом

Упрощается расчет, можно пояснить инженерное представление реактивной мощности. Угол фазы тока считают равным нулю, откладывается вправо по оси абсцисс (см. рис.). Реактивная энергия индуктивности совпадает фазой с напряжением UL, опережает на 90 градусов ток. Идеальный случай. Практикам приходится учитывать сопротивление обмотки. Реактивной на индуктивности будет часть мощности (см. рис.). Угол меж проекциями важен. Величина называется коэффициентом мощности. Что означает на практике? Перед ответом на вопрос рассмотрим понятие треугольника сопротивлений.

Треугольник сопротивлений и коэффициент мощности

Чтобы проще вести анализ электрических цепей, физики предлагают использовать треугольник сопротивлений. Активная часть откладывается, как ток, – вправо оси абсцисс. Договорились, индуктивность направлять вверх, емкость – вниз. Вычисляя полное сопротивление цепи, значения вычитаем. Исключено комбинированный случай. Доступно два варианта: реактивное сопротивление положительное, либо отрицательное.

Получая емкостное/индуктивное сопротивление, параметры элементов цепи домножают коэффициентом, обозначаемым греческой буквой «омега». Круговая частота – произведение частоты сети на удвоенное число Пи (3.14). Еще одно замечание по поводу нахождения реактивных сопротивлений укажем. Если индуктивность просто домножается указанным коэффициентом, для емкостей берутся величины обратные произведению. Понятно из рисунка, где приведены указанные соотношения, помогающие вычислять напряжения. После домножения берем алгебраическую сумму индуктивного, емкостного сопротивлений. Первые рассматриваются положительными величинами, вторые – отрицательными.

Соотношения для вычисления напряжений

Формулы реактивных составляющих

Две составляющие сопротивления – активная и мнимая – являются проекциями вектора полного сопротивления на оси абсцисс и ординат. Углы сохраняются при переносе абстракций на мощности. Активная откладывается по оси абсцисс, реактивная — вдоль сои ординат. Емкости и индуктивности являются основополагающей причиной возникновения в сети негативных эффектов. Было показано выше: без реактивных элементов становится невозможным построение электротехнических устройств.

Коэффициентом мощности принято называть косинус угла меж полным вектором сопротивления и горизонтальной осью. Столь важное значение параметру приписывают, поскольку полезная часть энергии источника является долей полных трат. Доля высчитывается умножением полной мощности на коэффициент. Если векторы напряжения и тока совпадают, косинус угла равен единице. Мощность теряется нагрузкой, улетучиваясь теплом.

Сказанному верить! Средняя мощность периода при подключении к источнику чисто реактивного сопротивления равна нулю. Половину времени индуктивность принимает энергию, вторую отдает. Обмотка двигателя обозначается на схемах прибавлением источника ЭДС, описывающего передачу энергии валу.

Практическое истолкование коэффициента мощности

Многие замечают неувязку в случае практического рассмотрения реактивной мощности. Для снижения коэффициента рекомендуют параллельно обмоткам двигателя включать конденсаторы большого размера. Индуктивное сопротивление уравновешивает емкостное, ток вновь совпадает с напряжением фазой. Сложно понять вот по какой причине:

  1. Допустим, к источнику переменного напряжения подключили первичную обмотку трансформатора.
  2. В идеале активное сопротивление равно нулю. Мощность должна быть реактивной. Но это плохо: угол между напряжением и током стремятся сделать нулевым!
Коэффициент мощности

Коэффициент мощности

Величина энергии, запасаемой полем, определяется размером индуктивности или емкости. Прочитаете в любом учебнике физики для ВУЗов (Курс физики Жданова и Маранджяна, т. 2, стр. 234), точнее – пропорциональна квадрату величины. Теория реактивной мощности предполагает: некая энергия запасается каждый период паразитной индуктивностью, емкостью, потом уходит во внешнюю цепь. Получается своеобразная циркуляция внутри колебательного контура. Сильно нагреваются соединительные провода, если индуктивность находится слишком далеко от ёмкости.

Но! Колебательный процесс безучастен работе двигателей, трансформаторов. Теория реактивной мощности предполагает: колебания совершает вся энергия. До последней капли. В трансформаторе, двигателе из поля происходит активная «утечка» энергии на совершение работы, наведение тока вторичной обмотки. Энергия циркулировать между источником и потребителем не может.

Реальная цепь процесс согласования отдельных участков затрудняет. Для перестраховки поставщики требуют установить параллельно обмотке двигателя конденсаторы, чтобы энергия циркулировала в локальном сегменте, не выходила наружу, нагревая соединительные провода. Важно избежать перекомпенсации. Если емкость конденсаторов будет слишком велика, батарея станет причиной увеличения коэффициента мощности.

Что касается сдвига фаз, возникает на вторичной обмотке трансформатора подстанции. Роль играет не это. Двигатель работает, часть энергии не преобразована в полезную работу, отражается назад. В результате возникает коэффициент мощности. Участвующая составляющая индуктивности – технологический, конструкционный дефект. Часть, не приносящая пользы. Скомпенсируем, добавляя конденсаторные блоки.

Проверка правильности согласования ведется по факту отсутствия сдвига фаз между напряжением и током работающего электродвигателя. Лишняя энергия циркулирует меж избыточной индуктивностью обмоток, установленным конденсаторным блоком. Достигнута цель мероприятия – избежать нагрева проводников питающей устройство сети.

Что предлагают под видом экономии электроэнергии

В сети предлагают купить устройства экономии электроэнергии. Компенсаторы реактивной мощности. Важно не перегнуть палку. Допустим, компенсатор будет уместно смотреться рядом с включенным компрессором холодильника, коллекторным двигателем пылесоса, обременять квартиру мерами при работающих лампочках накала – предприятие сомнительное. До установки потрудитесь узнать сдвиг фаз меж напряжением и током, согласно информации, правильно рассчитайте объем блока конденсаторов. Иначе попытки сэкономить таким образом потерпят неудачу, разве случайно удастся навести палец в небо, попасть в точку.

Вторым аспектом компенсации реактивной мощности является учет. Делается для крупных предприятий, где стоят мощные двигатели, создающие большие углы сдвига фаз. Внедряют специальные счетчики учета реактивной мощности, оплачиваемой согласно тарифу. Для расчетов коэффициента оплаты применяется оценка тепловых потерь проводов, ухудшение режима эксплуатации кабельной сети, некоторые другие факторы.

Перспективы дальнейшего изучения реактивной энергии, как явления

Реактивная мощность выступает явлением отражения энергии. Идеальные цепи явления лишены. Реактивная мощность проявляется выделенным теплом на активном сопротивлении кабельных линий, искажает синусоидальную форму сигнала. Отдельная тема разговора. При отклонениях от нормы двигатели работают не столь гладко, трансформаторам – помеха.

vashtehnik.ru

Компенсация реактивной мощности в теории

Компенсация реактивной мощности (КРМ). Появление термина «реактивная» мощность связано с необходимостью выделения мощности, потребляемой нагрузкой, составляющей, которая формирует электромагнитные поля и обеспечивает вращающий момент двигателя. Эта составляющая имеет место при индуктивном характере нагрузки. Например, при подключении электродвигателей. Практически вся бытовая нагрузка, не говоря о промышленном производстве, в той или иной степени имеет индуктивный характер. В электрических цепях, когда нагрузка имеет активный (резистивный) характер, протекающий ток синфазен (не опережает и не запаздывает) от напряжения. Если нагрузка имеет индуктивный характер(двигатели, трансформаторы на холостом ходу), ток отстает от напряжения. Когда нагрузка имеет емкостной характер(конденсаторы), ток опережает напряжение.

Омическая (активная) нагрузкаИндуктивная (двигательная) нагрузкаЕмкостная (конденсаторная) нагрузка

Суммарный ток, потребляемый двигателем, определяется векторной суммой

1. Iа— активный ток2. Iри— реактивный ток индуктивного характера

мощности потребляемые двигателем

К этим токам привязаны мощности потребляемые двигателем.

  1. Р– активная мощность привязана к Iа(по всем гармоникам суммарно)
  2. Q– реактивная мощность привязана к Iри(по всем гармоникам суммарно)
  3. A– полная мощность потребляемая двигателем. (по всем гармоникам суммарно)

Реактивная мощность не производит механической работы, хотя она и необходима для работы двигателя, поэтому ее необходимо получать на месте, чтобы не потреблять ее от энергоснабжающей организации. Тем самым мы снижаем нагрузку на провода и кабели, повышаем напряжение на клеммах двигателя, снижаем платежи за реактивную мощность, имеем возможность подключить дополнительные станки за счет снижения тока потребляемого с силового трансформатора.

Параметр определяющий потребление реактивной мощности называется Cos (φ)

Cos (φ) = P1гарм/ A1гарм

P1гарм— активная мощность первой гармоники 50 ГцА1гарм— полная мощность первой гармоники 50 Гцгде,

A = √P² + Q²

Таким образом, сos (φ) уменьшается, когда потребление реактивной мощности нагрузкой увеличивается. Необходимо стремиться к повышению сos (φ), т.к. низкий сos (φ) несет следующие проблемы:

  1. Высокие потери мощности в электрических линиях (протекание тока реактивной мощности)
  2. Высокие перепады напряжения в электрических линиях(например 330…370 В, вместо 380 В)
  3. Необходимость увеличения габаритной мощности генераторов, сечения кабелей, мощности силовых трансформаторов.

Из всего вышеприведенного, понятно, что компенсация реактивной мощности необходима. Чего легко можно достичь применением активных компенсирующих установок. Конденсаторы в которых будут компенсировать реактивную мощность двигателей.

Потребители реактивной мощности

Потребителями реактивной мощности, необходимой для создания магнитных полей, являются как отдельные звенья электропередачи(трансформаторы, линии, реакторы), так и такие электроприёмники, преобразующие электроэнергию в другой вид энергии которые по принципу своего действия используют магнитное поле(асинхронные двигатели, индукционные печи и т.п.). До 80-85% всей реактивной мощности, связанной с образованием магнитных полей, потребляют асинхронные двигатели и трансформаторы. Относительно небольшая часть в общем балансе реактивной мощности приходится на долю прочих её потребителей, например на индукционные печи, сварочные трансформаторы, преобразовательные установки, люминесцентное освещение и т.п.

Трансформатор как потребитель реактивной мощности. Трансформатор является одним из основных звеньев в передаче электроэнергии от электростанции до потребителя. В зависимости от расстояния между электростанцией и потребителем и от схемы передачи электроэнергии число ступеней трансформации лежит в пределах от двух до шести. Поэтому установленная трансформаторная мощность обычно в несколько раз превышает суммарную мощность генераторов энергосистемы. Каждый трансформатор сам является потребителем реактивной мощности. Реактивная мощность необходима для создания переменного магнитного потока, при помощи которого энергия из одной обмотки трансформатора передаётся в другую.

Асинхронный двигатель как потребитель реактивной мощности. Асинхронные двигатели наряду с активной мощностью потребляют до 60-65% всей реактивной мощности нагрузок энергосистемы. По принципу действия асинхронный двигатель подобен трансформатору. Как и в трансформаторе, энергия первичной обмотки двигателя– статора передаётся во вторичную– ротор посредствам магнитного поля.

Индукционные печи как потребители реактивной мощности. К крупным электроприемникам, требующим для своего действия большой реактивной мощности, прежде всего, относятся индукционные печи промышленной частоты для плавки металлов. По существу эти печи представляют собой мощные, но не совершенные с точки зрения трансформаторостроения трансформаторы, вторичной обмоткой которых является металл (садка), расплавляемый индуктированными в нём токами.

Преобразовательные установки, преобразующие переменный ток в постоянный при помощи выпрямителей, также относятся к крупным потребителям реактивной мощности. Выпрямительные установки нашли широкое применение в промышленности и на транспорте. Так, установки большей мощности с ртутными преобразователями используются для питания электроизоляционных ванн, например при производстве алюминия, каустической соды и др. Железнодорожный транспорт в нашей стране почти полностью электрифицирован, причём значительная часть железных дорог использует постоянный ток преобразовательных установок.

Компенсация реактивной мощности в электрических сетях

Смотрите также: Конденсаторные установки для компенсации реактивной мощности (КРМ)

С другой стороны, элементы распределительной сети(линии электропередачи, повышающие и понижающие трансформаторы) в силу особенностей конструктивного исполнения имеют продольное индуктивное сопротивление. Поэтому, даже для нагрузки потребляющей только активную мощность, в начале распределительной сети будет иметь место индуктивная составляющая– реактивная мощность. Величина этой реактивной мощности зависит от индуктивного сопротивления распределительной сети и полностью расходуется на потери в элементах этой распределительной сети. Действительно, для простейшей схемы:

Компенсация реактивной мощности в электрических сетях КРМ

Р– активная мощность в центре питания, Рн– активная мощность на шинах потребителя, R – активное сопротивление распределительной сети, Q – реактивная мощность в центре питания, Qн– реактивная мощность на шинах потребителя. U – напряжение в центре питания, Uн– напряжение на шинах потребителя, Х– индуктивное сопротивление распределительной сети.

В результате, независимо от характера нагрузки, по распределительной сети от источника питания будет передаваться реактивная мощностьQ. При двигательном характере нагрузки ситуация ухудшается– значения мощности в центре питания увеличивается и становится равными:

Р= Рн + ( Рн² + Qн² ) * R / Uн²;Q = Qн + ( Рн² + Qн² ) * X / Uн².

Передаваемая от источника питания к потребителю реактивная мощность имеет следующие недостатки:

В распределительной сети возникают дополнительные потери активной мощности – потери при транспорте электрической энергии: ∆Р= ( Рн² + Qн² ) * R , часть которых(а иногда и значительную) составляют потери от транспорта реактивной мощности.

Величина напряжения у потребителя, а, следовательно, и качество электрической энергии, снижается: Uн= U – ( P * R + Q * X ) / U.

Увеличивается загрузка распределительной сети током, что лишает потребителя возможности перспективного развития.

Таким образом, транспортировка реактивной мощности по распределительным сетям от центров питания к потребителям превращается в сложную технико-экономическую проблему, затрагивающую как вопросы экономичности так и вопросы надежности систем электроснабжения.

Классическим решением данной проблемы в распределительных сетях является компенсация реактивной мощности у потребителя путём установки у него дополнительных источников реактивной мощности– потребительских статических конденсаторов.

Тэги: реактивная мощность, компенсация реактивной мощности, КРМ

kvar.su

Реактивная мощность - это... Что такое Реактивная мощность?

Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии.

Мгновенная электрическая мощность

Мгновенная электрическая мощность P (t), выделяющаяся на элементе электрической цепи — произведение мгновенных значений напряжения U (t) и силы тока I (t) на этом элементе:

Если элемент цепи — резистор c электрическим сопротивлением R, то

Мощность постоянного тока

Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то среднюю мощность можно вычислить по формулам:

Мощность переменного тока

Активная мощность

Среднее за период Т значение мгновенной мощности называется активной мощностью: . В цепях однофазного синусоидального тока , где U и I — действующие значения напряжения и тока, φ — угол сдвига фаз между ними. Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле . В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью S активная связана соотношением . Единица активной мощности — ватт (W, Вт). Для СВЧ электромагнитного сигнала, в линиях передачи, аналогом активной мощности является мощность, поглощаемая нагрузкой.

Реактивная мощность

Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи переменного тока, равна произведению действующих значений напряжения U и тока I, умноженному на синус угла сдвига фаз φ между ними: Q = UI sin φ. Единица реактивной мощности — вольт-ампер реактивный (var, вар). Реактивная мощность связана с полной мощностью S и активной мощностью Р соотношением: . Реактивная мощность в электрических сетях вызывает дополнительные активные потери (на покрытие которых расходуется энергия на электростанциях) и потери напряжения (ухудшающие условия регулирования напряжения). В некоторых электрических установках реактивная мощность может быть значительно больше активной. Это приводит к появлению больших реактивных токов и вызывает перегрузку источников тока. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности. Для СВЧ электромагнитного сигнала, в линиях передачи, аналогом реактивной мощности является мощность, отраженная от нагрузки.

Необходимо отметить, что величина sinφ для значений φ от 0 до плюс 90 ° является положительной величиной. Величина sinφ для значений φ от 0 до минус 90 ° является отрицательной величиной. В соответствии с формулой Q = UI sinφ реактивная мощность может быть отрицательной величиной. Но отрицательное значение мощности нагрузки характеризует нагрузку как генератор энергии. Активное, индуктивное, емкостное сопротивление не могут быть источниками постоянной энергии. Модуль величины Q = UI sinφ приблизительно описывает реальные процессы преобразования энергии в магнитных полях индуктивностей и в электрических полях емкостей. Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения. Измерительные преобразователи реактивной мощности, использующие формулу Q = UI sinφ, более просты и значительно дешевле измерительных преобразователей на микропроцессорной технике.

Полная мощность

Полная мощность — величина, равная произведению действующих значений периодического электрического тока в цепи I и напряжения U на её зажимах: S = U×I; связана с активной и реактивной мощностями соотношением: , где Р — активная мощность, Q — реактивная мощность (при индуктивной нагрузке Q > 0, а при ёмкостной Q < 0). Единица полной электрической мощности — вольт-ампер (VA, ВА).

Векторная зависимость между полной, активной и реактивной мощностью выражается формулой:

Измерения

Литература

Ссылки

См. также

Wikimedia Foundation. 2010.

dvc.academic.ru

Компенсация реактивной мощности

Компенсация реактивной мощности

  В электрических цепях переменного тока присутствуют два вида мощности – активная и реактивная. Активная мощность является полезной и расходуется непосредственно на совершение полезной работы. Реактивная мощность чаще имеет отрицательное воздействие, в связи с чем, требуется компенсация реактивной мощности. 

Реактивная мощность

  Реактивная мощность возникает при наличии реактивных элементов в цепи, таких как катушка или конденсатор. При этом часть энергии полученной от источника возвращается обратно к нему.

  При наличии в цепи и катушки и конденсатора, суммарная реактивная мощность оказывается меньше, чем в цепях, в которых эти элементы расположены по отдельности. Это связано с тем, что индуктивная QL и емкостная QC  мощности имеют разные знаки. При равенстве этих мощностей наблюдается явление резонанса, при котором реактивная мощность равна нулю. В этом случае энергия не поступает к источнику, а циркулирует между катушкой и конденсатором.

Реактивная мощность в промышленных установках

  В промышленности большая часть оборудования обладает индуктивностью, а следовательно и реактивной мощностью. Примером таких установок может служить трансформаторы, двигатели, индукционные нагревательные установки и т.д. Чем больше величина реактивной мощности, тем меньше коэффициент мощности cosϕ, который определяется как отношение активной мощности к полной. Чем больше число установок, тем больше их суммарная реактивная мощность, следовательно, потери связанные с реактивной мощностью больше.

  Реактивная мощность также влияет на токи в цепи. На примере асинхронного двигателя ток определяется как 

Компенсация реактивной мощности

  При увеличении реактивной мощности (Q) ток также будет увеличиваться, что приводит к необходимости выбора проводов большего сечения, а следовательно к лишним затратам. Кроме того, увеличение тока приводит к увеличению тепловых потерь, а следовательно к дополнительному нагреву двигателя.

Компенсация реактивной мощности

  Как было сказано ранее, большие значения реактивной мощности приводят к значительным экономическим и трудовым затратам. Поэтому, на практике стараются максимально уменьшить её значение.

  Уменьшение реактивной мощности может достигаться несколькими способами. Самым эффективным считается правильный подбор мощности двигателей и трансформаторов и нахождение эффективного режима нагрузки, без холостого хода и недогрузки. Такой способ не требует дополнительных материальных затрат, но им не всегда получается достигнуть оптимальных значений и прибегают к искусственным способам компенсации реактивной мощности.

  Одним из таких способов является включение батареи конденсаторов параллельно к приемнику.

С помощью использования батареи конденсаторов можно добиться полной компенсации реактивной мощности. Но на практике затраты на дополнительное оборудование могут значительно превысить затраты на реактивную мощность, из-за дороговизны конденсаторов. Поэтому чаще всего, добиваются лишь частичной компенсации реактивной мощности.

  Компенсацию реактивной мощности рассмотрим на примере асинхронного двигателя.

  Компенсация реактивной мощности

  До включения батареи конденсаторов параллельно двигателю, значение реактивной мощности было равно Q1, а ток в питающих проводах двигателя был равен I1. При включении батареи, это значение снизилось до Q2, так как часть индуктивной мощности была скомпенсирована емкостной.

 Компенсация реактивной мощности

  Ток значительно уменьшается до величины I2, благодаря появлению тока Ic, который можно рассчитать по формуле

Компенсация реактивной мощности

  Емкость батареи 

Компенсация реактивной мощности

  Мощность батареи 

Компенсация реактивной мощности

  Таким образом, компенсация реактивной мощности играет важную роль с точки зрения сокращения расходов предприятия. 

electroandi.ru

Реактивная мощность - это... Что такое Реактивная мощность?

Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии.

Мгновенная электрическая мощность

Мгновенная электрическая мощность P (t), выделяющаяся на элементе электрической цепи — произведение мгновенных значений напряжения U (t) и силы тока I (t) на этом элементе:

Если элемент цепи — резистор c электрическим сопротивлением R, то

Мощность постоянного тока

Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то среднюю мощность можно вычислить по формулам:

Мощность переменного тока

Активная мощность

Среднее за период Т значение мгновенной мощности называется активной мощностью: . В цепях однофазного синусоидального тока , где U и I — действующие значения напряжения и тока, φ — угол сдвига фаз между ними. Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле . В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью S активная связана соотношением . Единица активной мощности — ватт (W, Вт). Для СВЧ электромагнитного сигнала, в линиях передачи, аналогом активной мощности является мощность, поглощаемая нагрузкой.

Реактивная мощность

Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи переменного тока, равна произведению действующих значений напряжения U и тока I, умноженному на синус угла сдвига фаз φ между ними: Q = UI sin φ. Единица реактивной мощности — вольт-ампер реактивный (var, вар). Реактивная мощность связана с полной мощностью S и активной мощностью Р соотношением: . Реактивная мощность в электрических сетях вызывает дополнительные активные потери (на покрытие которых расходуется энергия на электростанциях) и потери напряжения (ухудшающие условия регулирования напряжения). В некоторых электрических установках реактивная мощность может быть значительно больше активной. Это приводит к появлению больших реактивных токов и вызывает перегрузку источников тока. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности. Для СВЧ электромагнитного сигнала, в линиях передачи, аналогом реактивной мощности является мощность, отраженная от нагрузки.

Необходимо отметить, что величина sinφ для значений φ от 0 до плюс 90 ° является положительной величиной. Величина sinφ для значений φ от 0 до минус 90 ° является отрицательной величиной. В соответствии с формулой Q = UI sinφ реактивная мощность может быть отрицательной величиной. Но отрицательное значение мощности нагрузки характеризует нагрузку как генератор энергии. Активное, индуктивное, емкостное сопротивление не могут быть источниками постоянной энергии. Модуль величины Q = UI sinφ приблизительно описывает реальные процессы преобразования энергии в магнитных полях индуктивностей и в электрических полях емкостей. Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения. Измерительные преобразователи реактивной мощности, использующие формулу Q = UI sinφ, более просты и значительно дешевле измерительных преобразователей на микропроцессорной технике.

Полная мощность

Полная мощность — величина, равная произведению действующих значений периодического электрического тока в цепи I и напряжения U на её зажимах: S = U×I; связана с активной и реактивной мощностями соотношением: , где Р — активная мощность, Q — реактивная мощность (при индуктивной нагрузке Q > 0, а при ёмкостной Q < 0). Единица полной электрической мощности — вольт-ампер (VA, ВА).

Векторная зависимость между полной, активной и реактивной мощностью выражается формулой:

Измерения

Литература

Ссылки

См. также

Wikimedia Foundation. 2010.

dic.academic.ru

Реактивная мощность - холостой ход

Реактивная мощность - холостой ход

Cтраница 2

Если учесть, что коэффициент нагрузки всего эксплуатируемого парка асинхронных двигателей в среднем не превышает 50 - 60 %, а также и другие факторы, неблагоприятные с эксплуатационной точки зрения ( например, случаи неправильной перемотки и неудовлетворительного ремонта двигателей, нередко встречающиеся случаи работы двигателей при напряжении выше номинального и др.), то необходимо будет признать, что удельный вес реактивной мощности холостого хода практически оказывается еще более высоким - порядка 60 % всего баланса реактивной мощности, потребляемой промышленными предприятиями.  [16]

Асинхронные двигатели при номинальной нагрузке имеют относительно высокий coscp ( примерно 0 85 - 0 9 и выше), зависящий от мощности и типа двигателя. Но в потребляемой двигателями реактивной мощности весьма велик удельный вес реактивной мощности холостого хода. Так, для асинхронных двигателей типов А и АО мощность холостого хода достигает 60 - 85 % реактивной мощности при номинальной нагрузке двигателя. В среднем загрузка двигателей не превышает величины 60 - 70 %, поэтому удельный вес реактивной мощности холостого хода еще более возрастает, что ухудшает coscp двигателя.  [17]

Чем выше номинальный коэффициент мощности, тем относительно меньше реактивная мощность холостого хода двигателя. Однако и у современных асинхронных двигателей, имеющих сравнительно высокий номинальный коэффициент мощности, удельный вес реактивной мощности холостого хода весьма значителен; например, у асинхронных двигателей единой серии общего применения типов А и АО реактивная мощность холостого хода колеблется в пределах 60 - 85 % реактивной мощности двигателя при 100-процентной нагрузке.  [18]

Чем выше номинальный коэффициент мощности, тем относительно меньше реактивная мощность холостого хода двигателя. Однако и у современных асинхронных двигателей, имеющих сравнительно высокий номинальный коэффициент мощности, удельный вес реактивной мощности холостого хода весьма значителен; например, у асинхронных двигателей единой серии общего применения типов А и АО реактивная мощность холостого хода колеблется в пределах 60 - 85 % реактивной мощности двигателя при 100-процентной нагрузке.  [19]

На промышленных предприятиях около 75 % всей реактивной мощности потребляют асинхронные электродвигатели и примерно 20 % трансформаторы. Асинхронные двигатели при номинальной нагрузке имеют относительно высокий coscp ( примерно 0 85, а иногда и выше), зависящий от мощности и типа двигателя. Но в потребляемой двигателями реактивной мощности весьма велик удельный вес реактивной мощности холостого хода. Так, для асинхронных двигателей типов А и АО мощность холостого хода достигает 60 - 85 % реактивной мощности при номинальной нагрузке двигателя. В среднем загрузка двигателей не превышает 60 - 70 %, поэтому удельный вес реактивной мощности холостого хода еще более возрастает, что ухудшает cos ф двигателя.  [20]

Современные асинхронные двигатели конструируют с минимально возможным воздушным зазором между статором и ротором. Это уменьшает сопротивление пути магнитного потока и потребление реактивной мощности. Магнитным сопротивлением воздушного зазора обусловлено 70 - 80 % потребляемой асинхронным двигателем реактивной мощности холостого хода.  [21]

Асинхронные двигатели при номинальной нагрузке имеют относительно высокий coscp ( примерно 0 85 - 0 9 и выше), зависящий от мощности и типа двигателя. Но в потребляемой двигателями реактивной мощности весьма велик удельный вес реактивной мощности холостого хода. Так, для асинхронных двигателей типов А и АО мощность холостого хода достигает 60 - 85 % реактивной мощности при номинальной нагрузке двигателя. В среднем загрузка двигателей не превышает величины 60 - 70 %, поэтому удельный вес реактивной мощности холостого хода еще более возрастает, что ухудшает coscp двигателя.  [22]

На промышленных предприятиях около 75 % всей реактивной мощности потребляют асинхронные электродвигатели и примерно 20 % трансформаторы. Асинхронные двигатели при номинальной нагрузке имеют относительно высокий coscp ( примерно 0 85, а иногда и выше), зависящий от мощности и типа двигателя. Но в потребляемой двигателями реактивной мощности весьма велик удельный вес реактивной мощности холостого хода. Так, для асинхронных двигателей типов А и АО мощность холостого хода достигает 60 - 85 % реактивной мощности при номинальной нагрузке двигателя. В среднем загрузка двигателей не превышает 60 - 70 %, поэтому удельный вес реактивной мощности холостого хода еще более возрастает, что ухудшает cos ф двигателя.  [23]

Страницы:      1    2

www.ngpedia.ru

Баланс активных и реактивных мощностей

Баланс активных и реактивных мощностей

Активная мощность источников РИ (турбогенераторов и гидрогенераторов электростанций, нетрадиционных источников, гидроаккумулирующих станций и др.) в любой момент времени соответствует потребляемой мощности.

Приведенное уравнение определяет баланс активных мощностей в электрической системе.

Баланс активных мощностей соответствует определенным значениям частоты и напряжения в узлах, к которым подключены потребители (нагрузки). Изменение мощности источников связано с изменением частоты и напряжения очевидным равенством, получающимся разложением в ряд Тейлора функции:

Баланс активных и реактивных мощностей

При нагружении баланса мощностей вследствие снижения генерирующей мощности или увеличения потребления активной мощности устанавливается режим с изменившимися значениями составляющих уравнения баланса мощности. Снижение генерируемой мощности приводит к уменьшению частоты и напряжения в системе и, наоборот, увеличение мощности источников приводит к возрастанию частоты тока и напряжения в электрической системе одинаково в любом ее узле. Воздействовать на изменение частоты можно только путем изменения генерируемой активной мощности.

Номинальное значение частоты в европейских странах составляет 50 Гц, в США и ряде других стран — 60 Гц. Снижение частоты приводит к уменьшению скорости вращения синхронных и асинхронных электродвигателей и, в конечном счете, к уменьшению производительности приводных механизмов. В ориентировочных расчетах принимают, что изменение частоты на 1 % приводит к изменению активной мощности нагрузки на 0,5 %.

Баланс реактивной мощности определяется уравнением

Баланс активных и реактивных мощностей

Вопрос компенсации реактивной мощности относится к числу важнейших при проектировании и эксплуатации систем энергоснабжения предприятий. Как известно, величина (значение) реактивной мощности характеризует скорость обмена электромагнитной энергии источниками и потребителями электроэнергии. При этом индуктивные элементы являются накопителями реактивной мощности, а емкостные — ее генераторами.

В трехфазных симметричных сетях реактивная мощность определяется по формуле

Баланс активных и реактивных мощностей

В простейшем случае одно или двухполупериодного выпрямителя, работающего на активную нагрузку (рис. 9.6), при угле управления а * 0 первая гармоника тока 1 сдвинута относительно кривой напряжения на угол фь значение которого зависит от угла управления а. ток первой гармоники может быть представлен суммой активной и реактивной составляющих; соответственно могут быть представлены мощности. Однако такая мощность не связана с обменными процессами, она обусловлена лишь наличием сдвига по фазе между током и напряжением. Ее правильнее было бы назвать мощностью сдвига. Но мы будем пользоваться привычным и общепринятым термином «реактивная мощность».

Баланс активных и реактивных мощностей

Компенсация реактивной мощности (т.е. ее минимизация) производится одними и теми же методами независимо от природы ее появления, т.е. наличия реактивных элементов в сети или сдвига фаз, обусловленного нелинейными потребителями. На практике обычно имеют место сочетания обоих причин: в вентильных преобразователях (выпрямителях, инверторах и др.) используются реакторы для сглаживания коммутационных процессов и батареи конденсаторов; преобразователи и ДСП включаются через трансформаторы и т.д. Говоря о коэффициенте мощности coscp, следует иметь в виду, что более точно его следовало бы назвать коэффициентом сдвига фаз.

Согласно первой научной картине мира Ньютона—Максвелла все электрические машины обратимы, т.е. они могут работать как в двигательном, так и в генераторном режимах. Это свойство электрических машин используется, в частности, на гидроаккумуляторных станциях: синхронная машина используется в качестве двигателя при перекачке воды в резервуары в периоды минимальных нагрузок энергосистемы и в генераторном режиме, когда запасенная потенциальная энергия воды используется для вращения гидротурбины.

Синхронные машины, применяемые в промышленных системах электроснабжения, независимо от их основного назначения (электродвигатели, генераторы) используются также в качестве источников реактивной мощности. Синхронные компенсаторы устанавливаются только в целях получения РМ. Эти машины могут также работать в режиме потребления РМ.

Это можно наглядно продемонстрировать с помощью известных Uобразных характеристик. На рис. 9.7 представлены Uобразные характеристики синхронного генератора, подключенного к электрической сети с неизменным уровнем напряжения сУ0 = const при различных значениях активной нагрузки Р = 0; Р’ Р».

При значениях тока возбуждения меньших граничного (IF< I/JP), т. е. в режиме недовозбуждения, синхронная машина ведет себя как индуктивность, т. е. потребляет реактивную мощность; при перевозбуждении (IF> IFRP) — является источником реактивной мощности, т. е. ведет себя как емкость.

Баланс активных и реактивных мощностей

Для синхронных электродвигателей значения Р] Р’Р» являются электромагнитной мощностью, соответствующей вращающему электромагнитному моменту. Нижняя кривая является Uобразной характеристикой синхронного компенсатора.

Турбогенераторы небольшой мощности (обычно до 50 MBА) применяются на электростанциях (блокстанциях) предприятий, которые либо являются автономными, либо подключаются к сетям энергосистемы. Используются теплофикационные турбины с отбором пара для промышленных нужд. В любом режиме работы нагрузка турбогенератора ограничивается номинальной мощностью S*ном:

Баланс активных и реактивных мощностей

В режиме работы с номинального значения коэффициента мощностиcos φда 0,80…0,85, что соответствует значениямгенерируемой реактивной мощности QT «(0,53…0,60)» УНОМ.

Оценить значение располагаемой реактивной мощности в режимах, отличных от номинального, очень затруднительно. Так, при увеличении значения Qr по сравнению с номинальным (путем увеличения тока возбуждения If) во избежание перегрева ротора должна быть снижена полная мощность. Кратность снижения этой величины зависит от вида охлаждения (воздушное, водородное), конструкции ротора и ряда других параметров. Как правило, для окончательного решения этого вопроса следует обратиться к паспорту машины либо результатам тепловых испытаний.

При отсутствии возбуждения (I/ = 0), например при включении автомата гашения поля (АГП), турбогенератор будет работать в асинхронном режиме, который, как правило, допустим лишь кратковременно. На промышленных предприятиях турбогенераторы для регулирования напряжения и реактивной мощности используются редко.

Синхронные компенсаторы, в отличие от синхронных генераторов, не имеют выходного конца вала, что облегчает герметизацию машины и позволяет использовать водородное охлаждение. Компенсаторы строятся на напряжения 6,6—15,75 кВ, мощностью до 345 MBА. В промышленности распространены СК10000 кВА.

Полная номинальная мощность компенсатора при работе с перевозбуждением, в генераторном режиме, определяется по формуле (9.14). Полная мощность при недовозбуждении (потребляемая)

определятся по формуле

Баланс активных и реактивных мощностей

Значение синхронного индуктивного сопротивления синхронного компенсатора (в относительных единицах) х% = 1,8…2,5. Активная мощность, обусловленная наличием механических потерь, а также потерь в стали и меди, составляет 1… 2 % от номинальной мощности. Синхронные компенсаторы иногда применяются на ГПП предприятий.

pue8.ru