1. Классификация тепловых двигателей
2. Принцип работы поршневых ДВС
3. Особенности работы карбюраторного двигателя
4. Особенности работы дизельного двигателя
1. Классификация тепловых двигателей
Тепловые двигатели предназначены для преобразования тепловой энергии, выделяющейся при сгорании топлива, в механическую. Тепловые двигатели подразделяют на двигатели с внешним сгоранием (паровые машины, паровые турбины и др.) и двигатели внутреннего сгорания.
Первыми тепловыми машинами с внутренним сгоранием были поршневые двигатели, характерной особенностью которых является периодичность процесса сгорания. И до настоящего времени под термином двигатели внутреннего сгорания в первую очередь подразумевают поршневые двигатели. В последние 40 - 50 лет интенсивно развивается другая группа двигателей внутреннего сгорания, куда входят реактивные двигатели и газовые турбины (рис. 1), процесс сгорания в которых осуществляется непрерывно.
Наибольшее распространение среди тепловых двигателей получили двигатели с периодическим сгоранием топлива (поршневые двигатели) или их также называют - двигатели внутреннего сгорания (ДВС). В этих двигателях основные процессы — сжигание топлива, выделение теплоты и ее преобразование в механическую работу — происходят непосредственно внутри двигателя. Такие двигатели используют в качестве силовой установки во всех видах транспорта — автомобильном, железнодорожном, водном и авиационном. Они же являются источником механической энергии в сельскохозяйственном производстве и в строительстве, в нефтяной и газовой промышленности, а также в других областях народного хозяйства.
Особенности работы этих двух наиболее распространенных типов двигателей внутреннего сгорания рассмотрим более подробно. Принципиальные схемы двигателей внутреннего сгорания приведены на рисунке 2.
Спецификой работы поршневых двигателей является цикличность, обусловленная периодичностью процесса сгорания топлива, т. е. того процесса, в результате которого и преобразуется тепловая энергия в механическую. Основные детали поршневых двигателей следующие (см. рис. 2): цилиндр 2, головка цилиндра 5, поршень 6, шатун 7, коленчатый вал 8, картер 1, впускные 3 и выпускные 4 клапаны. Пространство, ограниченное стенками цилиндра, головкой и поршнем, называют камерой сгорания. В него вводятся топливо и воздух, необходимый для сгорания топлива.
При сгорании топливовоздушной смеси выделяется большое количество тепла, а образующиеся при этом газы давят на поршень и перемещают его в цилиндре. Поступательное движение поршня передается через шатун на коленчатый вал, где оно преобразуется во вращательное движение. Последнее, как правило, и требуется потребителю механической энергии, например колесам автомобиля, гребному винту катера и т. п.
Процесс сгорания в поршневом двигателе осуществляется в ограниченном объеме камеры сгорания, и для совершения полезной работы используется расширение продуктов сгорания. После стадии расширения газов для сжигания новой порции топлива необходимо удалить отработавшие газы из рабочей полости двигателя и вновь создать топливовоздушную смесь соответствующего состава. Таким образом, возвратно-поступательное движение поршня в цилиндре двигателя обеспечивает возможность сжигания топлива лишь последовательными порциями. При этом сгоранию каждой порции должен предшествовать ряд подготовительных стадий, которые протекают в цилиндре двигателя в строгой последовательности. Совокупность всех процессов называют рабочим циклом, и эти циклы во время работы двигателя периодически повторяются.
Полезная работа, совершаемая двигателем, зависит от того, сколько воздуха находится в камерах сгорания и, соответственно, сколько топлива можно сжечь в этом объеме воздуха. Естественно, чем больше общий объем всех камер сгорания, тем больший объем воздуха они могут вместить, а, следовательно, тем больше топлива можно сжечь и получить большую мощность двигателя.
Однако в последние годы находит применение другой способ увеличения мощности поршневых двигателей — так называемый способ «наддува». В двигатель подается воздух не при атмосферном давлении, а при некотором избыточном давлении. Тогда в том же объеме камеры сгорания удается сосредоточить больше воздуха, сжечь больше топлива и получить большую мощность.
Для создания избыточного давления воздуха устанавливают специальный компрессор, на привод которого расходуется часть мощности двигателя. Двигатели с наддувом получают широкое применение в технике.
В поршневых двигателях внутреннего сгорания воспламенение рабочей смеси может осуществляться по двум, принципиально различным схемам. В одной схеме воспламенение смеси топлива с воздухом предусматривается от постороннего источника, обычно от электрической искры, в другой — смесь самовоспламеняется от горячего воздуха, нагретого в процессе сжатия.
studfiles.net
Нагнетатель - гидравлическая машина, в которой происходит преобразование механической работы в механическую энергию рабочей среды. Основное назначение нагнетателя - повышение полного давления перемещаемой среды.
Нагнетатели:
---динамические
---объемные. Динамическим нагнетателем будем называть машину, повышающую энергию жидкости или газа путем использования работы массовых сил потока в полости, постоянно соединенной с входом и выходом нагнетателя.
В объемных нагнетателях повышение энергии рабочего тела достигается силовым воздействием твердых рабочих тел.
Рассмотрим основные виды нагнетателей:
Насосы
Насосы – гидравлические машины для подъема и перемещения жидкостей.
Насосы:
---лопастные (центробежные, осевые, вихревые)
---объемные (поршневые, плунжерные)
---ротационные (шестерёнчатые, шиберные, винтовые)
---струйные (инжекторы и эжекторы).
В объемных насосах передача энергии производится принудительным воздействием рабочего тел на перемещаемую среду и ее вытеснением. В лопастных насосах преобразование мех. энергии в гидравлическую производится вращающимся колесом, снабженными лопастями.
Вентиляторы
Вентиляторы - это механические устройства, служащие для перемещения воздуха по воздуховодам, или непосредственной подачи либо отсоса воздуха из помещения. Перемещение воздуха происходит из-за создания перепада давления между входом и выходом вентилятора.
Вентиляторы подразделяются на типы по нескольким показателям:
1. По кострукции - осевые - центробежные - тангенциальные 2. По условиям работы - обычные - термостойкие - коррозионностойкие - взрывозащищенные - пылевые | 3. По создаваемому полному напору - низкого давления (до 1 кПа) - среднего давления (от 1 до 3 кПа) - высокого давления (от 3 до 12 кПа) 4. По способу установки - обычные (устанавливаются на опоре - фундаменте, раме и т.п.) - канальные (устанавливаются в воздуховоде) - крышные (устанавливаются на крыше здания) |
Компрессоры
Компрессором называют воздуходувную машину, предназначенную для сжатия и подачи воздуха или какого-либо газа под давлением не ниже 0,2 МПа.
Объемные компрессоры работают по принципу вытеснения, когда давление перемещаемой среды повышается в результате сжатия. К ним относятся поршневые и роторные компрессоры.
Динамические компрессоры работают по принципу силового действия на перемещаемую среду. К ним относятся лопастные (радиальные, центробежные, осевые) нагнетатели и нагнетатели трения (вихревые, дисковые, струйные и т.п.).
Лопастныминазывают компрессоры, в которых среда перемещается за счет энергии, передаваемой ей при обтекании лопастей рабочего колеса.
Классификация тепловых двигателей:
Тепловые двигатели – это машины, в которых тепловая энергия рабочей среды преобразуется в механическую работу.
Тепловые двигатели:
1. Турбины: - паровые - газовые 2. ДВС - дизельный - бензиновый - карбюраторный - инжекторный | 3. Двигатель Стирлинга 4. Ракетные 5. Гибридные |
Паровые турбины. Пар, образующийся в паровом котле, расширяясь, под высоким давлением проходит через лопатки турбины. Турбина вращается и производит механическую энергию, используемую генератором для производства электричества.
Газовая турбина, тепловой двигатель непрерывного действия, в лопаточном аппарате которого энергия сжатого и нагретого газа преобразуется в механическую работу на валу. Двигатель Стирлинга - двигатель внешнего. В двигателе внутреннего сгорания топливо сгорает внутри цилиндров и тепловая энергия, выделяющаяся при этом, преобразуется в механическую работу.
Компрессоры: типы, КПД, степень повышения давления
Компрессором называют воздуходувную машину, предназначенную для сжатия и подачи воздуха или какого-либо газа под давлением не ниже 0,2 МПа.
Объемные компрессоры работают по принципу вытеснения, когда давление перемещаемой среды повышается в результате сжатия. К ним относятся поршневые и роторные компрессоры.
Динамические компрессоры работают по принципу силового действия на перемещаемую среду. К ним относятся лопастные (радиальные, центробежные, осевые) нагнетатели и нагнетатели трения (вихревые, дисковые, струйные и т.п.).
Лопастными называют компрессоры, в которых среда перемещается за счет энергии, передаваемой ей при обтекании лопастей рабочего колеса. Лопастные компрессоры: центробежные и осевые. В центробежных компрессорах среда перемещается через рабочее колесо от центра к периферии, а в осевых - через рабочее колесо в направлении его оси.
Простейшая классификация компрессоров представлена на рисунке:
КПД компрессоров.
В энергетике под КПД обычно понимают отношение полезно используемой энергии ко всей затраченной. И чем выше процент полезно используемой энергии из всего её затраченного количества, тем выше КПД. В случае компрессорных машин такое определение КПД оказывается неприемлимым.
Поэтому для оценки степени совершенства реальных компрессорных машин их сравнивают с идеальными. При этом для охлаждающих компрессоров вводится изотермический КПД:
ηиз =lиз / lд =Nиз/Nд
где:
lиз - работа на привод идеального компрессора при изотермическом сжатии,
lд - действительная работа на привод реального охлаждаемого компрессора,
Nиз,Nд - соответствующие мощности приводных двигателей;
infopedia.su
Первая работоспособная паросиловая установка была предложена Томасом Ньюкоменом (кузнец, изобретатель) — в 1712 г.
Российский изобретатель И.И. Ползунов в 1763 г., разработал проект пароатмосферной машины для привода кузнечных мехов.
Изобретателем и создателем паровой машины (поршневого парового двигателя) считают шотландца Джеймса Уатта (1736-1819).
Патент на машину простого действия был получен Д. Уаттом в 1769 г.
Заслуги Джеймса Уатта в технике и энергетике настолько велики, что во всем мире единица измерения мощности была названа в его честь Watt [W] (по-русски принято читать и обозначать это наименование как «Ватт» [Вт] ).
Паровая турбина. Работоспособная активная паровая турбина была изобретена в 1883-1889 гг. шведским инженером Густавом де Лавалем (1845-1913)
Двигатели внутреннего сгорания
Теоретической основой для создания такого двигателя мог служить идеальный термодинамический цикл процесса преобразования тепловой энергии в механическую работу, предложенный французским инженером Сади Карно в 1824 г.
Первыми работоспособными Д.В.С. считаются двигатели, работавшие на светильном газе, которые создал Жан-Этьен Ленуар во Франции. Он получил патент в 1860 г
Маленькие двигатели Ленуара (с мощностью порядка 0,5-1 кВт) сразу завоевали большую популярность в Европе, к.п.д. двигателя оценивался на уровне 3%.
Двигателем Ленуара заинтересовался немецкий изобретатель-самоучка, Николаус Аугуст Отто (1832-1891). В 1866 г. ему удалось получить первый патент на усовершенствованный газовый двигатель. В 1867 г. маленький мотор Отто был показан на Всемирной Парижской выставке и получил золотую медаль, несмотря на то, что в экспозиции выставки было представлено еще не менее полутора десятков газовых двигателей разных изобретателей — моторчик Отто работал экономичнее всех других. Отто со своими партнерами организовал производство двигателей. Успеху фирмы способствовало приглашение двух талантливых немецких инженеров. Их имена известны и сегодня — это были Готлиб Даймлер и Вильгельм Майбах. До сих пор в Германии существуют фирмы и автомобильные заводы, ими организованные.
В 1883 г. Г. Даймлер. построил четырехтактный двигатель внутреннего сгорания, в котором вместо светильного газа использовалось более компактное жидкое топливо — бензин. Горючая смесь в виде паров бензина и воздуха образовывалась в специально разработанном им устройстве — карбюраторе.
Вскоре, поставив карбюраторный бензиновый двигатель на повозку, Даймлер построил первый - настоящий автомобиль. В 1891 г. завод Г.Даймлера построил первый в Европе небольшой промышленный локомотив автомобильного типа с зубчатой передачей между двигателем и колесами. Его мощность была всего 4 л.с. С 1893 г. автомобильный завод Даймлера строил и самоходные рельсовые вагоны — автомотрисы (рельсовые автобусы) для немецких железных дорог.
Дизельные двигатели внутреннего сгорания. В конце 1897 г немецкий инженер Рудольф Дизель, создал двигатель внутреннего сгорания, в котором тяжелое жидкое топливо самовоспламенялось в цилиндре от высокой температуры сжатого в нем воздуха. С тех пор такие двигатели называют по имени их создателя - дизелями. Принцип подачи топлива, был главным элементом в изобретении Дизеля.
В 1896 г. российский специалист Г.В. Тринклер, работавший в Нижнем Новгороде, построил бескомпрессорный двигатель внутреннего сгорания высокого сжатия. Тринклер, сделав заявку в 1899 г., получил патент только в 1904 г. По этому «смешанному» циклу (циклу Тринклера) и работают все современные бескомпрессорные дизельные двигатели.
Газотурбинные установки.
Одним из первых создателей промышленного образца ГТУ был русский инженер П.Д.Кузьминский. В период с 1894 по 1900 г.г. им была спроектирована и построена ГТУ со сгоранием топлива при постоянном давлении.
В 1900-1904 гг. была изготовлена ГТУ немецким инженером Штольцем, но в процессе испытаний установка не развивала мощности, необходимой даже для вращения компрессора. В 1906 г. французскими инженерами Арманго и Лемалем был построен ГТУ мощностью 300 кВт, но ее КПД был очень низок.
В 1908 г, русский инженер В.В.Караводин построил ГТУ со сгоранием топлива при постоянном объеме. КПД этой установки не превышал 2,4%.
Теоретические циклы поршневых двигателей внутреннего сгорания
В теоретическом цикле в отличии от действительных отсутствуют потери теплоты, за исключением неизбежной отдачи теплоты холодному источнику в соответствии со вторым законом термодинамики. Теоретические циклы совершаются при соблюдений следующих условий:
цикл является замкнутым (обратимым) и протекает с постоянным количеством одного и того же рабочего тела, в качестве которого используется идеальный газ;
процесс сгорания топлива в цилиндре заменен мгновенным подводом теплоты от постороннего горячего источника, а процесс выпуска отработавших газов мгновенным отводом теплоты в холодный источник;
процесс сжатия и расширения протекают без теплообмена с внешней средой, т.е. принимаются адиабатными;
теплоемкость рабочего тела на протяжении всего цикла считается постоянной, не зависящей от температуры.
Тепловым двигателем называется устройство, способное превращать полученное количество теплоты в механическую работу. Механическая работа в тепловых двигателях производится в процессе расширения некоторого вещества, которое называется рабочим телом. В качестве рабочего тела обычно используются газообразные вещества (пары бензина, воздух, водяной пар). Рабочее тело получает (или отдает) тепловую энергию в процессе теплообмена с телами, имеющими большой запас внутренней энергии. Эти тела называются тепловыми резервуарами.
Как следует из первого закона термодинамики, полученное газом количество теплоты Q полностью превращается в работу A при изотермическом процессе, при котором внутренняя энергия остается неизменной (ΔU = 0):
Но такой однократный акт преобразования теплоты в работу не представляет интереса для техники. Реально существующие тепловые двигатели (паровые машины, двигатели внутреннего сгорания и т. д.) работают циклически. Процесс теплопередачи и преобразования полученного количества теплоты в работу периодически повторяется. Для этого рабочее тело должно совершать круговой процесс или термодинамический цикл, при котором периодически восстанавливается исходное состояние. Круговые процессы изображаются на диаграмме (p, V) газообразного рабочего тела с помощью замкнутых кривых (рис. 3.11.1). При расширении газ совершает положительную работу A1, равную площади под кривой abc, при сжатии газ совершает отрицательную работу A2, равную по модулю площади под кривой cda. Полная работа за цикл A = A1 + A2 на диаграмме (p, V) равна площади цикла. Работа A положительна, если цикл обходится по часовой стрелке, и A отрицательна, если цикл обходится в противоположном направлении.
Рисунок 3.11.1.Круговой процесс на диаграмме (p, V). abc – кривая расширения, cda – кривая сжатия. Работа A в круговом процессе равна площади фигуры abcd |
Общее свойство всех круговых процессов состоит в том, что их невозможно провести, приводя рабочее тело в тепловой контакт только с одним тепловым резервуаром. Их нужно, по крайней мере, два. Тепловой резервуар с более высокой температурой называют нагревателем, а с более низкой – холодильником. Совершая круговой процесс, рабочее тело получает от нагревателя некоторое количество теплоты Q1 > 0 и отдает холодильнику количество теплоты Q2 < 0. Полное количество теплоты Q, полученное рабочим телом за цикл, равно
Q = Q1 + Q2 = Q1 – |Q2|. |
При обходе цикла рабочее тело возвращается в первоначальное состояние, следовательно, изменение его внутренней энергии равно нулю (ΔU = 0). Согласно первому закону термодинамики,
Отсюда следует:
A = Q = Q1 – |Q2|. |
Работа A, совершаемая рабочим телом за цикл, равна полученному за цикл количеству теплоты Q. Отношение работы A к количеству теплоты Q1, полученному рабочим телом за цикл от нагревателя, называется коэффициентом полезного действия η тепловой машины:
Коэффициент полезного действия указывает, какая часть тепловой энергии, полученной рабочим телом от «горячего» теплового резервуара, превратилась в полезную работу. Остальная часть (1 – η) была «бесполезно» передана холодильнику. Коэффициент полезного действия тепловой машины всегда меньше единицы (η < 1). Энергетическая схема тепловой машины изображена на рис. 3.11.2.
Рис.3.11.2 Энергетическая схема тепловой машины: 1 –нагреватель, 2 – холодильник, 3 – рабочее тело, совершающее круговой процесс.
В двигателях, применяемых в технике, используются различные круговые процессы. На рис. 3.11.3 изображены циклы, используемые в бензиновом карбюраторном и в дизельном двигателях. В обоих случаях рабочим телом является смесь паров бензина или дизельного топлива с воздухом. Цикл карбюраторного двигателя внутреннего сгорания состоит из двух изохор (1–2, 3–4) и двух адиабат (2–3, 4–1). Дизельный двигатель внутреннего сгорания работает по циклу, состоящему из двух адиабат (1–2, 3–4), одной изобары (2–3) и одной изохоры (4–1). Реальный коэффициент полезного действия у карбюраторного двигателя порядка 30 %, у дизельного двигателя – порядка 40 %.
Рис. 3.11.3 Циклы карбюраторного двигателя внутреннего сгорания (1) и дизельного двигателя (2)
В 1824 году французский инженер С. Карно рассмотрел круговой процесс, состоящий из двух изотерм и двух адиабат, который сыграл важную роль в развитии учения о тепловых процессах. Он называется циклом Карно (рис. 3.11.4).
Рис.3.11.4 Цикл Карно
Цикл Карно совершает газ, находящийся в цилиндре под поршнем. На изотермическом участке (1–2) газ приводится в тепловой контакт с горячим тепловым резервуаром (нагревателем), имеющим температуру T1. Газ изотермически расширяется, совершая работу A12, при этом к газу подводится некоторое количество теплоты Q1 = A12. Далее на адиабатическом участке (2–3) газ помещается в адиабатическую оболочку и продолжает расширяться в отсутствие теплообмена. На этом участке газ совершает работуA23 > 0. Температура газа при адиабатическом расширении падает до значения T2. На следующем изотермическом участке (3–4) газ приводится в тепловой контакт с холодным тепловым резервуаром (холодильником) при температуре T2 < T1. Происходит процесс изотермического сжатия. Газ совершает работу A34 < 0 и отдает теплоQ2 < 0, равное произведенной работе A34. Внутренняя энергия газа не изменяется. Наконец, на последнем участке адиабатического сжатия газ вновь помещается в адиабатическую оболочку. При сжатии температура газа повышается до значения T1, газ совершает работу A41 < 0. Полная работа A, совершаемая газом за цикл, равна сумме работ на отдельных участках:
A = A12 + A23 + A34 + A41. |
На диаграмме (p, V) эта работа равна площади цикла.
Процессы на всех участках цикла Карно предполагаются квазистатическими. В частности, оба изотермических участка (1–2 и 3–4) проводятся при бесконечно малой разности температур между рабочим телом (газом) и тепловым резервуаром (нагревателем или холодильником).
Как следует из первого закона термодинамики, работа газа при адиабатическом расширении (или сжатии) равна убыли ΔU его внутренней энергии. Для 1 моля газа
A = –ΔU = –CV (T2 – T1), |
где T1 и T2 – начальная и конечная температуры газа.
Отсюда следует, что работы, совершенные газом на двух адиабатических участках цикла Карно, одинаковы по модулю и противоположны по знакам
По определению, коэффициент полезного действия η цикла Карно есть
С. Карно выразил коэффициент полезного действия цикла через температуры нагревателя T1 и холодильника T2:
Цикл Карно замечателен тем, что на всех его участках отсутствует соприкосновение тел с различными температурами. Любое состояние рабочего тела (газа) на цикле является квазиравновесным, т. е. бесконечно близким к состоянию теплового равновесия с окружающими телами (тепловыми резервуарами или термостатами). Цикл Карно исключает теплообмен при конечной разности температур рабочего тела и окружающей среды (термостатов), когда тепло может передаваться без совершения работы. Поэтому цикл Карно – наиболее эффективный круговой процесс из всех возможных при заданных температурах нагревателя и холодильника:
studfiles.net
Вернуться к основной статье
chem21.info
Работа роторно – поршневого двигателя осуществляется следующим образом (см. рис.1.17.).
В положении а) при вращении ротора объем под гранью АС увеличивается и через впускное окно топливовоздушная смесь засасывается в рабочий объем. В положении б) впускное окно закрывается и при дальнейшем вращении ротора смесь сжимается. В положении в) при максимальном сжатии объема под гранью АС смесь воспламеняется. Давление продуктов сгорания на поверхность грани АС несбалансированно относительно точки зацепления ротора с неподвижной шестерней, и возникает момент на вращение ротора. Угол поворота ротора от точки воспламенения смеси до прохождения вершиной А выпускного окна является рабочим ходом. При дальнейшем повороте ротора продукты сгорания вытесняются через выпускное окно при уменьшении рабочего объема.
|
Это значит, что продукты сгорания будут переноситься в объем новой порции смеси, что значительно ухудшает процесс горения. Для исключения этого явления необходимо осуществлять продувку рабочего объема перед фазой всасывания. Продувка производится топливовоздушной смесью в положении г). После закрытия всасывающего окна вершиной В ротора поток смеси по инерции проходит через полость А – В и сбрасывается в выпускное окно.
Общий вид конструкции двигателя Ванкеля показан на рис.1.18.
Преимущества роторно-поршневого двигателя – полная уравновешенность масс; компактная конструкция; отсутствие клапанного механизма.
Недостатки – высокие выбросы углеводородов; повышенный расход топлива; сложность изготовления, а, значит, и высокая стоимость изготовления; высокое расположение ведущего вала; невозможность изменения степени сжатия горючей смеси, поскольку она однозначно определена соотношением объемов камер с профилем эпитрохоиды.
Практическое применение получили двигатели с трехгранными роторами, с отношением радиусов шестерни и зубчатого колеса: r:R = 2:3, которые устанавливают на автомобилях, лодках и т.п.
Роторно-поршневой двигатель Ванкеля в 1974г. в CCCР впервые был установлен на нескольких десятках экспериментальных ВАЗ-2101(в свободную продажу не поступила ни одна). Затем эти двигатели устанавливались на ВАЗ-2108-97 стоимостью $6тыс. При этом роторная «восьмерка» стала разгоняться на первой передаче до 55 км/ч за 5 сек, а на второй до 100 км/ч еще за 3,3 сек. с рабочим объемом всего 1,3 л. Такую разгонную динамику (100 км/ч за 8,3с) выдает Mercedes CLK объемом 3,2 л. и мощностью 218 л.с. Однако устанавливать новый ротор на «восьмерке» приходится через каждые 40-60тыс. км. пробега.С целью безопасности и для повышения моторесурса на серийных машинах установлен ограничитель оборотов до 6 тыс. Расход бензина – 15литров на 100 км пробега.
Кроме России, роторно-поршневой двигатель RX на серийно выпускаемые автомобили, устанавливала только японская корпорация Mazda. Двигатель Ванкеля пока не получил широкого распространения, поскольку считают,что он неэкономичен, обладает небольшим моторесурсом и очень сложен и дорог в ремонте, практически после износа подлежит замене на новый.
К классу роторных следует отнести и роторно-волновой двигатель (пат. России № 2155272, автор Седунов И.П., г.Санкт-Петербург). В этом двигателе совершенно устранено возвратно-поступательное движение рабочих органов, ротор полностью уравновешен и вращается с постоянной угловой скоростью. Рабочее тело, как и в турбине, движется вдоль оси двигателя, траектория движения – винтовая линия. В конструкции отсутствует вредное пространство, ограничивающее рост степени сжатия рабочего тела. Из-за отсутствия уплотнительных элементов и, соответственно трения в проточной части, снимаются ограничения по ресурсу и числам оборотов двигателя. Рабочий процесс допускает произвольно изменять степень сжатия и расширения рабочего тела и без дополнительных регулировок и остановки двигателя осуществлять переход на любой сорт топлива. Обороты роторно-волнового двигателя (РВД) будут находиться в пределах 2500…30000 об/мин.(для сравнения : современный поршневой ДВС – 4500…6000 об/мин, а газовая турбина – 50000…70000 об/мин.).
Расчетные оценки автора показали, что индикаторный КПД цикла
vunivere.ru
Вернуться к основной статье
chem21.info