Автомобиль
Наиболее широко используются поршневые двигатели внутреннего сгорания. Двигатель внутреннего сгорания - это тепловая машина, в которой топливо сжигается в цилиндре под поршнем...
Автомобильные системы зажигания
Система впрыска "L-Jetronic" -- это управляемая электроникой система многоточечного (распределенного) прерывистого впрыска топлива (L -- нем. Lade -- заряд, порция)...
Газотурбинные двигатели
Схема газотурбинного автомобильного двигателя показана на рис.14. Через входной патрубок / в компрессор двигателя поступает воздух. Попадая на лопатки вращающегося с большой угловой скоростью колеса 2 компрессора...
Газотурбинные двигатели
...
Гирокомпас "Курс-4"
I. К элементам следящей системы относятся: 1) следящая сфера, 2) магнитный усилитель, 3) исполнительный электродвигатель, 4) сельсин-датчик и сельсин-приемник (азимут-мотор) курса. Любая следящая система, в т. ч...
Двигатель дизельный
Расчетное среднее индикаторное давление карбюраторного двигателя (28) Действительное среднее индикаторное давление , (29) где ?п - коэффициент полноты диаграммы, учитывающий уменьшение площади диаграммы. ?п=0,92. Тогда кг/см2...
Исследование процесса технической эксплуатации топливных форсунок системы распределённого впрыска
При помощи роликового насоса топливо проходит через фильтр и закачивается в распределительный коллектор под давлением 2,5 атм. Регулятор давления, рас - положенный на конце распределительного коллектора...
Источники электропитания и другое электрооборудование в автомобиле
Монтаж судовых холодильных установок
К параметрам, характеризующим действительный рабочий цикл двигателя, относятся давление в конце сжатия, давление в конце горения, среднее индикаторное давление, среднее эффективное давление РС эффективный расход топлива gе, эффективный КПД е...
Назначение и типы автомобильных двигателей
Рабочий процесс (цикл) четырехтактных двигателей состоит из тактов впуска, сжатия, рабочего хода и выпуска. Рабочий процесс происходит за четыре хода поршня или за два оборота коленчатого вала...
Основные параметры тяговых двигателей
Электрические машины, преобразующие электрическую энергию в механическую, называются электродвигателями. Подведем к рассмотренному ранее простейшему генератору питание от постороннего источника электрической энергии (рис. 1). Рис. 1...
Противопожарные системы вертолета
При возникновении пожара в отсеке левого двигателя по сигналу от датчиков ДПС срабатывает исполнительный блок и обеспечивает следующее: включается и работает в проблесковом режиме (мигает) красный ЦСО; включается и работает в проблесковом...
Тормозная система автомобиля ГАЗ-3307
Кран управления стояночным тормозом предназначен для приведения в действие вспомогательной тормозной системы, а также стояночной тормозной системы автомобиля без прицепа вместе с тормозными камерами с пружинными энергоаккумуляторами...
Тормозная система автомобиля ГАЗ-3307
1. Вспомогательный тормоз В положении «расторможено» клапан (с) удерживает открытым проход между камерами А и В и подаваемый через вывод 1 сжатый воздух проходит через вход 21 в камеры пружинного энергоаккумулятора пневмоцилиндра...
Устройство автоматической системы регулирования температуры охлаждающей жидкости
Система автоматического регулирования (вентилятор с гидромуфтой и терморегулятором РТП/р-6) поддерживает оптимальную температуру охлаждающей жидкости в пределах 75--105°С...
tran.bobrodobro.ru
ГАЗОТУРБИННЫЕ УСТАНОВКИ
ВВЕДЕНИЕ
На первых этапах развития ГТУ для сжигания топлива применяли два типа камер сгорания. В камеру сгорания первого типа топливо и окислитель (воздух) подавались непрерывно, их горение также поддерживалось непрерывно, а давление не изменялось. В камеру сгорания, второго типа топливо и окислитель (воздух) подавались порциями. Смесь поджигалась и сгорала в замкнутом объеме, а затем продукты сгорания поступали в турбину. В такой камере сгорания температура и давление не постоянны: они резко увеличиваются в момент сгорания топлива.
Со временем выявились несомненные преимущества камер сгорания первого типа. Поэтому в современных ГТУ топливо в большинстве случаев сжигают при постоянном давлении в камере сгорания.
Первые ГТУ имели низкий КПД, так как газовые турбины и компрессоры были несовершенны. По мере совершенствования этих агрегатов увеличивался КПД газотурбинных установок, и они становились конкурентоспособными по отношению к другим видам тепловых двигателей.
В настоящее время газотурбинные установки являются основным видом двигателей, используемых в авиации, что обусловлено простотой их конструкции, способностью быстро набирать нагрузку, большой мощностью при малой массе, возможностью полной автоматизации управления. Самолет с газотурбинным двигателем впервые совершил полет в 1941 г.
В энергетике ГТУ работают в основном в то время, когда резко увеличивается потребление электроэнергии, т. е. во время пиков нагрузки. Хотя КПД ГТУ ниже кпд паротурбинных установок (при мощности 20—100 МВт КПД ГТУ достигает 20—30%), использование их в пиковом режиме оказывается выгодным, так как пуск занимает гораздо меньше времени.
В некоторых пиковых ГТУ в качестве источников газа для турбины, вращающей электрический генератор, применяют авиационные турбореактивные двигатели, отслужившие свой срок в авиации. Наряду с двигателями внутреннего сгорания ГТУ применяют в качестве основных двигателей на передвижных электростанциях.
В технологических процессах нефтеперегонных и химических производств горючие отходы используются в качестве топлива для газовых турбин.
Газотурбинные установки находят также широкое применение на железнодорожном, морском, речном и автомобильном транспорте. Так, на быстроходных судах на подводных крыльях и воздушной подушке ГТУ являются двигателями. На большегрузных автомобилях они могут использоваться в качестве как основного, так и вспомогательного двигателя, предназначенного для подачи воздуха в основной двигатель внутреннего сгорания и работающего на его выхлопных газах.
Кроме того, ГТУ служат приводом нагнетателей природного газа на магистральных газопроводах, резервных электрогенераторов пожарных насосов.
! Основное направление, по которому развивается газотурбиностроение, это повышение экономичности ГТУ за счет увеличения температуры и давления газа перед газовой турбиной. С этой целью разрабатываются сложные системы охлаждения наиболее напряженных деталей турбин или применяются новые, высокопрочные материалы — жаропрочные на основе никеля, керамика и др.
Газотурбинные установки обычно надежны и просты в эксплуатации при условии строгого соблюдения установленных правил и режимов работы, отступление от которых может вызвать разрушение турбин, поломку компрессоров, взрывы в камерах сгорания и др.
ОСНОВНЫЕ ЭЛЕМЕНТЫ ГАЗОТУРБИННЫХ УСТАНОВОК
ОБЩИЕ СВЕДЕНИЯ О ГАЗОТУРБИННЫХ УСТАНОВКАХ
Газотурбинный двигатель (ГТД) — один из видов теплового двигателя, в котором газ сжимается и нагревается, а затем энергия сжатого и нагретого газа преобразуется в механическую работу на валу газовой турбины. Газотурбинная установка состоит из трех основных элементов: газовой турбины, камер сгорания и воздушного компрессора.
Превращение теплоты в работу осуществляется в нескольких агрегатах ГТД (рис.1)
Рис. 1. Схема газотурбинного двигателя:
ТН – топливный насос; КС – камера сгорания; К – компрессор; Т – турбина; ЭГ – электрогенератор.
В камеру сгорания топливным насосом подаются топливо и сжатый воздух после компрессора. Топливо перемешивается с воздухом, который служит окислителем, поджигается и сгорает. Чистые продукты сгорания также смешиваются с воздухом, чтобы температура газа, получившегося после смешения, не превышала заданного значения. Из камер сгорания газ поступает в газовую турбину, которая предназначена для преобразования его потенциальной энергии в механическую работу. Совершая работу, газ остывает и давление его уменьшается до атмосферного. Из газовой турбины газ выбрасывается в окружающую среду.
Из атмосферы в компрессор поступает чистый воздух. В компрессоре его давление увеличивается и температура растет. На привод компрессора приходится отбирать значительную часть мощности турбины.
Газотурбинные установки, работающие по такой схеме, называют установками открытого цикла. Большинство современных ГТУ работает по этой схеме.
Рис. 2. Цикл газотурбинного двигателя.
Заменив сгорание топлива изобарным подводом теплоты (линия 2-3 на рис. 2), а охлаждение выброшенных в атмосферу продуктов сгорания – изобарным отводом теплоты (линия 1-4), получается цикл ГТД:
1-2 – сжатие рабочего тела от атмосферного давления до давления в двигателе;
2-3 – горение в камере;
3-4 – процесс адиабатного расширения рабочего тела;
Кроме того, применяются замкнутые ГТУ (рис. 3). В замкнутых ГТУ также имеются компрессор 3 и турбина 2. Вместо камеры сгорания используется источник теплоты 1, в котором теплота передается рабочему телу без перемешивания с топливом. В качестве рабочего тела может применяться воздух, углекислый газ, пары ртути или другие газы.
Рабочее тело, давление которого повышено в компрессоре, в источнике теплоты 1нагревается и поступает в турбину 2, в которой отдает свою энергию. После турбины газ поступает в промежуточный теплообменник 5 (регенератор), в котором он подогревает воздух, а затем охлаждается в охладителе 4, поступает в компрессор 3, и цикл повторяется, В качестве источника теплоты могут использоваться специальные котлы для нагрева рабочего-тела энергией сжигаемого топлива или атомные реакторы.
Рис. 3. Схема газотурбинного двигателя, работающего по замкнутому циклу: 1 — поверхностный нагреватель; 2 — турбина; 3 — компрессор; 4 — охладитель; 5 — регенератор; 6 — аккумулятор воздуха; 7 — вспомогательный компрессор.
megaobuchalka.ru
Газотурбинная установка - это агрегат, состоящий из газотурбинного двигателя, редуктора, генератора и вспомогательных систем. Поток газа, образованный в результате сгорания топлива, воздействуя на лопатки турбины, создает крутящий момент и вращает ротор, который в свою очередь соединен с генератором. Генератор вырабатывает электроэнергию.
В основу устройства газотурбинного агрегата положен принцип модульности: ГТУ состоят из отдельных блоков, включая блок автоматики. Модульная конструкция позволяет в кратчайшие сроки производить сервисное обслуживание и ремонт, наращивать мощность, а также экономить средства за счет того, что все работы могут производиться быстро на месте эксплуатации.
Принцип действия ГТУ был известен уже в XVIII в., а первый газотурбинный двигатель был построен в России инженером П.Д.Кузьминским в 1897—1900 гг. и тогда же прошел предварительные испытания. Полезная мощность от ГТУ была впервые получена в 1906 г. на установке французских инженеров Арменго и Лемаля.
На первых этапах развития газотурбинных установок (ГТУ) в них для сжигания топлива применяли два типа камер сгорания. В камеру сгорания первого типа топливо и окислитель (воздух) подавались непрерывно, их горение также поддерживалось непрерывно, а давление не изменялось. В камеру сгорания, второго типа топливо и окислитель (воздух) подавались порциями. Смесь поджигалась и сгорала в замкнутом объеме, а затем продукты сгорания поступали в турбину. В такой камере сгорания температура и давление не постоянны: они резко увеличиваются в момент сгорания топлива.
Со временем выявились несомненные преимущества камер сгорания первого типа. Поэтому в современных ГТУ топливо в большинстве случаев сжигают при постоянном давлении в камере сгорания.
Первые газотурбинные установки (ГТУ) имели низкий кпд, так как газовые турбины и компрессоры были несовершенны. По мере совершенствования этих агрегатов увеличивался кпд газотурбинных установок и они становились конкурентоспособными по отношению к другим видам тепловых двигателей.
В настоящее время газотурбинные установки являются основным видом двигателей, используемых в авиации, что обусловлено простотой их конструкции, способностью быстро набирать нагрузку, большой мощностью при малой массе, возможностью полной автоматизации управления. Самолет с газотурбинным двигателем впервые совершил полет в 1941 г.
В энергетике газотурбинные установки (ГТУ) работают в основном в то время, когда резко увеличивается потребление электроэнергии, т. е. во время пиков нагрузки. Хотя КПД ГТУ ниже КПД паротурбинных установок (при мощности 20—100 МВт КПД ГТУ достигает 20—30%), использование их в пиковом режиме оказывается выгодным, так как пуск занимает гораздо меньше времени.
В некоторых пиковых ГТУ в качестве источников газа для турбины, вращающей электрический генератор, применяют авиационные турбореактивные двигатели, отслужившие свой срок в авиации. Значительной экономии следует ожидать от парогазовых установок (ПГУ), в которых совместно работают паротурбинные и газотурбинные установки. Они позволяют на несколько процентов сократить расход топлива по сравнению с лучшими паротурбинными установками.
Наряду с паротурбинными установками и двигателями внутреннего сгорания ГТУ применяют в качестве основных двигателей на передвижных электростанциях.
В технологических процессах нефтеперегонных и химических производств горючие отходы используются в качестве топлива для газовых турбин.
Газотурбинные установки находят также широкое применение на железнодорожном, морском, речном и автомобильном транспорте. Так, на быстроходных судах на подводных крыльях и воздушной подушке ГТУ являются двигателями. На большегрузных автомобилях они могут использоваться в качестве как основного, так и вспомогательного двигателя, предназначенного для подачи воздуха в 'основной двигатель внутреннего сгорания и работающего на его выхлопных газах.
Кроме того, ГТУ служат приводом нагнетателей природного газа на магистральных газопроводах, резервных электрогенераторов пожарных насосов.
Основное направление, по которому развивается газотурбиностроение - это повышение экономичности ГТУ за счет увеличения температуры и давления газа перед газовой турбиной. С этой целью разрабатываются сложные системы охлаждения наиболее напряженных деталей турбин или применяются новые, высокопрочные материалы - жаропрочные на основе никеля, керамика и др.
Газотурбинные установки обычно надежны и просты в эксплуатации при условии строгого соблюдения установленных правил и режимов работы, отступление от которых может вызвать разрушение турбин, поломку компрессоров, взрывы в камерах сгорания и др.
Газотурбинные энергоустановки применяются в качестве постоянных, резервных или аварийных источников тепло- и электроснабжения в городах, а также отдаленных, труднодоступных районах. Основные потребители продуктов работы ГТУ следующие:
Электрическая мощность газотурбинных энергоустановок колеблется от десятков киловатт до сотен мегаватт. Наибольший КПД достигается при работе в режиме когенерации (одновременная выработка тепловой и электрической энергии) или тригенерации (одновременная выработка тепловой, электрической энергии и энергии холода).
Возможность получения недорогой тепловой и электрической энергии предполагает быструю окупаемость поставленной газотурбинной установки. Такая установка, совмещенная с котлом-утилизатором выхлопных газов, позволяет производить одновременно тепло и электроэнергию, благодаря чему достигаются наилучшие показатели по эффективности использования топлива.
Выходящие из турбины отработанные газы в зависимости от потребностей Заказчика используются для производства горячей воды или пара.
Газотурбинная установка может работать как на газообразном, так и на жидком топливе. Так, в газотурбинных агрегатах может использоваться:
Большинство газотурбинных установок могут работать на низкокалорийных топливах с минимальной концентрацией метана (до 30%).
www.gigavat.com