Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу.
Если рабочий цикл совершается за два хода поршня, т. е. за один оборот коленчатого вала, то такой двигатель называется двухтактным. В настоящее время двухтактные двигатели на военной автомобильной технике не применяют, а используют лишь на мотоциклах и как пусковые двигатели на тракторных дизелях. Это связано, прежде всего, с тем, что они имеют сравнительно большой расход топлива и недостаточное наполнение горючей смесью из-за плохой очистки цилиндров от отработавших газов.
На военной автомобильной технике применяются двигатели, работающие по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения и выпуска.
В четырехтактном дизеле (рисунок 2.2) рабочие процессы происходят следующим образом.
Такт впуска (рисунок 2.2, а). При движении поршня 2 от ВМТ к НМТ вследствие образующегося разрежения из воздухоочистителя 4 в полость цилиндра 7 через открытый впускной клапан 5 поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0,08-0,095 МПА, а температура 40-60 °С.
Рисунок 2.2 - Рабочий цикл четырехтактного дизеля
Такт сжатия (рисунок 2.2, б). Поршень движется от НМТ к ВМТ. Впускной 5 и выпускной 6 клапаны закрыты, вследствие этого перемещающийся вверх поршень 2 сжимает имеющийся в цилиндре воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. Из-за высокой степени сжатия температура воздуха достигает 550-700°С при давлении воздуха внутри цилиндра 4,0-5,0 МПа.
Такт расширения, или рабочий ход (рисунок 2.2, в). При подходе поршня к ВМТ в цилиндр через форсунку 3 впрыскивается дизельное топливо, подаваемое топливным насосом высокого давления 1. Впрыснутое топливо, перемешиваясь с нагретым воздухом, самовоспламеняется и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6-9 МПа, а температура – 1800-2000 °С. Под действием давления газов поршень 2 перемещается от ВМТ к НМТ. Происходит рабочий ход. Около НМТ давление снижается до 0,3-0,5 МПа, а температура – до 700-900 °С.
Такт выпуска (рисунок 2.2, г). Поршень перемещается от НМТ к ВМТ и через открытый выпускной клапан 6 отработавшие газы выталкиваются из цилиндра. Давление газа снижается до 0,11-0,12 МПа, а температура – до 500-700 °С. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.
Рабочие циклы четырехтактного дизеля и карбюраторного двигателя существенно отличаются по способу смесеобразования и воспламенения рабочей смеси. Основное отличие состоит в том, что в цилиндр карбюраторного двигателя при такте впуска поступает не воздух, а горючая смесь, приготовленная в карбюраторе, которая в конце такта сжатия воспламеняется от электрической искры системы зажигания. В карбюраторном четырехтактном одноцилиндровом двигателе (рисунок 2.4) рабочий цикл происходит следующим образом.
Такт впуска (рисунок 2.3, а). Поршень 1 находится в ВМТ и по мере вращения коленчатого вала 9 (за один его полуоборот) перемещается от ВМТ к НМТ. При этом впускной клапан 4 открыт, а выпускной клапан 6 закрыт. При движении поршня вниз объем над ним увеличивается, поэтому в цилиндре 2 образуется разрежение, равное 0,07-0,095 МПа, в результате чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной трубопровод 3 в цилиндр. От соприкосновения свежего заряда с нагретыми деталями в конце такта впуска он имеет температуру 75-125 °С.
Рисунок 2.3 - Рабочий цикл четырехтактного одноцилиндрового
карбюраторного двигателя
Степень заполнения цилиндра свежим зарядом характеризуется коэффициентом наполнения, который для высокооборотистых карбюраторных двигателей находится в пределах 0,65-0,75. Чем выше коэффициент наполнения, тем большую мощность развивает двигатель.
Такт сжатия (рисунок 2.3, б). После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала поршень перемещается от НМТ к ВМТ. Впускной клапан 4 закрывается, а выпускной 6 – остается закрытым. По мере сжатия горючей смеси температура и давление ее повышаются. В зависимости от конструкции двигателя давление в конце такта сжатия может составлять 0,8-1,5 МПа, а температура газов 300-450 °С.
Такт расширения, или рабочий ход (рисунок 2.3, в). В конце такта сжатия горючая смесь воспламеняется от электрической искры, возникающей между электродами свечи 5, и быстро сгорает, в результате чего температура и давление образующихся газов резко возрастают, поршень при этом перемещается от ВМТ к НМТ. Максимальное давление газов на поршень при сгорании для карбюраторных двигателей находится в пределах 3,5-5 МПа, а температура газов 2100-2400 °С.
При такте расширения шарнирно связанный с поршнем шатун 8 совершает сложное движение и через кривошип передает вращение коленчатому валу. При расширении газы совершают полезную работу, поэтому ход поршня при этом такте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня давление в цилиндре снижается до 0,3-0,75 МПа, а температура – до 900-1200 °С.
Такт выпуска (рисунок 2.3, г). Коленчатый вал 9 через шатун перемещает поршень от НМТ к ВМТ. При этом выпускной клапан 6 открыт и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной трубо-провод 7. В начале процесса выпуска продуктов сгорания давление в цилиндре значительно выше атмосферного, но к концу такта оно падает до 0,105-0,120 МПа, а температура газов в начале такта выпуска составляет 750-900 °С, понижаясь к его концу до 500-600 °С. Полностью очистить цилиндры двигателя от продуктов сгорания практически невозможно (слишком мало времени), поэтому при последующем впуске свежей горючей смеси она перемешивается с остаточными отработавшими газами и называется рабочей смесью.
Коэффициент остаточных газов характеризует степень загрязнения свежего заряда отработавшими газами и представляет собой отношение массы продуктов сгорания, оставшихся в цилиндре, к массе свежей горючей смеси. Для современных карбюраторных двигателей коэффициент остаточных газов находится в пределах 0,06-0,12.
poznayka.org
Двигатель, рабочий цикл которого осуществляется за четыре такта, или за два оборота коленчатого вала (причем только один ход поршня является рабочим, а остальные три совершаются в результате работы расширения продуктов сгорания топлива.), называется четырехтактным. Рабочий цикл в таком двигателе происходит следующим образом.
Впуск | ПЕРВЫЙ ТАКТ – впуск. Предположим, что поршень 6 (рис. а) при вращении коленчатого вала 8 через шатун 7 перемещается от верхней мертвой точки (ВМТ) к нижней мертвой точке (НМТ). Впускной клапан 2 системой газораспределения открыт, а выпускной клапан 4 закрыт. По мере движения поршня вниз объем над ним увеличивается, а давление падает. И когда оно становится ниже атмосферного (менее 0,1 МПа), в пространство между крышкой 1, стенками цилиндра 5 и поршнем 6 поступает воздух. Осуществляется такт впуска (наполнения) цилиндра. Объем цилиндра, освобождаемый поршнем при его движении от ВМТ к НМТ, называется рабочим Vs, а объем над поршнем, когда последний находится в НМТ,— полным объемом цилиндра Va Чем больше воздуха будет в цилиндрах дизеля, тем больше можно сжечь в них топлива и, следовательно, получить большую мощность. Всасывание воздуха из атмосферы не может начаться сразу же с началом движения поршня от ВМТ, так как давление остаточных газов в цилиндре в первый момент выше атмосферного. Поэтому для увеличения массы воздуха в цилиндре дизеля впускные клапаны открываются несколько раньше (до прихода поршня в ВМТ), когда кривошип (колено) вала 8 не доходит до ВМТ на угол F1 . О том, как протекает рабочий цикл в цилиндрах дизеля, можно судить по индикаторной диаграмме (замкнутой кривой), которую получают во время работы дизеля с помощью специального прибора (индикатора). По вертикальной оси диаграммы можно определить давление газов р в зависимости от их объема V, т. е. положения поршня в цилиндре. Изменение давления в период впуска воздуха на индикаторной диаграмме изображено линией ram. Давление при впуске воздуха в цилиндры остается практически постоянным. Когда поршень придет в НМТ, всасывание воздуха не прекратится и даже продолжается при движении поршня вверх, пока давление в цилиндре не станет выше атмосферного. Процесс впуска завершается по диаграмме в точке m, когда поршень перейдет НМТ и начнет двигаться вверх, а кривошип коленчатого вала повернется от НМТ на угол <F2. Последовательность открытия и закрытия клапанов показана на круговой диаграмме распределения. Моменты открытия и закрытия их называют фазами газораспределения. Значения углов опережения открытия клапанов и запаздывания их закрытия устанавливают в каждом конкретном случае при заводских испытаниях дизелей. |
Сжатие | ВТОРОЙ ТАКТ – сжатие. В момент закрытия впускного клапана поршень, двигаясь к ВМТ (рис. б), будет сжимать поступивший в цилиндр воздух. Процесс сжатия, сопровождаемый повышением давления и температуры воздуха, показан на индикаторной диаграмме линией mс. Температура воздуха в конце сжатия должна находиться в пределах, достаточных для самовоспламенения топлива. Обычно избыточное давление воздуха в конце сжатия достигает 3—10 МПа, а температура 580—800 °С. С приходом поршня в ВМТ объем над ним уменьшается до Vс — объема камеры сжатия. Отношение полного объема цилиндра к объему камеры сжатия Va/Vcназывают степенью сжатия г. Оно показывает, во сколько раз уменьшается объем газов в цилиндре за ход сжатия. У дизелей е колеблется от 12 до 18. |
Расширение | ТРЕТИЙ ТАКТ – сгорание и расширение. Так как топливо самовоспламеняется не сразу в момент впрыскивания, оно подается в цилиндр через форсунку 3 (рис. в) в конце такта сжатия (до прихода поршня в ВМТ). На индикаторной диаграмме момент подачи топлива соответствует точке c1. Кривошип коленчатого вала в этом случае не доходит до ВМТ на угол Fз, называемый углом опережения подачи топлива. При сгорании топлива избыточное давление и температура газов в цилиндрах дизеля (в точке z по диаграмме) возрастают соответственно до 6—15 МПа и 1400—1900 °С. Поршень под давлением газов смещается вниз к НМТ, поворачивая через шатун коленчатый вал. Объем рабочего газа увеличивается, а давление его понижается. Происходит процесс расширения продуктов сгорания топлива. По индикаторной диаграмме он заканчивается в точке b до прихода поршня в НМТ. Так как газ при расширении совершает полезную работу, этот ход поршня называют рабочим. |
Выпуск | ЧЕТВЕРТЫЙ ТАКТ – выпуск. До прихода поршня в НМТ (в конце рабочего хода) открывается выпускной клапан 4 (рис. 2, г), и продукты сгорания топлива вытесняются из цилиндра в выпускной коллектор. Чем большая масса газов будет удалена из цилиндра, тем, следовательно, при последующем такте впуска в него больше поступит воздуха. Поэтому процесс выпуска (линия bn) начинается с опережением на угол ф4 и заканчивается с опозданием на угол F5. С запаздыванием закрытия выпускного клапана продукты сгорания топлива даже при движении поршня вниз еще некоторое время, вследствие большой скорости истечения, вытесняются в выпускной коллектор по инерции. Избыточное давление газов в начале выпуска (в точке b по индикаторной диаграмме) составляет 0,3—1,0 МПа, а температура 800—1050 °С. В период выпуска давление и температура газов понижаются соответственно до 0,11—0,25 МПа и 450—650 °С. Затем цикл повторяется. Как видно из рассмотренной схемы работы, в конце такта выпуска и начале такта впуска цилиндры четырехтактного дизеля при открытых впускных и выпускных клапанах некоторое время сообщаются как с впускным, так и выпускным коллектором. За этот период происходит продувка (принудительная вентиляция) камеры сгорания свежим зарядом воздуха. Продолжительность одновременного открытия клапанов должна быть достаточной для завершения очистки цилиндра от продуктов сгорания топлива при условии восстановления потерь свежего заряда воздуха, уходящего с выпускными газами в период вентиляции камеры сгорания. |
poznayka.org
Двигатели внутреннего сгорания отличаются друг от друга рабочим циклом,по которому они работают.
Рабочий цикл –это комплекс последовательных рабочих процессов, периодически повторяющихся в каждом цилиндре при работе двигателя.
Рабочий процесс,происходящий в цилиндре за один ход поршня, называется тактом.
По числу тактов,составляющих рабочий цикл, двигатели делятся на два вида:
– четырехтактные,в которых рабочий цикл совершается за четыре хода поршня,
– двухтактные,в которых рабочий цикл совершается за два хода поршня.
На легковых автомобилях, как правило, применяются четырехтактныедвигатели, а на мотоциклах и моторных лодках – двухтактные.О путешествиях по водным просторам поговорим как-нибудь потом, а с четырьмя тактами работы автомобильного двигателя разберемся сейчас.
Рабочий цикл четырехтактного карбюраторного двигателя состоит из следующих тактов:
– впуск горючей смеси,
– сжатие рабочей смеси,
– рабочий ход,
– выпуск отработавших газов.
Рис. 8. Рабочий цикл четырехтактного карбюраторного двигателя:а) впуск; б) сжатие; в) рабочий ход; г) выпуск
Первый такт – впуск горючей смеси(рис. 8а).
Горючей смесьюназывается смесь мелко распыленного бензина с воздухом в определенной пропорции. Приготовлением смеси в двигателе занимается карбюратор или форсунка, о чем мы поговорим чуть позже. А пока следует знать, что соотношение бензина к воздуху примерно 1:15считается оптимальным для обеспечения нормального процесса сгорания.
При такте впуска поршень от верхней мертвой точки перемещается к нижней мертвой точке. Объем над поршнем увеличивается. Цилиндр заполняется горючей смесью через открытый впускной клапан. Иными словами, поршень всасывает горючую смесь.
Впуск смеси продолжается до тех пор, пока поршень не дойдет до нижней мертвой точки. За первый такт работы двигателя кривошип коленчатого вала поворачивается на пол-оборота.
В процессе заполнения цилиндра горючаясмесь перемешивается с остатками отработавших газов и меняет свое название, теперь эта смесь называется рабочая.
Второй такт – сжатие рабочей смеси(рис. 8б).
При такте сжатия поршень от нижней мертвой точки перемещается к верхней мертвой точке. Оба клапана плотно закрыты, поэтому рабочая смесь сжимается.
Из школьной физики всем известно, что при сжатии газов их температура повышается. Давление в цилиндре над поршнем в конце такта сжатия достигает 9–10 кг/см², а температура 300–400°С.
В заводской инструкции к автомобилю можно увидеть один из параметров двигателя с названием – "степень сжатия" (например 8,5). А что это такое?
Степень сжатияпоказывает, во сколько раз полный объем цилиндра больше объема камеры сгорания (Vn/Vc –см. рис. 7). У бензиновых двигателей в конце такта сжатия объем над поршнем уменьшается в 8–11 раз.
В процессе такта сжатия коленчатый вал двигателя поворачивается на очередные пол-оборота. От начала первого такта и до окончания второго, он повернется уже на один оборот.
Третий такт – рабочий ход(рис. 8в).
Во время третьего такта происходит преобразование выделяемой при сгорании рабочей смеси энергии в механическую работу. Давление от расширяющихся газов передается на поршень и затем, через шатун и кривошип, на коленчатый вал.
Вот откуда берется та сила, которая заставляет вращаться коленчатый вал двигателя и, в конечном итоге, ведущие колеса автомобиля.
В самом конце такта сжатия рабочая смесь воспламеняется от электрической искры, проскакивающей между электродами свечи зажигания. В начале такта рабочего хода сгорающая смесь начинает активно расширяться. Поскольку впускной и выпускной клапаны все еще закрыты, то расширяющимся газам остается только один единственный выход – давить на подвижный поршень.
Под действием давления, достигающего величины 50 кг/см², поршень начинает перемещаться к нижней мертвой точке. При этом на всю площадь поршня давит сила в несколько тонн, которая через шатун передается на кривошип коленчатого вала, создавая крутящий момент.
При такте рабочего хода температура в цилиндре достигает более 2000 градусов.
Коленчатый вал при рабочем ходе делает очередные пол-оборота.
Четвертый такт – выпуск отработавших газов(рис. 8г).
При движении поршня от нижней мертвой точки к верхней мертвой точке открывается выпускной клапан (впускной все еще закрыт), и отработавшие газы с огромной скоростью выбрасываются из цилиндра двигателя.
Вот почему слышен тот сильный грохот, когда по дороге движется автомобиль без глушителя, но об этом позже. А пока обратим внимание на коленчатый вал двигателя – при такте выпуска он делает еще пол-оборота. И всего, за четыре такта рабочего цикла, он сделал два полных оборота.
После такта выпуска начинается новый рабочий цикл, и все повторяется: впуск – сжатие – рабочий ход – выпуск... и так далее.
Теперь, интересно, кто из вас обратил внимание на то, что полезная механическая работа совершается одноцилиндровым двигателем только в течение одного такта – такта рабочего хода!Остальные три такта (выпуск, впуск и сжатие) являются лишь подготовительными и совершаются они за счет кинетической энергии вращающихся по инерции коленчатого вала и маховика.
Маховик(рис. 9)–это массивный металлический диск, который крепится на коленчатом валу двигателя. Во время рабочего хода поршень через шатун и кривошип раскручивает коленчатый вал двигателя, который передает маховику запас энергии вращения.
Рис. 9. Коленчатый вал двигателя с маховиком:1 –шатунная шейка; 2 – противовес; 3 – маховик с зубчатым венцом; 4 – коренная (опорная) шейка; 5 – коленчатый вал двигателя
Запасенная в массе маховика энергия вращения позволяет ему в обратном порядке через коленчатый вал, шатун и поршень осуществлять подготовительные такты рабочего цикла двигателя. Поршень движется вверх (при такте выпуска и сжатия) и вниз (при такте впуска) именно за счет отдаваемой маховиком энергии.
Если двигатель имеет несколько цилиндров, работающих в определенном порядке, то подготовительные такты в одних цилиндрах совершаются за счет энергии, развиваемой в других, ну и маховик, конечно, тоже помогает.
В детстве у вас наверняка была игрушка, которая называлась волчок. Вы раскручивали его энергией своей руки (рабочий ход) и радостно наблюдали за тем, как долго он вращается. Точно так же и массивный маховик двигателя – раскрутившись, он запасает энергию, но только значительно большую, чем детская игрушка, а затем эта энергия используется для перемещения поршня в подготовительных тактах.
poznayka.org
Рабочий цикл четырехтактного карбюраторного двигателя
Двигатели внутреннего сгорания отличаются друг от друга рабочим циклом, по которому они работают.
Рабочий цикл – это комплекс последовательных рабочих процессов, периодически повторяющихся в каждом цилиндре при работе двигателя.
Рабочий процесс, происходящий в цилиндре за один ход поршня, называется тактом.
По числу тактов, составляющих рабочий цикл, двигатели делятся на два вида:
– четырехтактные, в которых рабочий цикл совершается за четыре хода поршня,
– двухтактные, в которых рабочий цикл совершается за два хода поршня.
На легковых автомобилях, как правило, применяются четырехтактные двигатели, а на мотоциклах и моторных лодках – двухтактные. О путешествиях по водным просторам поговорим как-нибудь потом, а с четырьмя тактами работы автомобильного двигателя разберемся сейчас.
Рабочий цикл четырехтактного карбюраторного двигателя состоит из следующих тактов:
– впуск горючей смеси,
– сжатие рабочей смеси,
– рабочий ход,
– выпуск отработавших газов.
Рис. 8. Рабочий цикл четырехтактного карбюраторного двигателя: а) впуск; б) сжатие; в) рабочий ход; г) выпуск
Первый такт – впуск горючей смеси (рис. 8а).
Горючей смесью называется смесь мелко распыленного бензина с воздухом в определенной пропорции. Приготовлением смеси в двигателе занимается карбюратор или форсунка, о чем мы поговорим чуть позже. А пока следует знать, что соотношение бензина к воздуху примерно 1:15 считается оптимальным для обеспечения нормального процесса сгорания.
При такте впуска поршень от верхней мертвой точки перемещается к нижней мертвой точке. Объем над поршнем увеличивается. Цилиндр заполняется горючей смесью через открытый впускной клапан. Иными словами, поршень всасывает горючую смесь.
Впуск смеси продолжается до тех пор, пока поршень не дойдет до нижней мертвой точки. За первый такт работы двигателя кривошип коленчатого вала поворачивается на пол-оборота.
В процессе заполнения цилиндра горючая смесь перемешивается с остатками отработавших газов и меняет свое название, теперь эта смесь называется рабочая.
Второй такт – сжатие рабочей смеси (рис. 8б).
При такте сжатия поршень от нижней мертвой точки перемещается к верхней мертвой точке. Оба клапана плотно закрыты, поэтому рабочая смесь сжимается.
Из школьной физики всем известно, что при сжатии газов их температура повышается. Давление в цилиндре над поршнем в конце такта сжатия достигает 9–10 кг/см², а температура 300–400°С.
В заводской инструкции к автомобилю можно увидеть один из параметров двигателя с названием – "степень сжатия" (например 8,5). А что это такое?
Степень сжатия показывает, во сколько раз полный объем цилиндра больше объема камеры сгорания (Vn/Vc – см. рис. 7). У бензиновых двигателей в конце такта сжатия объем над поршнем уменьшается в 8–11 раз.
В процессе такта сжатия коленчатый вал двигателя поворачивается на очередные пол-оборота. От начала первого такта и до окончания второго, он повернется уже на один оборот.
Третий такт – рабочий ход (рис. 8в).
Во время третьего такта происходит преобразование выделяемой при сгорании рабочей смеси энергии в механическую работу. Давление от расширяющихся газов передается на поршень и затем, через шатун и кривошип, на коленчатый вал.
Вот откуда берется та сила, которая заставляет вращаться коленчатый вал двигателя и, в конечном итоге, ведущие колеса автомобиля.
В самом конце такта сжатия рабочая смесь воспламеняется от электрической искры, проскакивающей между электродами свечи зажигания. В начале такта рабочего хода сгорающая смесь начинает активно расширяться. Поскольку впускной и выпускной клапаны все еще закрыты, то расширяющимся газам остается только один единственный выход – давить на подвижный поршень.
Под действием давления, достигающего величины 50 кг/см², поршень начинает перемещаться к нижней мертвой точке. При этом на всю площадь поршня давит сила в несколько тонн, которая через шатун передается на кривошип коленчатого вала, создавая крутящий момент.
При такте рабочего хода температура в цилиндре достигает более 2000 градусов.
Коленчатый вал при рабочем ходе делает очередные пол-оборота.
Четвертый такт – выпуск отработавших газов (рис. 8г).
При движении поршня от нижней мертвой точки к верхней мертвой точке открывается выпускной клапан (впускной все еще закрыт), и отработавшие газы с огромной скоростью выбрасываются из цилиндра двигателя.
Вот почему слышен тот сильный грохот, когда по дороге движется автомобиль без глушителя, но об этом позже. А пока обратим внимание на коленчатый вал двигателя – при такте выпуска он делает еще пол-оборота. И всего, за четыре такта рабочего цикла, он сделал два полных оборота.
После такта выпуска начинается новый рабочий цикл, и все повторяется: впуск – сжатие – рабочий ход – выпуск... и так далее.
Теперь, интересно, кто из вас обратил внимание на то, что полезная механическая работа совершается одноцилиндровым двигателем только в течение одного такта – такта рабочего хода! Остальные три такта (выпуск, впуск и сжатие) являются лишь подготовительными и совершаются они за счет кинетической энергии вращающихся по инерции коленчатого вала и маховика.
Маховик (рис. 9) – это массивный металлический диск, который крепится на коленчатом валу двигателя. Во время рабочего хода поршень через шатун и кривошип раскручивает коленчатый вал двигателя, который передает маховику запас энергии вращения.
Рис. 9. Коленчатый вал двигателя с маховиком: 1 – шатунная шейка; 2 – противовес; 3 – маховик с зубчатым венцом; 4 – коренная (опорная) шейка; 5 – коленчатый вал двигателя
Запасенная в массе маховика энергия вращения позволяет ему в обратном порядке через коленчатый вал, шатун и поршень осуществлять подготовительные такты рабочего цикла двигателя. Поршень движется вверх (при такте выпуска и сжатия) и вниз (при такте впуска) именно за счет отдаваемой маховиком энергии.
Если двигатель имеет несколько цилиндров, работающих в определенном порядке, то подготовительные такты в одних цилиндрах совершаются за счет энергии, развиваемой в других, ну и маховик, конечно, тоже помогает.
В детстве у вас наверняка была игрушка, которая называлась волчок. Вы раскручивали его энергией своей руки (рабочий ход) и радостно наблюдали за тем, как долго он вращается. Точно так же и массивный маховик двигателя – раскрутившись, он запасает энергию, но только значительно большую, чем детская игрушка, а затем эта энергия используется для перемещения поршня в подготовительных тактах.
Дизельные двигатели
Главной особенностью работы дизельного двигателя является то, что топливо подается форсункой или насосом-форсункой непосредственно в цилиндр двигателя под большим давлением в конце такта сжатия. Необходимость подачи топлива под большим давлением обусловлена тем, что степень сжатия у таких двигателей значительно больше, чем у бензиновых.
Поскольку давление и температура в цилиндре дизельного двигателя очень велики, то происходит самовоспламенение топлива. Это означает, что искусственно поджигать смесь не надо. Поэтому у дизельных двигателей отсутствуют не только свечи, но и вся система зажигания.
Рабочий цикл четырехтактного дизельного двигателя
Первый такт – впуск, служит для наполнения цилиндра двигателя только воздухом.
При движении поршня от верхней мертвой точки к нижней мертвой точке происходит всасывание воздуха через открытый впускной клапан.
Второй такт – сжатие, необходим для подготовки к самовоспламенению дизельного топлива.
При движении к верхней мертвой точке поршень сжимает воздух в 18–22 раза (у бензиновых в 8–11 раз). Поэтому в конце такта сжатия, давление над поршнем достигает 40 кг/см², а температура поднимается выше 500градусов.
Третий такт – рабочий ход, служит для преобразования энергии сгораемого топлива в механическую работу.
В конце такта сжатия в камеру сгорания через форсунку под давлением подается дизельное топливо, которое самовоспламеняется за счет высокой температуры сжатого воздуха.
При сгорании дизельного топлива расширяющиеся газы создают усилие, которое перемещает поршень к нижней мертвой точке и через шатун проворачивает коленчатый вал.
Во время рабочего хода давление в цилиндре достигает 100 кг/см², а температура превышает 2000°С.
Четвертый такт – выпуск отработавших газов, служит для освобождения цилиндра от отработавших газов.
Поршень от нижней мертвой точки поднимается к верхней мертвой точке и, через открытый выпускной клапан, выталкивает отработавшие газы.
При последующем движении вниз поршень засасывает свежую порцию воздуха, происходит такт впуска и рабочий цикл повторяется.
В дизельном двигателе нагрузки на все механизмы и детали значительно больше, чем в бензиновом, и это закономерно приводит к увеличению его массы, размеров и стоимости.
В то же время, дизельный двигатель имеет и неоспоримые преимущества – меньший расход топлива, чем у его бензинового "брата", а также отсутствие системы зажигания, что значительно уменьшает количество возможных неисправностей при эксплуатации.
Кривошипно-шатунный механизм (КШМ)
Кривошипно-шатунный механизм предназначен для преобразования возвратно-поступательного движения поршня в цилиндре во вращательное движение коленчатого вала двигателя.
Ранее рассматривалась работа одноцилиндрового двигателя. Это было необходимо для простоты восприятия протекающих в нем процессов.
На большинстве легковых автомобилей, как отечественных, так и зарубежных, устанавливаются четырехцилиндровые двигатели. Конечно, существуют варианты и с другим количеством цилиндров (от двух до двенадцати), но в объеме этой книги мы ограничимся знакомством именно с четырехцилиндровым двигателем, так как он является самым распространенным.
Рис. 10. Основные детали четырехцилиндрового бензинового двигателя: а) продольный разрез; б) поперечный разрез; 1 – блок цилиндров; 2 – головка блока цилиндров; 3 – поддон картера; 4 – поршни с кольцами и пальцами; 5 – шатуны; 6 – коленчатый вал; 7 – маховик; 8 – распределительный вал; 9 – рычаги; 10 – впускные клапаны; 11 – выпускные клапаны; 12 – пружины клапанов; 13 – впускные и выпускные каналы
Кривошипно-шатунный механизм состоит из (рис. 10):
– блока цилиндров с картером;
– головки блока цилиндров;
– поддона картера двигателя;
– поршней с кольцами и пальцами;
– шатунов;
– коленчатого вала;
– маховика.
Блок цилиндров объединяет в себе не только уже известные нам цилиндры и шатунно-поршневую группу, но и другие системы двигателя. Блок является основой двигателя, в которой имеется множество литых каналов и сверлений, подшипников и заглушек. Именно в блоке вращается (на подшипниках) коленчатый вал. Во внутренних полостях блока циркулирует жидкость системы охлаждения, там же проходят и масляные каналы системы смазки двигателя. Большая часть из навесного оборудования двигателя монтируется, опять же, на блоке цилиндров. Нижняя часть блока называется картером.
Головка блока цилиндров является второй по значимости и по величине составной частью двигателя. В головке расположены камеры сгорания, клапаны и свечи цилиндров, в ней же на подшипниках вращается распределительный вал с кулачками. В головке, как и в блоке цилиндров, имеются водяные и масляные каналы и полости. Головка крепится к блоку цилиндров и при работе двигателя составляет с блоком единое целое.
Устройство и взаимодействие основных деталей кривошипно-шатунного механизма (шатунно-поршневой группы) мы с вами рассмотрели ранее, при изучении работы ног велосипедиста и рабочего цикла двигателя.
Для тех, кто уже вернулся обратно на эту страницу, предлагается небольшой экскурс в мир цифр.
На холостом ходу коленчатый вал двигателя вращается со скоростью приблизительно 800–900 оборотов в минуту (13–15 об/сек). На средней и большой скорости движения автомобиля число оборотов коленчатого вала в минуту составляет от 2000 до 4000. А в ходе автомобильных соревнований, у специально подготовленных автомобилей, двигатель "раскручивается" до 12000 об/мин (200 оборотов в секунду) и даже больше.
А что поршни? Они движутся в цилиндре с огромной скоростью! За один оборот коленчатого вала каждый поршень успевает подняться вверх, "развернуться" и опуститься вниз (или наоборот – сначала вниз, потом вверх). При этом путь от одной мертвой точки до другой поршни "пролетают" за сотые доли секунды! А если вспомнить еще и об огромных температурах и давлении в цилиндрах в это время!
Вот в таких непростых, мягко выражаясь, условиях работают детали двигателя вашего автомобиля.
Мы с вами разобрались с очень сложным и уникальным процессом, происходящим внутри двигателя с одним цилиндром. Многоцилиндровый двигатель принципиально ничем не отличается от простейшего одноцилиндрового. Но, когда цилиндров много, представьте, в каких условиях работает двигатель (температуры, давление, трение...), при этом работает безотказно и продолжительное время, ничего не требуя взамен, кроме лишь "кормления" бензином и периодического обслуживания.
Основные неисправности кривошипно-шатунного механизма
Стуки в двигателе могут возникнуть по причине износа поршневых пальцев, шатунных и коренных подшипников.
Для устранения неисправности необходимо заменить изношенные детали.
Повышенная дымность выхлопных газов и (или) падение компрессии (давление в конце такта сжатия) случается из-за износа поршневых колец, поршней, цилиндров, залегания поршневых колец в канавках поршней.
Для устранения неисправности следует заменить изношенные детали.
Эксплуатация кривошипно-шатунного механизма двигателя
Правильная эксплуатация двигателя крайне необходима, так как его ремонт достаточно трудоемкий и дорогостоящий процесс. И к кривошипно-шатунному механизму это относится в первую очередь.
Ресурс двигателя – это продолжительность нормальной работы двигателя без его капитального ремонта. Для отечественных автомобилей ресурс двигателя составляет приблизительно 150–200 тысяч километров пробега, и несколько больше для иномарок.
Многим из вас эти цифры покажутся недосягаемо большими, но это не означает, что можно забывать о своевременной смене масел, жидкостей, фильтров и других расходных материалов. Плюс к этому, двигатель требует периодических регулировок. Необходимо соблюдать сроки обслуживания его механизмов и систем, как это рекомендовано заводом-изготовителем вашего автомобиля. А иначе, через удивительно короткий промежуток времени, вам может понадобиться капитальный ремонт двигателя.
Факторы, влияющие на продолжительность работы двигателя
Первый фактор, уменьшающий ресурс двигателя – частые перегрузки автомобиля. Если загрузка салона, багажника и прицепа превышает все разумные пределы, то, двигаясь на такой перегруженной машине продолжительное время, вы рискуете выработать ресурс двигателя ранее вышеуказанного срока.
Водители, полагающие, что металл выдержит все, очень сильно ошибаются. Попробуем "примерить" это утверждение на себя.
Если сумка, с которой вы идете по улице, весит полтора-два кило, то можно долго не ощущать усталости. А теперь давайте возьмем на прогулку свой любимый телевизор с диагональю 51 см и, "погуляв" по набережным часика эдак два, оценим свое состояние. А ведь в отличие от нашего с вами организма, металл претерпевает необратимые изменения.
Вторым фактором, влияющим на срок службы двигателя, является движение с максимально возможной скоростью длительное время.
Если на трехкилометровой дистанции по кроссу вы будете бежать так же быстро, как и на 100 метров, то вам не избежать быстрой усталости и потери сил.
Вспоминается фраза из песни В. Высоцкого: "На десять тысяч я рванул, как на пятьсот... и... спекся!".
Последствия в этом случае для человеческого организма могут быть плачевными. То же самое происходит и с двигателем автомобиля. Жаль, что многие начинают понимать это слишком поздно.
Мы с вами не так далеко ушли от "страшно" больших цифр (температуры, давления, скорости...), характеризующих условия, в которых работают механизмы двигателя. Согласитесь, что количество "взрывов" в цилиндрах, периодичность колебаний температуры и давления за одну секунду, не могут не влиять на продолжительность "жизни" деталей двигателя.
Третий фактор, ускоряющий износ двигателя – экология. Грязный воздух и грязные дороги укорачивают жизнь не только человеку, но и разрушающе действуют на структуру металла, уменьшая ресурс двигателя. Поэтому не забывайте вовремя производить замену фильтров, по возможности применяйте качественные масла и топливо, следите за внешним видом двигателя своего автомобиля. Хотя бы пару раз в год его следует очищать от грязи и мыть с использованием специальных жидкостей.
Газораспределительный механизм (ГРМ)
Газораспределительный механизм предназначен для своевременного впуска в цилиндры двигателя горючей смеси и выпуска отработавших газов.
Газораспределительный механизм состоит из (см. рис. 10):
– распределительного вала;
– рычагов или толкателей;
– впускных и выпускных клапанов с пружинами;
– впускных и выпускных каналов.
Распределительный вал располагается чаще всего в верхней части головки блока цилиндров. Составной частью вала являются кулачки, количество которых соответствует количеству впускных и выпускных клапанов двигателя. Иными словами, над каждым клапаном расположен свой персональный кулачок. Именно эти кулачки при вращении распределительного вала обеспечивают своевременное, согласованное с движением поршней в цилиндрах, открытие и закрытие клапанов.
Распределительный вал приводится во вращение от коленчатого вала двигателя с помощью шестерен, цепной передачи или зубчатого ремня. Натяжение цепи привода регулируется специальным натяжителем, а зубчатого ремня – натяжным роликом (рис. 11).
а) цепной привод: 1– звездочка распределительного вала; 2 – цепь; 3 – успокоитель цепи; 4 – звездочка привода масляного насоса; 5 – звездочка коленчатого вала; 6 – башмак натяжителя цепи; 7 – натяжитель цепи
б) ременной привод: 1 – зубчатый шкив распределительного вала; 2 – зубчатый ремень; 3 – зубчатый шкив коленчатого вала; 4 – зубчатый шкив водяного насоса; 5 – натяжной ролик
Рис. 11. Схема привода распределительного вала
Давайте вернемся к упрощенной схеме двигателя и разберемся с работой газораспределительного механизма (рис. 12).
Рис. 12. Схема взаимодействия деталей газораспределительного механизма
При вращении распределительного вала кулачок набегает на рычаг, который, в свою очередь, нажимает на стержень соответствующего клапана (впускного или выпускного) и открывает его (рис. 12 а). Продолжая вращаться, кулачок сбегает с рычага, и под воздействием сильной пружины клапан закрывается (рис. 12 б).
А что дальше, вы уже знаете – поршень, через открытый впускной или выпускной клапан, соответственно засасывает горючую смесь или выталкивает отработавшие газы.
Основные неисправности газораспределительного механизма двигателя
Стуки в газораспределительном механизме появляются по причине увеличенных тепловых зазоров в клапанном механизме, износе подшипников или кулачков распределительного вала, рычагов, а также из-за поломки пружин клапанов.
Для устранения стуков необходимо отрегулировать тепловой зазор, а изношенные детали и узлы заменить.
Повышенный шум цепи привода распределительного вала появляется вследствие износа шарнирных соединений звеньев цепи и ее удлинения.
Следует отрегулировать натяжение цепи, а при чрезмерном ее износе заменить.
Потеря мощности двигателя и повышенная дымность выхлопных газов происходят при нарушении теплового зазора в клапанном механизме, неплотном закрытии клапанов, износе маслоотражательных колпачков.
Зазор следует отрегулировать, изношенные колпачки заменить, а клапаны "притереть" к седлам.
Эксплуатация газораспределительного механизма двигателя
Обратите внимание на тепловой зазор между рычагом и кулачком распределительного вала (рис. 12 б). Немного знаний физики позволит понять, что этот зазор должен быть строго определенного размера. Ведь при нагревании все детали двигателя расширяются, в том числе и детали газораспределительного механизма.
Если зазор между рычагом и кулачком распределительного вала меньше нормального, то клапан будет открываться больше, чем ему положено, и не будет полностью закрываться. Это нарушит рабочий цикл двигателя и, плюс ко всему, в скором времени придется менять "подгоревшие" клапаны.
Если тепловой зазор будет слишком велик, то встреча кулачка с рычагом будет происходить с ударом, что выразится в заметном увеличении шума при работе двигателя и приведет к быстрому износу деталей газораспределительного механизма.
При неправильной установке теплового зазора наблюдается целый "букет" неприятностей. Двигатель начинает работать неустойчиво, глохнуть и преподносить прочие "сюрпризы", описанные в неисправностях газораспределительного механизма. Используя инструкцию по эксплуатации своего автомобиля, следует периодически контролировать правильность "зазора в клапанах".
Причем разговор идет о десятых долях миллиметра! Например, для двигателей ВАЗ, в зависимости от модели, тепловой зазор должен быть в пределах 0,15–0,35 мм. Если у вас есть соответствующие инструменты и решимость "залезть" в двигатель, то после нескольких попыток можно научиться "регулировать клапана". А если вы не собираетесь осваивать профессию автомеханика, то при подозрениях на "разрегулированные клапана" следует обратиться к специалистам.
При эксплуатации двигателя необходимо следить за натяжением цепи (зубчатого ремня) привода распределительного вала и при необходимости его регулировать.
Владельцам ВАЗ-2108 и 2109 с рабочим объемом двигателя 1,3 литра следует быть особенно внимательными к состоянию ремня привода распределительного вала и вовремя его менять, не допуская обрыва изношенного ремня при движении. У этих двигателей при выходе ремня из строя возможна "встреча" поршней с клапанами, что влечет к серьезным взаимным повреждениям. Это отнюдь не та встреча, на которую стремишься со сладостным ожиданием, а совсем другая, за которой последует сложный ремонт с заменой деталей газораспределительного и кривошипно-шатунного механизмов двигателя.
Большинству из вас никогда не придется разбирать и собирать двигатель, да это и не нужно, если вы не являетесь специалистом в этой области. Но при любых экспериментальных работах с автомобилем, разбирая какой-то узел, а потом его собирая, обязательно запоминайте расположение деталей и последовательность демонтажа. А то могут остаться "лишние" детали!
Причем, сборка всегда труднее, чем разборка. Не забывайте арабскую пословицу: "Прежде чем тащить осла на крышу подумай, как снять его оттуда".
В начале автомобильной жизни не рекомендуется включать музыку сразу же после запуска двигателя. Проехав некоторое расстояние, прислушайтесь к звукам, доносящимся из-под капота. Они могут быть самыми разными, но любой "выделяющийся" звук говорит о том, что с двигателем не все в порядке. При появлении новых, незнакомых вам звуков, следует обратиться в автосервис или к знакомому умельцу.
Ни одна неисправность в автомобиле не появляется, не предупредив водителя об этом заранее. В то же время немало "юных" водителей ездят на своих машинах с явно аварийными узлами, думая, что так и должно быть.
Одной из проблем начинающих водителей является то, что зачастую они не знают, как должен вести себя исправный автомобиль, какие шумы нормальные, а какие "говорят" о надвигающихся финансовых затратах. А знать это важно, так как многие неисправности влияют еще и на безопасность движения.
Если во время движения вы ничего не слышите из-под капота своей машины (не слышно или не умеете слышать), то дайте проехаться на ней знающему человеку, который сможет определить причину постороннего шума.
textarchive.ru
Рабочий цикл большинства автомобильных двигателей состоит из четырех тактов. При запуске двигателя он раскручивается стартером. Четырехтактный рабочий цикл повторяется в каждом цилиндре двигателя. Последовательность тактов показана на рисунке.
Рис. Типичный четырехтактный цикл работы бензинового двигателя внутреннего сгорания с искровым зажиганием
Двигатель работает в таком циклическом режиме. Для остановки двигателя с помощью выключателя зажигания прерывается подача напряжения на свечи зажигания.
Рис. Блок цилиндров восьмицилиндрового V образного двигателя. Блок цилиндров — это основа любого двигателя, на которой крепятся все движущиеся части двигателя, необходимые для его работы
На рисунке показан блок цилиндров восьмицилиндрового V-образного двигателя. Поршень движется вверх-вниз, т.е. совершает возвратно поступательное движение, в цилиндре. Четыре больших отверстия — это цилиндры двигателя. С коленчатым валом поршень соединен шатуном. Такая кинематическая схема обеспечивает преобразование возвратно-поступательного движения поршня во вращательное движение коленчатого вала. При поджиге в надлежащий момент смеси давление рабочего газа в камере сгорания толкает поршень вниз, заставляя его вращать коленчатый вал.
ustroistvo-avtomobilya.ru
Рабочий цикл включает протекание следующих рабочих процессов-тактов
Рис.3.3,а
Впуск. При такте впуска (рис. 3.3, а) поршень 4 движется от ВМТ к НМТ. Выпускной клапан 5 закрыт. Под действием вакуума, создаваемого при движении поршня, в цилиндр 3 поступает горючая смесь (бензина и воздуха) через впускной клапан 7, открытый распределительным валом 6. Горючая смесь перемешивается с остаточными отработавшими газами, образуя при этом рабочую смесь. В конце такта впуска давление в цилиндре составляет 0,08...0,09 МПа, а температура рабочей смеси — 80... 120°С.
Рис.3.3,б
Сжатие. Такт сжатия (рис. 3.3, б) происходит при перемещении поршня от НМТ к ВМТ. Впускной и выпускной клапаны закрыты. Объем рабочей смеси уменьшается, а давление в цилиндре повышается и в конце такта сжатия составляет 0,9÷1,5.МПа. Повышение давления сопровождается увеличением температуры рабочей смеси до 450÷500 ºС.
Рис.3.3,в
Рабочий ход. При такте рабочего хода (рис. 3.3, в) впускной и выпускной клапаны закрыты. Воспламененная в конце такта сжатия от свечи зажигания рабочая смесь быстро сгорает (в течение 0,001÷0,002 с). Температура и давление образовавшихся газов в цилиндре возрастают соответственно до 2200÷2500°С и 4÷5,5 МПа. Газы давят на поршень 4, он движется от ВМТ к НМТ и совершает полезную работу, вращая через шатун 2 коленчатый вал 1. По мере перемещения поршня к НМТ и увеличения объема пространства над ним давление в цилиндре уменьшается и в конце такта составляет 0,35÷0,45 МПа. Снижается и температура газов до 900÷1200 ºС.
Рис.3.3,г
Выпуск. Такт выпуска (рис. 3.3, г) происходит при движении поршня от НМТ к ВМТ. Впускной клапан закрыт. Отработавшие газы вытесняются поршнем из цилиндра через выпускной клапан, открытый распределительным валом. Давление и температура в цилиндре уменьшаются и в конце такта составляют 0,1÷0,12 МПа и 700÷ 800 ºС.
Из рассмотренного рабочего процесса (цикла) следует, что полезная работа совершается только в течение одного такта — рабочего хода. Остальные три такта (впуск, сжатие, выпуск) являются вспомогательными.
6.2.Рабочий цикл четырёхтактного дизельного двигателя.
Рабочий процесс четырехтактного дизеля существенно отличается от рабочего цикла бензинового двигателя по смесеобразованию и воспламенению рабочей смеси.
Основное различие рабочих циклов состоит в том, что в цилиндры дизеля при такте впуска поступает не горючая смесь, а воздух и при такте сжатия впрыскивается в цилиндры мелкораспыленное топливо, которое самовоспламеняется под действием высокой температуры сжатого воздуха.
Рис. 3.4. Рабочий процесс четырехтактного дизеля:
а — такт впуска; б — такт сжатия; в — такт рабочего хода; г — такт выпуска; 1 —
топливный насос; 2 — поршень; 3 — форсунка; 4 — воздушный фильтр; 5, 6 —
клапаны; 7 — цилиндр; 8 — шатун; 9 — коленчатый вал.
Впуск.Такт впуска (рис. 3.4, а) осуществляется при движении поршня 2 от ВМТ к НМТ. Выпускной клапан 6 закрыт. Вследствие образовавшегося вакуума в цилиндр 7 через воздушный фильтр 4 и открытый впускной клапан 5 поступает воздух из окружающей среды. В конце такта впуска давление в цилиндре составляет 0,08÷0,09 МПа, а температура — 40÷60°С.
Сжатие.При такте сжатия (рис. 3.4, б) поршень движется от НМТ к ВМТ. Впускной и выпускной клапаны закрыты. Поршень сжимает находящийся в цилиндре воздух, и его температура в конце такта сжатия достигает 550÷700 °С при давлении 4÷5 МПа.
Рабочий ход. При такте рабочего хода (рис. 3.4, в) поршень подходит к ВМТ, и в цилиндр двигателя из форсунки 3 под большим давлением впрыскивается распыленное дизельное топливо, подаваемое топливным насосом 1 высокого давления. Впрыснутое топливо перемешивается с нагретым воздухом, и образовавшаяся смесь самовоспламеняется. При этом у образовавшихся газов резко возрастают температура до 1800÷2000°С и давление до 6÷9 МПа. Под действием давления газов поршень перемещается от ВМТ к НМТ и совершает полезную работу, вращая через шатун 8 коленчатый вал 9. К концу рабочего хода давление газов становится 0,3÷0,5 МПа, а температура 700÷900°С.
Выпуск. Такт выпуска (рис. 3.4, г) происходит при движении поршня от НМТ к ВМТ. Впускной клапан закрыт. Через открытый выпускной клапан 6 поршень выталкивает из цилиндра отработавшие газы. К концу такта выпуска давление газов в цилиндре уменьшается до 0,11÷0,12 МПа, а температура до 500÷700ºС. После окончания такта выпуска при вращении коленчатого вала рабочий цикл двигателя повторяется в той же последовательности.
Порядок работы двигателя
Порядком работы двигателя называется последовательность чередования рабочих ходов по цилиндрам двигателя. Для равномерной и плавной работы двигателя рабочие ходы и другие одноименные такты должны чередоваться в определенной последовательности в его цилиндрах. При этом чередование должно происходить через равные углы поворота коленчатого вала двигателя, величина которых зависит от числа цилиндров двигателя.
В четырехтактном двигателе рабочий процесс совершается за два оборота коленчатого вала, т. е. за поворот вала на 720°. Количество рабочих ходов равно количеству цилиндров двигателя. Их чередование для четырех-, шести- и восьмицилиндровых двигателей будет происходить соответственно через 180, 120 и 90° поворота коленчатого вала. Порядок работы двигателя во многом зависит от типа двигателя и числа цилиндров. Так, например, у коленчатого вала рядного четырехцилиндрового двигателя, представленного на рис. 3.5, а, шатунные шейки расположены попарно под углом 180°. Поэтому поршни цилиндров 1 и 4 при работе двигателя перемещаются одновременно в одном направлении, а поршни цилиндров 2 и 3 — в противоположном.
Если в цилиндре 1 происходит рабочий ход, то в цилиндре 4 в это время — впуск. При этом поршни цилиндров 2 и 3 будут двигаться вверх, совершая соответственно выпуск и сжатие. Следовательно, порядок работы цилиндров двигателя будет 1 — 3—4—2. Чередование тактов в двигателе показано на рис. 3.5, б.
Порядок работы четырехтактного четырехцилиндрового рядного двигателя может быть и другим, например 1—2— 4— 3.
Рис. 3.5. Порядок работы четырехтактного двигателя: а — схема; б — таблица; 1÷4 — цилиндры |
При одном и том же расположении шатунных шеек коленчатого вала отличие порядка работы двигателя связано с другой последовательностью открытия и закрытия впускных и выпускных клапанов, что зависит от конструкции газораспределительного механизма двигателя.
Порядок работы двигателя необходимо знать для правильной установки зажигания, а также для регулировки газораспределительного механизма.
6.4. Пример расчёт чередования тактов в двигателе ГАЗ-52
1.Круговая диаграмма, расчёт угла разворота кривошипов коленчатого вала.
Угол опережения открытия впускного клапана: α = 24º; Угол запаздывания закрытия впускного клапана: β = 64º Угол опережения открытия выпускного клапана: γ = 50º Угол запаздывания закрытия выпускного клапана: δ = 22º |
Порядок работы цилиндров: 1-5-3-6-2-4
Угол разворота кривошипов коленчатого вала:
Расчёт чередования тактов по углу поворота коленчатого вала в соответствие с порядком работы цилиндров. За начало отсчёта принимаем такт «впуск», а за 0º ВМТ. Тогда:
• продолжительность тактов по углу поворота КВ:
впуск:
сжатие:
рабочий ход:
выпуск:
1). Чередование тактов по углу поворота коленчатого вала в 1-м цилиндре:
а) начало впуска :
окончание впуска :
б) окончание сжатия:
в) окончание рабочий ход:
г) окончание выпуска:
Что соответствует: 22º после ВМТ
2). Чередование тактов по углу поворота коленчатого вала в 5-м цилиндре:
а) начало впуска : что соответствует: 96º после ВМТ
окончание впуска :
б) окончание сжатия:
в) окончание рабочий ход:
г) окончание выпуска: что соответствует 142º после ВМТ.Чередование тактов по углу поворота коленчатого вала в 3-м, 6-м, 2-м и 4-м цилиндрах определяется аналогично. Таблицу чередования тактов в рядном карбюраторном двигателе ГАЗ-52 строят по расчётным параметрам угла поворота кривошипов коленчатого вала. Градусы угла поворота кривошипа, соответствующие тактам, следует откладывать, ориентируясь на выбранный масштаб по оси ординат в таблице. Градусы, соответствующие окончанию и началу смежных тактов следует указывать. Смотрите пример оформления таблицы.
Пример оформления таблицы чередования тактов в рядном карбюраторном двигателе ГАЗ-52.
Читайте также:
lektsia.com
При рассмотрении рабочего цикла двигателя условно принято, что каждый такт начинается и заканчивается при нахождении поршня в ВМТ или НМТ.
Поршень перемещается с ВМТ в НМТ. Освобождающаяся над поршневая полость цилиндра заполняется горючей смесью через открытый впускной клапан из-за возникающего разрежения. Горючая смесь, поступая в цилиндр, смешивается с остатками отработавших газов от предыдущего цикла, образует рабочую смесь. В конце такта давление в цилиндре составляет 0,07—0,95 МПа, температура — 350—390 К, коэффициент наполнения цилиндра — 0,6—0,7.
а — впуск в цилиндр горючей смеси; б — сжатие горючей смеси; в - расширение газов; г- выпуск отработавших газов; 1 — коленчатый вал; 2 — распределительный вал; 3-поршень; 4 — цилиндр; 5— впускной трубопровод; 6 — карбюратор; 7— впускной клапан; 8 — свеча зажигания; 9 — выпускной клапан; 10 — выпускной трубопровод; 11-шатун; 12 - поршневой палец; 13 - поршневые кольца
Поршень движется от НМТ к ВМТ, впускной и выпускной клапаны закрыты. Объем над поршневой полости уменьшается. Рабочая смесь сжимается. Сжатие сопровождается повышением давления и температуры. Степень сжатия регламентируется детонационной стойкостью топлива. В конце такта давление составляет 1,2—1,7 МПа, а температура — 600—700 К.
В начале такта при сгорании рабочей смеси, которая ооспл а меняется от искровою разряда свечи зажигания, выделяется значительное количество теплоты, резко увеличивается температура и давление. Вследствие давления газон поршень перемешается от ВМТ к НМТ. Газы расширяются и совершают полезную работу. В начале расширения давление газов составляет 4—6 МПа, температура — 2500—2800 К. В конце расширения давление н цилиндре составляет 0,3—0.5 МПа, температура - 1100-1800 К.
Поршень перемешается oт НМТ к ВМТ Через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра в выпускной трубопровод и в окружаюшую среду, В конце выпуска давление в цилиндре составляет 0,105—0,12 МПа, а температура — 85O-120O К.
Степень очистки цилиндра от отработавших газов характеризуется коэффициентом остаточных газов (отношение массы остаточных газов к массе свежего заряда). Для современных ДВС коэффициент остаточных газов составляет 0,08—0,2, он возрастает при увеличении частоты вращения коленчатого вала.
Рабочий цикл двигателя заканчивается четвертым тактом - выпуском. При дальнейшем движении поршня цикл повторяется в той же последовательности. Коленчатый вал в течение четырех тактов поворачивается на 720°, т. с. совершает два оборота.В двигателях, работающих по четырехтактному циклу, полезная работа совершается только в период такта расширения (рабочего хода), когда поршень перемещается пол действием расширяющихся газов, поворачивая коленчатый вал на 180е Остальные три такта являются подготовительными и выполняются при поворачивании коленчатого вата на 540° за счет инерции маховика И работы других цилиндров (в многоцилиндровых двигателях).
Работа двигателя, рабочий цикл
www.autoezda.com