В паспорте электрического двигателя указывается ток при номинальной нагрузке на валу, он меньше пускового тока. Если отмечено 13,8/8 А, то это значит, что при подсоединении двигателя к сети 220 В и номинальной нагрузке ток двигателя будет равен 13,8 А. При подсоединении к сети 380 В — ток 8 А, таким образом верно равенство мощностей: √3 х 380 х 8 = √3 х 220 х 13,8.
Зная номинальную мощность двигателя определяют его номинальный ток. При включении двигателя в трехфазную распредсеть 380 В номинальный ток рассчитывается следующим образом:
где Pн — номинальная мощность двигателя, кВт, Uн — напряжение в сети, кВ (0,38 кВ). Коэффициент мощности (сosφ) — паспортные значения двигателя.
Рис. 1. Паспорт электрического двигателя.
Если не известен коэффициент мощности двигателя, то номинальный его ток с малой погрешностью определяется по отношению "два ампера на киловатт", т.е. если номинальная мощность двигателя 10 кВт, то потребляемый им из сети ток будет приблизительно равен 20 А.
Для упомянутого на рисунке двигателя это отношение также выполняется (3,4 А ≈ 2 х 1,5). Более верные величины тока при применении данного отношения получаются при мощностях электродвигателей от 3 кВт.
При холостом ходе электродвигателя из сети потребляется маленький ток (ток холостого хода). При увеличении нагрузки увеличивается и ток. С увеличением тока повышается нагрев обмоток. Большая перегрузка приводит к перегреву обмоток двигателя, и возникает опасность выхода из строя электродвигателя.
При пуске из сети электрическим двигателем потребляется пусковой ток Iпуск, который в 3 — 8 раз выше номинального. Характеристика изменения тока представлена на графике (рис. 2, а).
Рис. 2. Характеристика изменения тока, потребляемого электродвигателем из сети (а), и влияние большого тока на колебания напряжения в сети (б)
Подлинную величину пускового тока для электродвигателя определяют зная величину кратности пускового тока — Iпуск/Iном. Кратность пускового тока — техническая характеристика двигателя, ее известна из каталогов. Пусковой ток рассчитывается согласно формуле: I пуск = Iх. х (Iпуск/Iном).
Понимание истинной величины пускового тока необходимо для подбора плавких предохранителей, проверки включения электромагнитных расцепителей во время пуска двигателя, при подборе автоматических выключателей и для высчитывания величины падения напряжения в сети при пуске.
Большой пусковой ток вызывает значительное падение напряжения в сети (рис. 2, б).
Если взять электросопротивление проводов, проложенных от источника до электродвигателя, равным 0,5 Ом, номинальный ток Iн=15 А, а пусковой ток Iп равным пятикратному от номинального, потери напряжения в проводах во время пуска составят 0,5 х 75 + 0,5 х 75 = 75 В.
На клеммах электродвигателя, а также и на клеммах рядом работающих электродвигателей напряжение будет 220 — 75 = 145 В. Это понижение напряжения вызывает торможение работающих электродвигателей, что влечет за собой еще большее повышение тока в сети и выход из строя предохранителей.
В электрических лампах в моменты запуска электродвигателей уменьшается накал (лампы «мигают»). Поэтому при включении электродвигателей стремятся уменьшить пусковые токи .
Для понижения пускового тока используется схема пуска электродвигателя с переключением обмоток статора со звезды на треугольник.
Рис. 3. Схема пуска электрического электродвигателя с переключением обмоток статора со звезды на треугольник.
Имеет принципиальное значение то, что далеко не каждый двигатель возможно включать по этой схеме. Широко распространенные асинхронные двигатели с рабочим напряжением 220/380 В, в том числе и двигатель, показанный на рисунке 1 при включении по этой схеме выйдут из строя.
Для понижения пускового тока электродвигателей энергично употребляют специальные процессорные устройства плавного пуска (софт-стартеры).
В паспорте электрического двигателя указан ток при номинальной нагрузке на валу. Если, например, указано 13,8/8 А, то это означает, что при включении двигателя в сеть 220 В и при номинальной нагрузке ток, потребляемый из сети, будет равен 13,8 А. При включении в сеть 380 В из сети будет потребляться ток 8 А, то есть справедливо равенство мощностей: √ 3 х 380 х 8 = √ 3 х 220 х 13,8.
Зная номинальную мощность двигателя (из паспорта) можно определить его номинальный ток. При включении двигателя в трехфазную сеть 380 В номинальный ток можно посчитать по следующей формуле:
I н = P н/ ( √3 U н х η х с osφ).
где P н — номинальная мощность двигателя в кВт, U н — напряжение в сети, в кВ (0,38 кВ). Коэффициент полезного действия ( η) и коэффициент мощности (с osφ) — паспортные значения двигателя, которые написаны на щитке в виде металлической таблички. См. также — Какие паспортные данные указываются на щитке асинхронного двигателя.
Рис. 1. Паспорт электрического двигателя. Номинальная мощность 1,5 кВ, номинальный ток при напряжении 380 В — 3,4 А.
Если не известны к.п.д. и коэффициент мощности двигателя, например, при отсутствии на двигателе паспорта-таблички, то номинальный его ток с небольшой погрешностью можно определить по соотношению «два ампера на киловатт», т.е. если номинальная мощность двигателя 10 кВт, то потребляемый им ток будет примерно равен 20 А.
Для указанного на рисунке двигателя это соотношение тоже выполняется (3,4 А ≈ 2 х 1,5). Более точные значения токов при использовании данного соотношения получаются при мощностях двигателей от 3 кВт.
При холостом ходе электродвигателя из сети потребляется незначительный ток (ток холостого хода). При увеличении нагрузки увеличивается и потребляемый ток. С увеличением тока повышается нагрев обмоток. Большая перегрузка приводит к тому, что увеличенный ток вызывает перегрей обмоток двигателя, и возникает опасность обугливания изоляции (сгорания электродвигателя).
В момент пуска из сети электрическим двигателем потребляется так называемый пусковой ток. который может быть в 3 — 8 раз больше номинального. Характер изменения тока представлен на графике (рис. 2, а).
Рис. 2. Характер изменения тока, потребляемого двигателем из сети (а), и влияние большого тока на колебания напряжения в сети (б)
Точное значение пускового тока для каждого конкретного двигателя можно определить зная значение кратности пускового тока — I пуск/ I ном. Кратность пускового тока — одна из технических характеристик двигателя, которую можно найти в каталогах. Пусковой ток определяется по следующей формуле: I пуск = I н х ( I пуск/ I ном). Например, при номинальном токе двигателя 20 А и кратности пускового тока — 6, пусковой ток равен 20 х 6 = 120 А.
Знание реальной величины пускового тока нужно для выбора плавких предохранителей, проверке срабатывания электромагнитных расцепителей во время пуска двигателя при выборе автоматических выключателей и для определения величины снижения напряжения в сети при пуске.
Процесс выбора плавких предохранителей подробно рассмотрен в этой статье: Выбор предохранителей для защиты асинхронных электродвигателей
Большой пусковой ток, на который сеть обычно не рассчитана, вызывает значительные снижения напряжения в сети (рис. 2, б).
Если принять сопротивление проводов, идущих от источника до двигателя, равным 0,5 Ом, номинальный ток I н=15 А, а пусковой ток равным пятикратному от номинального, то потери напряжения в проводах в момент пуска составят 0,5 х 75 + 0,5 х 75 = 75 В.
На зажимах двигателя, а также и на зажимах рядом работающих электродвигателей будет 220 — 75 = 145 В. Такое снижение напряжения может вызвать торможение работающих двигателей, что повлечет за собой еще большее увеличение тока в сети и перегорание предохранителей.
В электрических лампах в моменты пуска двигателей уменьшается накал (лампы «мигают»). Поэтому при пуске электродвигателей стремятся уменьшить пусковые токи.
Для уменьшения пускового тока может использоваться схема пуска двигателя с переключением обмоток статора со звезды на треугольник. При этом фазное напряжение уменьшится в √ З раз и соответственно ограничивается пусковой ток. После достижения ротором некоторой скорости обмотки статора переключаются в схему треугольника и напряжение ни них становится равным номинальному. Переключение обычно производится автоматически с использованием реле времени или тока.
Рис. 3. Схема пуска электрического двигателя с переключением обмоток статора со звезды на треугольник
Важно понимать, что не далеко каждый двигатель можно подключать по этой схеме. Наиболее распространенные асинхронные двигатели с рабочим напряжение 380/200 В, в том числе и двигатель, показанный на рисунке 1 при включении по данной схеме выйдут из строя. Подробнее об этом читайте здесь: Выбор схемы соединения фаз электродвигателя
В настоящее время, для уменьшения пускового тока электрических двигателей активно используют специальные микропроцессорные устройства плавного пуска (софт-стартеры). Подробнее о назначении такого типа устройств читайте в статье Для чего нужен плавный пуск асинхронного двигателя.
Автор: admin Рубрика: Электродвигателя 4 комментария
Перед этим я уже немного затрагивал темы электродвигателей, когда писал о том как запустить асинхронные двигателей. и когда писал какие бывают номиналы электродвигателей .
Ну а теперь приступим конкретно к самому расчёту. Допустим: у вас есть трёхфазный асинхронный электродвигателей переменного тока, номинальная мощность, которого составляет 25 кВт, и вам хочется узнать какой же у него будет номинальный ток.
Для этого существует специальная формула: Iн = 1000Pн /√3•(ηн • Uн • cosφн ),
Где Pн – это мощность электродвигателя; измеряется в кВт
Uн – это напряжение, при котором работает электродвигатель; В
ну и cosφн – это коэффициент мощности двигателя, обычно 0.8.
Последние два значения обычно пишутся на заводской бирке, хотя они у всех двигателей практически одинаковые. Но все же нужно брать данные именно с заводской бирки на двигателе.
Вот как на этой картинке все значения видны, а ток нет. Только если КПД написан 81%, то для расчёта нужно брать 0.81.
Теперь подставим значения Iн = 1000•25/√3 • (0.9 • 380 • 0.8) = 52.81 А
Тем, кто не помнит, сколько будет √3, напоминаю – это будет 1,732
Вот и всё, все расчёты закончены. Всё очень легко и просто. По моему образцу вы можете легко рассчитать номинальный ток электродвигателя, вам всего лишь нужно подставить своих данных.
Ещё в заключении, хотел поделиться с вами, тем как я определяю приблизительное значение тока без всяких расчётов. Если реально посмотреть, что у нас с вами получилось при расчёте, то реально вид, что номинальный ток приблизительно в два раза больше чем его мощность. Вот так я определяю ток на практике, мощность умножаю на два. Но это только приблизительное значение.
А ток холостого хода будет обычно в два раза меньше, чем его мощность. Но про то, как определить эти значения, мы поговорим с вами в следующих статьях. Так что подписывайтесь на обновления и не забываете поделиться этой статьёй со своими друзьями в социальных сетях.
На этом у меня всё. Пока.
С уважением Александр!
Хочешь получать статьи этого блога на почту?
Привет посетители сайта fazanet.ru, и в сегодняшней статье мы с вами разберём, как же сделать, этот непонятный расчёт тока электродвигателя. Каждый уважающий себя электромонтёр, робота которого связана с обслуживанием электрических, машин просто обязан это знать. Я в своё время тоже помню, что меня это очень сильно интересовало, когда меня перевили с одного цеха в другой. […]
Источники: http://www.calc.ru/Puskovoy-Tok.html, http://electricalschool.info/main/osnovy/1441-kakojj-tok-potrebljaet-dvigatel-iz-seti.html, http://fazanet.ru/raschet-toka-elektrodvigatelya.html
electricremont.ru
Для обеспечения надежной защиты кабеля с помощью автоматического выключателя нужно учитывать некоторые особенности работы этого устройства и провести правильный подбор. Дело в том, что ток (I n), который указан в маркировке автомата, на самом деле является рабочим током, и его превышение в определенном диапазоне не вызывает немедленного отключения сети.
Номиналы автоматов для защиты кабеля электропроводки
Например, если маркировка С25, то это означает, что ток силой 25А может течь по этой цепи неограниченное время. Если превышение будет до 13% (28,5А), то отключение может наступить более чем через час работы, до 45% (36,25А) – менее часа. Для гарантированной защиты сети важно, чтобы повышенный ток не превышал допустимый ток в кабеле.
Такой алгоритм работы автомата, с одной стороны, снизит вероятность ложного срабатывания, но с другой – требует более обдуманно подойти к выбору автомата.
Правильный выбор автоматического выключателя – задача не простая, но от ее решения зависит безопасная эксплуатация дома или квартиры и уменьшение материальных затрат.
Автоматические выключатели имеют стандартизованный ряд номинальных токов, это отражено в ГОСТ Р 50345–99, данные сведены в таблицу. Это длительные токи, текущие через автомат и не вызывающие его отключения. По таблице можно подобрать номинальный ток автоматического выключателя. В ней приведен стандартный ряд номинальных токов (I n) для автоматов, применяемых в России.
Стандартизированный ряд номинальных токов (In) для автоматов
0.5 | 1 | 1.6 | 2 | 2.5 | 3 | 4 | 5 | 6,3 (или 6) | |
8 | 10 | 16 | 25 | 31,5 (или 32) | 40 | 50 | 63 | ||
80 | 100 | 125 | 160 | 200 | 250 | 320 | 400 | 500 | 630 |
800 | 1000 | 1600 | 2000 | 2500 | 4000 | 5000 | 6300 |
Однако на время отключения оказывает влияние температура окружающей среды и способ монтажа выключателя. Так, повышение температуры воздуха в месте установки автомата вызывает сокращение этого периода, понижение – удлиняет. Одиночно установленный выключатель имеет более длительный период, а установленный в группе – сокращенный, из-за влияния соседних автоматов.
Приведенная ниже таблица отражает информацию о токах, приводящих к отключению в длительной перспективе, она позволит выбрать необходимый номинал. Это нормируемые токи по ГОСТУ.
Нормируемые токи по ГОСТУ для выбора номинала автомата
6A | 10A | 13A | 16A | 20A | 25A | 32A | 40A | 50A | |
Отклю-чение НЕ РАНЬШЕ, чем 1 час (1,13*In) | 6,78 A | 11,3 A | 14,69 A | 18,08 A | 22,6 A | 28,25 A | 36,16 A | 45,2 A | 56,5 A |
Отклю-чение НЕ БОЛЬШЕ,чем 1 час (1,45*In) | 8,7 A | 14,5 A | 18,85 A | 23,2 A | 29 A | 36,25 A | 46,4 A | 58 A | 72,5 A |
По приведенной таблице можно сделать выбор автомата по току отключения. Например, известно, что кабель в открытой проводке с медной жилой сечением 4 мм 2 имеет допустимый ток 30А (т. 1.3.4-1.3.8. ПУЭ). Находим в таблице ближайший меньший ток отключения, это – 29А, значит, нам нужен автомат С20. Если выбрать автомат с номинальным током С25, то длительно протекающий ток в кабеле составит 36,25А, время отключение автомата может достигать 1 часа. За это время кабель может нагреться до значительной температуры, что вызовет оплавление изоляции. Если повторение такой ситуации не исключено, то это обязательно приведет к аварии.
Также невозможно без сложных измерений точно определить, при каком токе нагрузки сработает тот или иной конкретный экземпляр, но существует коридор, в котором гарантированно сработает любой экземпляр этого номинала.
Эти характеристики представлены в виде графика, по которому можно довольно точно определить ток и время, когда произойдет гарантированное отключение устройства.
Графики для определения времени отключения автомата
Например, можно узнать, через какой промежуток времен
levevg.ru
Классы компонентов: 1.6.1.1.1. Модульные автоматические выключатели (ВАМ, МСВ), 1.6.5.1. Модульные контакторы, 1.6.1.2.1. Мотор-автоматы (автоматические выключатели защиты двигателей, MPCB), 1.6.1.3.1. Автоматические выключатели в литом корпусе (MCCB), 1.6.5.2. Контакторы, 1.6.5.3. Пускатели, 1.6.5.4. Реле перегрузки и аксессуары к ним, 1.12. Электродвигатели и приводная техника
Значения тока, приведенные ниже, относятся к стандартным трехфазным четырехполюсным асинхронным электродвигателям с КЗ ротором (1500 об/мин при 50 Гц, 1800 об/мин при 60 Гц). Данные значения представлены в качестве ориентира и могут варьироваться в зависимости от производителя электродвигателя и количества полюсов.
0,06 кВт | 0,37 | 0,35 | 0,34 | 0,21 | 0,2 | 0,19 | 0,18 | 0,16 | 0,13 | 0,12 |
0,09 кВт | 0,54 | 0,52 | 0,5 | 0,32 | 0,3 | 0,29 | 0,26 | 0,24 | 0,18 | 0,17 |
0,12 кВт | 0,73 | 0,7 | 0,67 | 0,46 | 0,44 | 0,42 | 0,39 | 0,32 | 0,24 | 0,23 |
0,18 кВт | 1 | 1 | 1 | 0,63 | 0,6 | 0,58 | 0,53 | 0,48 | 0,37 | 0,35 |
0,25 кВт | 1,6 | 1,5 | 1,4 | 0,9 | 0,85 | 0,82 | 0,74 | 0,68 | 0,51 | 0,49 |
0,37 кВт | 2 | 1,9 | 1,8 | 1,2 | 1,1 | 1,1 | 1 | 0,88 | 0,67 | 0,64 |
0,55 кВт | 2,7 | 2,6 | 2,5 | 1,6 | 1,5 | 1,4 | 1,3 | 1,2 | 0,91 | 0,87 |
0,75 кВт | 3,5 | 3,3 | 3,2 | 2 | 1,9 | 1,8 | 1,7 | 1,5 | 1,15 | 1,1 |
1,1 кВт | 4,9 | 4,7 | 4,5 | 2,8 | 2,7 | 2,6 | 2,4 | 2,2 | 1,7 | 1,6 |
1,5 кВт | 6,6 | 6,3 | 6 | 3,8 | 3,6 | 3,5 | 3,2 | 2,9 | 2,2 | 2,1 |
2,2 кВт | 8,9 | 8,5 | 8,1 | 5,2 | 4,9 | 4,7 | 4,3 | 3,9 | 2,9 | 2,8 |
3 кВт | 11,8 | 11,3 | 10,8 | 6,8 | 6,5 | 6,3 | 5,7 | 5,2 | 4 | 3,8 |
4 кВт | 15,7 | 15 | 14,4 | 8,9 | 8,5 | 8,2 | 7,4 | 6,8 | 5,1 | 4,9 |
5,5 кВт | 20,9 | 20 | 19,2 | 12,1 | 11,5 | 11,1 | 10,1 | 9,2 | 7 | 6,7 |
7,5 кВт | 28,2 | 27 | 25,9 | 16,3 | 15,5 | 14,9 | 13,6 | 12,4 | 9,3 | 8,9 |
11 кВт | 39,7 | 38 | 36,4 | 23,2 | 22 | 21,2 | 19,3 | 17,6 | 13,4 | 12,8 |
15 кВт | 53,3 | 51 | 48,9 | 30,5 | 29 | 28 | 25,4 | 23 | 17,8 | 17 |
18,5 кВт | 63,8 | 61 | 58,5 | 36,8 | 35 | 33,7 | 30,7 | 28 | 22 | 21 |
22 кВт | 75,3 | 72 | 69 | 43,2 | 41 | 39,5 | 35,9 | 33 | 25,1 | 24 |
30 кВт | 100 | 96 | 92 | 57,9 | 55 | 53 | 48,2 | 44 | 33,5 | 32 |
37 кВт | 120 | 115 | 110 | 69 | 66 | 64 | 58 | 53 | 40,8 | 39 |
45 кВт | 146 | 140 | 134 | 84 | 80 | 77 | 70 | 64 | 49,1 | 47 |
55 кВт | 177 | 169 | 162 | 102 | 97 | 93 | 85 | 78 | 59,6 | 57 |
75 кВт | 240 | 230 | 220 | 139 | 132 | 127 | 116 | 106 | 81 | 77 |
90 кВт | 291 | 278 | 266 | 168 | 160 | 154 | 140 | 128 | 97 | 93 |
110 кВт | 355 | 340 | 326 | 205 | 195 | 188 | 171 | 156 | 118 | 113 |
132 кВт | 418 | 400 | 383 | 242 | 230 | 222 | 202 | 184 | 140 | 134 |
160 кВт | 509 | 487 | 467 | 295 | 280 | 270 | 245 | 224 | 169 | 162 |
200 кВт | 637 | 609 | 584 | 368 | 350 | 337 | 307 | 280 | 212 | 203 |
250 кВт | 782 | 748 | 717 | 453 | 430 | 414 | 377 | 344 | 261 | 250 |
315 кВт | 983 | 940 | 901 | 568 | 540 | 520 | 473 | 432 | 327 | 313 |
355 кВт | 1109 | 1061 | 1017 | 642 | 610 | 588 | 535 | 488 | 370 | 354 |
400 кВт | 1255 | 1200 | 1150 | 726 | 690 | 665 | 605 | 552 | 418 | 400 |
500 кВт | 1545 | 1478 | 1416 | 895 | 850 | 819 | 745 | 680 | 515 | 493 |
560 кВт | 1727 | 1652 | 1583 | 1000 | 950 | 916 | 832 | 760 | 576 | 551 |
630 кВт | 1928 | 1844 | 1767 | 1116 | 1060 | 1022 | 929 | 848 | 643 | 615 |
710 кВт | 2164 | 2070 | 1984 | 1253 | 1190 | 1147 | 1043 | 952 | 721 | 690 |
800 кВт | 2446 | 2340 | 2243 | 1417 | 1346 | 1297 | 1179 | 1076 | 815 | 780 |
900 кВт | 2760 | 2640 | 2530 | 1598 | 1518 | 1463 | 1330 | 1214 | 920 | 880 |
1000 кВт | 3042 | 2910 | 2789 | 1761 | 1673 | 1613 | 1466 | 1339 | 1014 | 970 |
profsector.com
В паспорте электрического двигателя указан ток при номинальной нагрузке на валу. Если, например, указано 13,8/8 А, то это означает, что при включении двигателя в сеть 220 В и при номинальной нагрузке ток, потребляемый из сети, будет равен 13,8 А. При включении в сеть 380 В из сети будет потребляться ток 8 А, то есть справедливо равенство мощностей: √ 3 х 380 х 8 = √ 3 х 220 х 13,8.
Зная номинальную мощность двигателя (из паспорта) можно определить его номинальный ток. При включении двигателя в трехфазную сеть 380 В номинальный ток можно посчитать по следующей формуле:
I н = P н/ ( √3 U н х η х с osφ).
где P н — номинальная мощность двигателя в кВт, U н — напряжение в сети, в кВ (0,38 кВ). Коэффициент полезного действия ( η) и коэффициент мощности (с osφ) — паспортные значения двигателя, которые написаны на щитке в виде металлической таблички. См. также — Какие паспортные данные указываются на щитке асинхронного двигателя.
Рис. 1. Паспорт электрического двигателя. Номинальная мощность 1,5 кВ, номинальный ток при напряжении 380 В — 3,4 А.
Если не известны к.п.д. и коэффициент мощности двигателя, например, при отсутствии на двигателе паспорта-таблички, то номинальный его ток с небольшой погрешностью можно определить по соотношению «два ампера на киловатт», т.е. если номинальная мощность двигателя 10 кВт, то потребляемый им ток будет примерно равен 20 А.
Для указанного на рисунке двигателя это соотношение тоже выполняется (3,4 А ≈ 2 х 1,5). Более точные значения токов при использовании данного соотношения получаются при мощностях двигателей от 3 кВт.
При холостом ходе электродвигателя из сети потребляется незначительный ток (ток холостого хода). При увеличении нагрузки увеличивается и потребляемый ток. С увеличением тока повышается нагрев обмоток. Большая перегрузка приводит к тому, что увеличенный ток вызывает перегрей обмоток двигателя, и возникает опасность обугливания изоляции (сгорания электродвигателя).
В момент пуска из сети электрическим двигателем потребляется так называемый пусковой ток. который может быть в 3 — 8 раз больше номинального. Характер изменения тока представлен на графике (рис. 2, а).
Рис. 2. Характер изменения тока, потребляемого двигателем из сети (а), и влияние большого тока на колебания напряжения в сети (б)
Точное значение пускового тока для каждого конкретного двигателя можно определить зная значение кратности пускового тока — I пуск/ I ном. Кратность пускового тока — одна из технических характеристик двигателя, которую можно найти в каталогах. Пусковой ток определяется по следующей формуле: I пуск = I н х ( I пуск/ I ном). Например, при номинальном токе двигателя 20 А и кратности пускового тока — 6, пусковой ток равен 20 х 6 = 120 А.
Знание реальной величины пускового тока нужно для выбора плавких предохранителей, проверке срабатывания электромагнитных расцепителей во время пуска двигателя при выборе автоматических выключателей и для определения величины снижения напряжения в сети при пуске.
Процесс выбора плавких предохранителей подробно рассмотрен в этой статье: Выбор предохранителей для защиты асинхронных электродвигателей
Большой пусковой ток, на который сеть обычно не рассчитана, вызывает значительные снижения напряжения в сети (рис. 2, б).
Если принять сопротивление проводов, идущих от источника до двигателя, равным 0,5 Ом, номинальный ток I н=15 А, а пусковой ток равным пятикратному от номинального, то потери напряжения в проводах в момент пуска составят 0,5 х 75 + 0,5 х 75 = 75 В.
На зажимах двигателя, а также и на зажимах рядом работающих электродвигателей будет 220 — 75 = 145 В. Такое снижение напряжения может вызвать торможение работающих двигателей, что повлечет за собой еще большее увеличение тока в сети и перегорание предохранителей.
В электрических лампах в моменты пуска двигателей уменьшается накал (лампы «мигают»). Поэтому при пуске электродвигателей стремятся уменьшить пусковые токи.
Для уменьшения пускового тока может использоваться схема пуска двигателя с переключением обмоток статора со звезды на треугольник. При этом фазное напряжение уменьшится в √ З раз и соответственно ограничивается пусковой ток. После достижения ротором некоторой скорости обмотки статора переключаются в схему треугольника и напряжение ни них становится равным номинальному. Переключение обычно производится автоматически с использованием реле времени или тока.
Рис. 3. Схема пуска электрического двигателя с переключением обмоток статора со звезды на треугольник
Важно понимать, что не далеко каждый двигатель можно подключать по этой схеме. Наиболее распространенные асинхронные двигатели с рабочим напряжение 380/200 В, в том числе и двигатель, показанный на рисунке 1 при включении по данной схеме выйдут из строя. Подробнее об этом читайте здесь: Выбор схемы соединения фаз электродвигателя
В настоящее время, для уменьшения пускового тока электрических двигателей активно используют специальные микропроцессорные устройства плавного пуска (софт-стартеры). Подробнее о назначении такого типа устройств читайте в статье Для чего нужен плавный пуск асинхронного двигателя.
*****
Подавляющее большинство электрических двигателей, используемых в промышленности, относятся к трёхфазному асинхронному типу. Для питания таких устройств необходима промышленная трёхфазная сеть переменного тока, обеспечивающая сетевое напряжение заданной частоты и напряжения. Высокая популярность асинхронных электродвигателей обусловлены дешевизной, простотой изготовления и механической прочностью данных устройств. Кроме того, изменяя схему подключения обмоток (звезда или треугольник) можно подключать двигатель к сетям различного напряжения (обычно используются комбинации 220/380 и 127/220В).
Однако несмотря на множество неоспоримых преимуществ, асинхронные двигатели имеют минусы, среди которых одним из наиболее значительных является достаточно большой пусковой ток электродвигателя данного типа. Особенно заметен этот недостаток в асинхронных устройствах с короткозамкнутым ротором. Такие двигатели следует с осторожностью применять, в тех системах, для которых требуется значительный пусковой момент, который может привести к превышению номинального значения силы тока (Iн).
Для большинства асинхронных электродвигателей допустимо кратковременное превышение значение Iн, которое может произойти в момент пуска. Так, в момент запуска, допускается шестикратное превышение значения номинального тока при условии, что оно будет длиться не более 5 секунд. В случае, если в некотором режиме номинальный ток превышается не более чем в два раза, допускается увеличить время работы устройства в этом режиме до 15 секунд.
Номинальный ток электродвигателя, при котором возможна его длительная работа, связан с номинальной мощностью устройства и его КПД следующим выражением: Iн=1000*Pн/(Uн*cosφ√η), где Рн –мощность, Uн – номинальное напряжение, которым питается электродвигатель, η – КПД, а cosφ – коэффициент мощности двигателя.
Отсюда можно сделать важный вывод, который состоит в том, что при уменьшении U (например при переключении устройства из сети в 220 В сеть 127 В), увеличивается ток двигателя, который может превысить номинальное значение. А длительная работа двигателя на токе I>Iн может привести не только к его повреждению, но и к возгоранию. Поэтому, используемые в системе с электрическим двигателем предохранительные устройства должны быть подобранные так, чтобы предотвратить продолжительную работу при токе I>Iн.
Дата: Воскресенье, 15 Декабрь 2013
*****
Автор: admin Рубрика: Электродвигателя 4 комментария
Привет посетители сайта fazanet.ru, и в сегодняшней статье мы с вами разберём, как же сделать, этот непонятный расчёт тока электродвигателя. Каждый уважающий себя электромонтёр, робота которого связана с обслуживанием электрических, машин просто обязан это знать. Я в своё время тоже помню, что меня это очень сильно интересовало, когда меня перевили с одного цеха в другой. А конкретно именно работать электромонтёром.
Перед этим я уже немного затрагивал темы электродвигателей, когда писал о том как запустить асинхронные двигателей. и когда писал какие бывают номиналы электродвигателей .
Ну а теперь приступим конкретно к самому расчёту. Допустим: у вас есть трёхфазный асинхронный электродвигателей переменного тока, номинальная мощность, которого составляет 25 кВт, и вам хочется узнать какой же у него будет номинальный ток.
Для этого существует специальная формула: Iн = 1000Pн /√3•(ηн • Uн • cosφн ),
Где Pн – это мощность электродвигателя; измеряется в кВт
Uн – это напряжение, при котором работает электродвигатель; В
ηн – это коэффициент полезного действия, обычно это значение 0.9
ну и cosφн – это коэффициент мощности двигателя, обычно 0.8.
Последние два значения обычно пишутся на заводской бирке, хотя они у всех двигателей практически одинаковые. Но все же нужно брать данные именно с заводской бирки на двигателе.
Вот как на этой картинке все значения видны, а ток нет. Только если КПД написан 81%, то для расчёта нужно брать 0.81.
Теперь подставим значения Iн = 1000•25/√3 • (0.9 • 380 • 0.8) = 52.81 А
Тем, кто не помнит, сколько будет √3, напоминаю – это будет 1,732
Вот и всё, все расчёты закончены. Всё очень легко и просто. По моему образцу вы можете легко рассчитать номинальный ток электродвигателя, вам всего лишь нужно подставить своих данных.
Ещё в заключении, хотел поделиться с вами, тем как я определяю приблизительное значение тока без всяких расчётов. Если реально посмотреть, что у нас с вами получилось при расчёте, то реально вид, что номинальный ток приблизительно в два раза больше чем его мощность. Вот так я определяю ток на практике, мощность умножаю на два. Но это только приблизительное значение.
А ток холостого хода будет обычно в два раза меньше, чем его мощность. Но про то, как определить эти значения, мы поговорим с вами в следующих статьях. Так что подписывайтесь на обновления и не забываете поделиться этой статьёй со своими друзьями в социальных сетях.
На этом у меня всё. Пока.
С уважением Александр!
Хочешь получать статьи этого блога на почту?
Привет посетители сайта fazanet.ru, и в сегодняшней статье мы с вами разберём, как же сделать, этот непонятный расчёт тока электродвигателя. Каждый уважающий себя электромонтёр, робота которого связана с обслуживанием электрических, машин просто обязан это знать. Я в своё время тоже помню, что меня это очень сильно интересовало, когда меня перевили с одного цеха в другой. […]
*****
В паспорте электрического двигателя указывается ток при номинальной нагрузке на валу, он меньше пускового тока. Если отмечено 13,8/8 А, то это значит, что при подсоединении двигателя к сети 220 В и номинальной нагрузке ток двигателя будет равен 13,8 А. При подсоединении к сети 380 В — ток 8 А, таким образом верно равенство мощностей: √3 х 380 х 8 = √3 х 220 х 13,8.
Зная номинальную мощность двигателя определяют его номинальный ток. При включении двигателя в трехфазную распредсеть 380 В номинальный ток рассчитывается следующим образом:
где Pн — номинальная мощность двигателя, кВт, Uн — напряжение в сети, кВ (0,38 кВ). Коэффициент мощности (сosφ) — паспортные значения двигателя.
Рис. 1. Паспорт электрического двигателя.
Если не известен коэффициент мощности двигателя, то номинальный его ток с малой погрешностью определяется по отношению «два ампера на киловатт», т.е. если номинальная мощность двигателя 10 кВт, то потребляемый им из сети ток будет приблизительно равен 20 А.
Для упомянутого на рисунке двигателя это отношение также выполняется (3,4 А ≈ 2 х 1,5). Более верные величины тока при применении данного отношения получаются при мощностях электродвигателей от 3 кВт.
При холостом ходе электродвигателя из сети потребляется маленький ток (ток холостого хода). При увеличении нагрузки увеличивается и ток. С увеличением тока повышается нагрев обмоток. Большая перегрузка приводит к перегреву обмоток двигателя, и возникает опасность выхода из строя электродвигателя.
При пуске из сети электрическим двигателем потребляется пусковой ток Iпуск, который в 3 — 8 раз выше номинального. Характеристика изменения тока представлена на графике (рис. 2, а).
Рис. 2. Характеристика изменения тока, потребляемого электродвигателем из сети (а), и влияние большого тока на колебания напряжения в сети (б)
Подлинную величину пускового тока для электродвигателя определяют зная величину кратности пускового тока — Iпуск/Iном. Кратность пускового тока — техническая характеристика двигателя, ее известна из каталогов. Пусковой ток рассчитывается согласно формуле: I пуск = Iх. х (Iпуск/Iном).
Понимание истинной величины пускового тока необходимо для подбора плавких предохранителей, проверки включения электромагнитных расцепителей во время пуска двигателя, при подборе автоматических выключателей и для высчитывания величины падения напряжения в сети при пуске.
Большой пусковой ток вызывает значительное падение напряжения в сети (рис. 2, б).
Если взять электросопротивление проводов, проложенных от источника до электродвигателя, равным 0,5 Ом, номинальный ток Iн=15 А, а пусковой ток Iп равным пятикратному от номинального, потери напряжения в проводах во время пуска составят 0,5 х 75 + 0,5 х 75 = 75 В.
На клеммах электродвигателя, а также и на клеммах рядом работающих электродвигателей напряжение будет 220 — 75 = 145 В. Это понижение напряжения вызывает торможение работающих электродвигателей, что влечет за собой еще большее повышение тока в сети и выход из строя предохранителей.
В электрических лампах в моменты запуска электродвигателей уменьшается накал (лампы «мигают»). Поэтому при включении электродвигателей стремятся уменьшить пусковые токи .
Для понижения пускового тока используется схема пуска электродвигателя с переключением обмоток статора со звезды на треугольник.
Рис. 3. Схема пуска электрического электродвигателя с переключением обмоток статора со звезды на треугольник.
Имеет принципиальное значение то, что далеко не каждый двигатель возможно включать по этой схеме. Широко распространенные асинхронные двигатели с рабочим напряжением 220/380 В, в том числе и двигатель, показанный на рисунке 1 при включении по этой схеме выйдут из строя.
Для понижения пускового тока электродвигателей энергично употребляют специальные процессорные устройства плавного пуска (софт-стартеры).
*****
Здравствуйте, уважаемые посетители сайта. Для выбора автоматического выключателя или теплового реле для защиты электродвигателя надо знать его номинальный ток.
Эта информация указывается на бирке двигателя.
Но бывает такое, что цифра затерта или плохо видна.
Формула для расчета номинального тока трехфазного асинхронного электродвигателя переменного тока:
Iн=Pн/(√3*Uн*cosφн*ηн) или Pн/(1,73*Uн*cosφн*ηн),
где Рн — номинальная мощность электродвигателя (Вт),
Uн — номинальное напряжение электродвигателя (В),
ηн — номинальный коэффициент полезного действия двигателя,
cos φ н — номинальный коэффициент мощности двигателя.
Номинальные данные электродвигателя указываются на заводском щитке или в другой технической документации.
Пример. Необходимо определить номинальный ток трехфазного асинхронного электродвигателя переменного тока,если Рн = 25 кВт, номинальное напряжение Uн = 380 В, номинальный коэффициентполезного действия ηн = 0,9, номинальный коэффициент мощности cosφ н = 0,8.
Номинальное напряжение трехфазной сети 380 В — соединение обмоток двигателя по схеме «звезда».Номинальное напряжение трехфазной сети 220 В — соединение обмоток двигателя по схеме «треугольник».
Переводим номинальную мощность из кВт в Ватты:Pн = 25 кВт = 1000*25 = 25000 Вт
Далее:Iн = 25000/(√3*380 * 0,8 * 0,9) = 25000/(1,73*380*0,8*0,9) = 52,8 А.
linochek.ru
Всем привет. Сегодня поговорим с вами какие бывают номиналы электродвигателей. Из личного опыта могу сказать, что каждый человек, который работает в сфере энергетики, должен хоть немного ориентироваться в номинальных значениях электрических машин. К этим значениям относятся: номинальный ток, номинальное напряжение и номинальная мощность.
Ну номинальный ток, мы с вами рассматривать не будем, так как это значение зависит от числа оборотов электродвигателя, от исполнения, от режима работы и от ряда других показателей.
Теперь рассмотрим номинальное напряжение. Согласно ГОСТ21128-83 все двигателя и генераторы переменного трёхфазного тока напряжением до 1000 В, а выше 1000 В ГОСТ721-77 выпускаются на номинальные напряжения, В, для двигателей: 220, 380, 660, 6000, 10000, а для генераторов: 230, 400, 690, 6300, 10500.
Могут конечно быть двигателя, которые работают при других показателях, но такие машины считаются спецмашинами и они выпускаются специально на заказ в зависимости от исполнения, режима работы и так далее.
А вот теперь мы подошли к самому главному показателю – это номинальная мощность. Я когда сам начал работать в электрослужбе, то мне по началу сложно было запомнить какие двигателя бывают. Но со временем и с опытом всё запоминается.
Хочу сказать, что номиналы машин, которые выпускались в бывшем советском союзе, отличаются от машин, которые выпускаются в других странах. Вот у нас на предприятии большое количество электродвигателей ещё остались со времён союза.
Нашему заводу уже 40 лет. Но в последние годы было много модернизированного оборудования и так же добавились новые линии. Это оборудование покупалось и привозилось с Германии, Италии и других стран. И эти все машины имеют совсем другие значения.
У нас значения номинальных мощностей электрических машин соответствуют ГОСТ12139-84 и диапазон от 0.06 до 1000 кВт: 0.06; 0.09; 0.12; 0.18; 0.25; 0.37; 0.55; 0.75; 1.1; 2.2; 3; 4; 5.5; 7.5; 11; 18.5; 22; 30; 37; 45; 55; 75; 90; 110; 132; 160; 200; 250; 315; 400; 500; 630; 800; 1000.
Вот на такие значения выпускались и выпускаются электродвигателя в бывших странах СССР. На моём предприятии самый большой номинал, который имеется это 200 кВт.
Вот и всё, что хотел сказать, если у кого-то есть что добавить, то пишите это в комментариях. Так же если статья была вам полезной, то поделитесь нею в социальных сетях со своими друзьями. А чтобы не пропустить новые статьи советую подписаться на обновления блога, для этого воспользуйтесь формой подписки, которая находится немного ниже.
fazanet.ru
Cтраница 3
При вводе в электродвигатели серии ВАО 315 - 450-го габаритов и МА36 6-го габарита одного кабеля, достаточного по номинальному току электродвигателя, категорически запрещается вынимать из второго вводного отверстия заводскую заглушку, установленную в резиновое уплотнительное кольцо, во избежание нарушения взрывозащитных свойств вводного устройства. Для электродвигателей 6 - 9-го габаритов вводное устройство соответствует вводному устройству КЗ. [32]
Дежурный у агрегата пускает электродвигатель и контролирует его работу по амперметру, по окончании пуска проверяет, не превышен ли номинальный ток электродвигателя. [33]
Для защиты двигателей постоянного тока и асинхронных двигателей с фазовым ротором, пускаемых посредством реостата, плавкая вставка подбирается на номинальный ток электродвигателя. [34]
Основным видом повреждений электродвигателей переменного тока являются междуфазные короткие замыкания в обмотках статора, сопровождающиеся большими токами, значительно превосходящими номинальный ток электродвигателя. Эти токи вызывают большие разрушения обмоток и стали электродвигателя, вследствие чего может потребоваться вывести его в длительный и сложный ремонт с заменой обмоток и стали сердечника. Повреждения в кабеле, соединяющем электродвигатель с выключателем, или на выводах электродвигателя вызывают значительное понижение напряжения на шинах собственных нужд, что нарушает нормальную работу других потребителей, питающихся от этих шин. [35]
Сечения ответвлений к электродвигателям с короткозамкнутым ротором должны выбираться с таким расчетом, чтобы они допускали нагрузку не менее 125 % номинального тока электродвигателя. [36]
Выбор сечения жил кабелей при любых способах прокладки во взрывоопасных зонах всех классов следует производить без учета коэффициента 1 25 к номинальному току электродвигателей, как это требует ПУЭ, гл. [37]
Сечения проводов и кабелей для ответвлений к короткозамкнутым электродвигателям в сетях, проложенных в невзрывоопасных помещениях и защищаемых от перегрузки, выбирают по номинальным токам электродвигателей. Если требуемая допустимая токовая нагрузка проводника, определенная с учетом Ка по табл. 15.2, не совпадает с данными таблиц допустимых нагрузок по ПУЭ, то допускается применение проводников ближайшего меньшего сечения. Однако при этом допустимый ток проводника не должен быть меньше расчетного тока линии. [38]
Осуществить защиту электродвигателя от перегрузки предохранителями нельзя, так как номинальный ток плавкой вставки по условиям пускового тока выбирается в 2 - 3 раза больше номинального тока электродвигателя. При повторно-кратковременном режиме работы электродвигателя тепловые реле не применяются. [39]
Длительно допустимая токовая нагрузка проводников ответвлений к короткозамкнутым электродвигателям должна быть не менее: 100 % номинального тока электродвигателя в невзрывоопасных зонах; 125 % номинального тока электродвигателя во взрывоопасных зонах. [40]
Применение в схеме наряду с тепловыми реле плавких предохранителей объясняется тем, что силовые контакты магнитных пускателей допускают разрыв токов перегрузки не больше семикратной величины номинального тока электродвигателя, мощность которого допустима в данном пускателе; а на разрыв токов короткого замыкания эти контакты не рассчитаны. В силовую цепь включаются нагревательные элементы реле. [42]
Длительно допустимая токовая нагрузка проводников ответвлений к короткозамкнутым электродвигателям должна быть не менее: 100 % номинального тока электродвигателя в невзрывоопасных зонах; 125 % номинального тока электродвигателя во взрывоопасных зонах. [43]
Страницы: 1 2 3
www.ngpedia.ru
На рисунке 1.5 представлена принципиальная схема реверсивного пуска асинхронного короткозамкнутого электродвигателя с реверсом скорости при помощи реверсивного магнитного пускателя. При включенном рубильнике Р схема подготовлена к работе.
Для пуска двигателя в нужном направлении, например, вперед, необходимо нажать кнопку КнВ. При этом включается группа контактов КВ магнитного пускателя и присоединяет двигатель к сети. Одновременно замыкающий блок-контакт КВ блокирует кнопку КнВ. Для остановки двигателя необходимо нажать кнопку КнС, которая отключит контакты магнитного пускателя, и двигатель будет отсоединен от сети.
Для пуска двигателя в обратном направлении необходимо нажать кнопку КнН, которая включит группу контактов КН. Две фазы статора двигателя (А и В) поменяются местами, и он начнет вращаться в обратном направлении. Если нажать кнопку КнН при включенных контактах КВ, то размыкающий контакт этой кнопки отключит контакты КВ, после чего включатся контакты КН. В результате произойдет торможение противовключением с последующим реверсом двигателя.
Защита двигателя осуществляется с помощью максимальных токовых реле РМ1, РМ2, РМ3 и тепловых реле РТ1 и РТ2. При срабатывании любого из реле размыкается его контакт в цепи контакторов в схеме управления. Последние отключаются и отсоединяют двигатель от сети. В схеме используются кнопки с двумя контактами – замыкающим и размыкающим. Эти контакты включены в разные цепи, обеспечения надежную электрическую блокировку.
Прежде чем приступить к непосредственному выбору пускозащитной аппаратуры, необходимо по данным номинальным параметрам двигателя и сети рассчитать номинальный ток двигателя и его пусковой ток.
Номинальный ток двигателя можно определить по следующей формуле:
(3.1)
где m – число фаз статора.
По известной кратности пускового тока можно определить его значение:
(3.2)
После определения значений номинального и пускового тока можно приступить к выбору требуемой аппаратуры.
Выбор рубильника.
Выбор рубильников необходимо, в общем случае, осуществлять, исходя из следующих условий:
1. Uном ≥ Uном.сети;
2. Iном ≥ Iпрод.расч;
3. Iоткл.доп ≥ Iраб τ (в случае, если рубильник имеет дугогасительные камеры или разрывные контакты)
В указанных выше соотношениях представлены следующие обозначения: Uном –номинальное напряжение, на которое рассчитан рубильник; Uном.сети – номинальное напряжение сети; Iном – номинальный ток контактов рубильника; Iпрод.расч – продолжительно допустимый ток проводника; Iоткл.доп – предельно допустимое значение тока отключения; Iрабτ – рабочий ток цепи в момент начала расхождения дугогасительных контактов аппарата. Выбираем по таблице 2.4 (литература [3]) переключатель-разъединитель с центральной рукояткой серии П32, со следующими номинальными параметрами: Uном= 380 В, Iном = 250 А.
megaobuchalka.ru