ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Классификация тепловых двигателей и принцип работы двс с периодическим сгоранием топлива. Классификация тепловых двигателей


Классификация тепловых двигателей и принцип работы двс с периодическим сгоранием топлива

1. Классификация тепловых двигателей

2. Принцип работы поршневых ДВС

3. Особенности работы карбюраторного двигателя

4. Особенности работы дизельного двигателя

1. Классификация тепловых двигателей

Тепловые двигатели предназначены для преобразования тепло­вой энергии, выделяющейся при сгорании топлива, в механиче­скую. Тепловые двигатели подразделяют на двигатели с внеш­ним сгоранием (паровые машины, паровые турбины и др.) и двигатели внутреннего сгорания.

Первыми тепловыми машинами с внутренним сгоранием бы­ли поршневые двигатели, характерной особенностью которых является периодичность процесса сгорания. И до настоящего времени под термином двигатели внутреннего сгорания в пер­вую очередь подразумевают поршневые двигатели. В последние 40 - 50 лет интенсивно развивается другая группа двигателей внутреннего сгорания, куда входят реактивные двигатели и га­зовые турбины (рис. 1), процесс сгорания в которых осуществ­ляется непрерывно.

2. Принцип работы поршневых двс

Наибольшее распространение среди тепловых двигателей по­лучили двигатели с периодическим сгоранием топлива (поршневые двигатели) или их также называют - двигатели внутреннего сгорания (ДВС). В этих двигателях основные процессы — сжигание топлива, выделение теплоты и ее преобразование в механическую работу — происходят непо­средственно внутри двигателя. Такие двигатели используют в качестве силовой установки во всех видах транспорта — автомобильном, железнодорожном, водном и авиационном. Они же являются источником механической энергии в сельскохозяйст­венном производстве и в строительстве, в нефтяной и газовой промышленности, а также в других областях народного хо­зяйства.

Особенности работы этих двух наиболее распространенных типов двигателей внутреннего сгорания рассмотрим более под­робно. Принципиальные схемы двигателей внутреннего сгорания приведены на рисунке 2.

Спецификой работы поршневых двигателей являет­ся цикличность, обусловленная периодичностью процесса сгора­ния топлива, т. е. того процесса, в результате которого и преоб­разуется тепловая энергия в механическую. Основные детали поршневых двигателей следующие (см. рис. 2): цилиндр 2, го­ловка цилиндра 5, поршень 6, шатун 7, коленчатый вал 8, кар­тер 1, впускные 3 и выпускные 4 клапаны. Пространство, огра­ниченное стенками цилиндра, головкой и поршнем, называют камерой сгорания. В него вводятся топливо и воздух, необходи­мый для сгорания топлива.

При сгорании топливовоздушной смеси выделяется большое количество тепла, а образующиеся при этом газы давят на пор­шень и перемещают его в цилиндре. Поступательное движение поршня передается через шатун на коленчатый вал, где оно преобразуется во вращательное движение. Последнее, как пра­вило, и требуется потребителю механической энергии, например колесам автомобиля, гребному винту катера и т. п.

Процесс сгорания в поршневом двигателе осуществляется в ограниченном объеме камеры сгорания, и для совершения по­лезной работы используется расширение продуктов сгорания. После стадии расширения газов для сжигания новой порции топлива необходимо удалить отработавшие газы из рабочей полости двигателя и вновь создать топливовоздушную смесь со­ответствующего состава. Таким образом, возвратно-поступатель­ное движение поршня в цилиндре двигателя обеспечивает воз­можность сжигания топлива лишь последовательными порция­ми. При этом сгоранию каждой порции должен предшествовать ряд подготовительных стадий, которые протекают в цилиндре двигателя в строгой последовательности. Совокупность всех процессов называют рабочим циклом, и эти циклы во время работы двигателя периодически повторяются.

Полезная работа, совершаемая двигателем, зависит от того, сколько воздуха находится в камерах сгорания и, соответствен­но, сколько топлива можно сжечь в этом объеме воздуха. Есте­ственно, чем больше общий объем всех камер сгорания, тем боль­ший объем воздуха они могут вместить, а, следовательно, тем больше топлива можно сжечь и получить большую мощность двигателя.

Однако в последние годы находит применение другой способ увеличения мощности поршневых двигателей — так называемый способ «наддува». В двигатель подается воздух не при атмосфер­ном давлении, а при некотором избыточном давлении. Тогда в том же объеме камеры сгорания удается сосредоточить больше воздуха, сжечь больше топлива и получить большую мощность.

Для создания избыточного давления воздуха устанавливают специальный компрессор, на привод которого расходуется часть мощности двигателя. Двигатели с наддувом получают широкое применение в технике.

В поршневых двигателях внутреннего сгорания воспламене­ние рабочей смеси может осуществляться по двум, принципи­ально различным схемам. В одной схеме воспламенение смеси топлива с воздухом предусматривается от постороннего источ­ника, обычно от электрической искры, в другой — смесь само­воспламеняется от горячего воздуха, нагретого в процессе сжа­тия.

studfiles.net

Классификация нагнетателей и тепловых двигателей

Классификация нагнетателей:

Нагнетатель - гидравлическая машина, в которой происходит преобразование механической работы в механическую энергию рабочей среды. Основное назначение нагнетателя - повышение полного давления перемещаемой среды.

Нагнетатели:

---динамические

---объемные. Динамическим нагнетателем будем называть машину, повышающую энергию жидкости или газа путем использования работы массовых сил потока в полости, постоянно соединенной с входом и выходом нагнетателя.

В объемных нагнетателях повышение энергии рабочего тела достигается силовым воздействием твердых рабочих тел.

Рассмотрим основные виды нагнетателей:

Насосы

Насосы – гидравлические машины для подъема и перемещения жидкостей.

Насосы:

---лопастные (центробежные, осевые, вихревые)

---объемные (поршневые, плунжерные)

---ротационные (шестерёнчатые, шиберные, винтовые)

---струйные (инжекторы и эжекторы).

В объемных насосах передача энергии производится принудительным воздействием рабочего тел на перемещаемую среду и ее вытеснением. В лопастных насосах преобразование мех. энергии в гидравлическую производится вращающимся колесом, снабженными лопастями.

Вентиляторы

Вентиляторы - это механические устройства, служащие для перемещения воздуха по воздуховодам, или непосредственной подачи либо отсоса воздуха из помещения. Перемещение воздуха происходит из-за создания перепада давления между входом и выходом вентилятора.

Вентиляторы подразделяются на типы по нескольким показателям:

1. По кострукции - осевые - центробежные - тангенциальные 2. По условиям работы - обычные - термостойкие - коррозионностойкие - взрывозащищенные - пылевые   3. По создаваемому полному напору - низкого давления (до 1 кПа) - среднего давления (от 1 до 3 кПа) - высокого давления (от 3 до 12 кПа) 4. По способу установки - обычные (устанавливаются на опоре - фундаменте, раме и т.п.) - канальные (устанавливаются в воздуховоде) - крышные (устанавливаются на крыше здания)  

Компрессоры

Компрессором называют воздуходувную машину, предназначенную для сжатия и подачи воздуха или какого-либо газа под давлением не ниже 0,2 МПа.

Объемные компрессоры работают по принципу вытеснения, когда давление перемещаемой среды повышается в результате сжатия. К ним относятся поршневые и роторные компрессоры.

Динамические компрессоры работают по принципу силового действия на перемещаемую среду. К ним относятся лопастные (радиальные, центробежные, осевые) нагнетатели и нагнетатели трения (вихревые, дисковые, струйные и т.п.).

Лопастныминазывают компрессоры, в которых среда перемещается за счет энергии, передаваемой ей при обтекании лопастей рабочего колеса.

Классификация тепловых двигателей:

Тепловые двигатели – это машины, в которых тепловая энергия рабочей среды преобразуется в механическую работу.

Тепловые двигатели:

1. Турбины: - паровые - газовые 2. ДВС - дизельный - бензиновый - карбюраторный - инжекторный 3. Двигатель Стирлинга 4. Ракетные 5. Гибридные  

Паровые турбины. Пар, образующийся в паровом котле, расширяясь, под высоким давлением проходит через лопатки турбины. Турбина вращается и производит механическую энергию, используемую генератором для производства электричества.

Газовая турбина, тепловой двигатель непрерывного действия, в лопаточном аппарате которого энергия сжатого и нагретого газа преобразуется в механическую работу на валу. Двигатель Стирлинга - двигатель внешнего. В двигателе внутреннего сгорания топливо сгорает внутри цилиндров и тепловая энергия, выделяющаяся при этом, преобразуется в механическую работу.

Компрессоры: типы, КПД, степень повышения давления

Компрессором называют воздуходувную машину, предназначенную для сжатия и подачи воздуха или какого-либо газа под давлением не ниже 0,2 МПа.

Объемные компрессоры работают по принципу вытеснения, когда давление перемещаемой среды повышается в результате сжатия. К ним относятся поршневые и роторные компрессоры.

Динамические компрессоры работают по принципу силового действия на перемещаемую среду. К ним относятся лопастные (радиальные, центробежные, осевые) нагнетатели и нагнетатели трения (вихревые, дисковые, струйные и т.п.).

Лопастными называют компрессоры, в которых среда перемещается за счет энергии, передаваемой ей при обтекании лопастей рабочего колеса. Лопастные компрессоры: центробежные и осевые. В центробежных компрессорах среда перемещается через рабочее колесо от центра к периферии, а в осевых - через рабочее колесо в направлении его оси.

Простейшая классификация компрессоров представлена на рисунке:

КПД компрессоров.

В энергетике под КПД обычно понимают отношение полезно используемой энергии ко всей затраченной. И чем выше процент полезно используемой энергии из всего её затраченного количества, тем выше КПД. В случае компрессорных машин такое определение КПД оказывается неприемлимым.

Поэтому для оценки степени совершенства реальных компрессорных машин их сравнивают с идеальными. При этом для охлаждающих компрессоров вводится изотермический КПД:

ηиз =lиз / lд =Nиз/Nд

где:

lиз - работа на привод идеального компрессора при изотермическом сжатии,

lд - действительная работа на привод реального охлаждаемого компрессора,

Nиз,Nд - соответствующие мощности приводных двигателей;



infopedia.su

История развитая тепловых двигателей.

Первая работоспособная паросиловая установка была предложена Томасом Ньюкоменом (кузнец, изобретатель) — в 1712 г.

Российский изобретатель И.И. Ползунов в 1763 г., разработал проект пароатмосферной машины для привода кузнечных мехов.

Изобретателем и создате­лем паровой машины (поршневого парового двигателя) счита­ют шотландца Джеймса Уатта (1736-1819).

Патент на машину простого действия был получен Д. Уаттом в 1769 г.

Заслуги Джеймса Уатта в технике и энергетике настолько велики, что во всем мире единица измерения мощности была названа в его честь Watt [W] (по-русски принято читать и обозначать это наименование как «Ватт» [Вт] ).

Паровая турбина. Работоспособная активная паровая турбина была изобретена в 1883-1889 гг. шведским инженером Густавом де Лавалем (1845-1913)

Двигатели внутреннего сгорания

Теоретической основой для создания такого двигателя мог служить идеальный термодинамический цикл процесса преобра­зования тепловой энергии в механическую работу, предложен­ный французским инженером Сади Карно в 1824 г.

Первыми работоспособными Д.В.С. считают­ся двигатели, работавшие на светильном газе, которые создал Жан-Этьен Ленуар во Франции. Он получил патент в 1860 г

Маленькие двигатели Ленуара (с мощностью по­рядка 0,5-1 кВт) сразу завоевали большую популярность в Ев­ропе, к.п.д. двигателя оценивался на уровне 3%.

Двигателем Ленуара заинтересовался немецкий изобретатель-самоучка, Николаус Аугуст Отто (1832-1891). В 1866 г. ему удалось получить пер­вый патент на усовершенствованный газовый двигатель. В 1867 г. маленький мотор Отто был показан на Всемирной Парижской выставке и получил золотую медаль, несмотря на то, что в экспо­зиции выставки было представлено еще не менее полутора десят­ков газовых двигателей разных изобретателей — моторчик Отто работал экономичнее всех других. Отто со своими партнерами организовал производство двигателей. Успеху фирмы способ­ствовало приглашение двух талантливых немецких инженеров. Их имена известны и сегодня — это были Готлиб Даймлер и Вильгельм Майбах. До сих пор в Германии существуют фирмы и автомобильные заводы, ими организованные.

В 1883 г. Г. Даймлер. построил четырехтактный двигатель внутреннего сгорания, в котором вместо светильного газа использовалось более компак­тное жидкое топливо — бензин. Горючая смесь в виде паров бензина и воздуха образовывалась в специально разработан­ном им устройстве — карбюраторе.

Вскоре, поставив карбюраторный бензиновый двигатель на повозку, Даймлер построил первый - настоящий автомобиль. В 1891 г. завод Г.Даймлера построил первый в Европе неболь­шой промышленный локомотив автомобильного типа с зубча­той передачей между двигателем и колесами. Его мощность была всего 4 л.с. С 1893 г. автомобильный завод Даймлера строил и самоходные рельсовые вагоны — автомотрисы (рель­совые автобусы) для немецких железных дорог.

Дизельные двигатели внутреннего сгорания. В конце 1897 г немецкий инженер Рудольф Дизель, создал двигатель внутреннего сгорания, в котором тяжелое жидкое топливо самовоспламенялось в цилиндре от высокой температуры сжатого в нем воздуха. С тех пор такие двигатели называют по имени их созда­теля - дизелями. Принцип подачи топлива, был глав­ным элементом в изобретении Дизеля.

В 1896 г. российский специалист Г.В. Тринклер, работавший в Нижнем Новгороде, построил бескомпрессорный двигатель внутреннего сгорания высокого сжатия. Тринклер, сделав заявку в 1899 г., получил патент только в 1904 г. По этому «смешанному» циклу (циклу Тринклера) и работают все современные бескомпрессор­ные дизельные двигатели.

Газотурбинные установки.

Одним из первых создателей промышленного образца ГТУ был русский инженер П.Д.Кузьминский. В период с 1894 по 1900 г.г. им была спроектирована и построена ГТУ со сгора­нием топлива при постоянном давлении.

В 1900-1904 гг. была изготовлена ГТУ немецким инженером Штольцем, но в процессе испытаний установка не развивала мощности, необходимой даже для вращения компрессора. В 1906 г. французскими инженерами Арманго и Лемалем был построен ГТУ мощностью 300 кВт, но ее КПД был очень низок.

В 1908 г, русский инженер В.В.Караводин постро­ил ГТУ со сгоранием топлива при постоянном объеме. КПД этой установки не превышал 2,4%.

Теоретические циклы поршневых двигателей внутреннего сгорания

В теоретическом цикле в отличии от действительных отсутствуют потери теплоты, за исключением неизбежной отдачи теплоты холодному источнику в соответствии со вторым законом термодинамики. Теоретические циклы совершаются при соблюдений следующих условий:

Коэффициент полезного действия указывает, какая часть тепловой энергии, полученной рабочим телом от «горячего» теплового резервуара, превратилась в полезную работу. Остальная часть (1 – η) была «бесполезно» передана холодильнику. Коэффициент полезного действия тепловой машины всегда меньше единицы (η < 1). Энергетическая схема тепловой машины изображена на рис. 3.11.2.

Рис.3.11.2 Энергетическая схема тепловой машины: 1 –нагреватель, 2 – холодильник, 3 – рабочее тело, совершающее круговой процесс.

В двигателях, применяемых в технике, используются различные круговые процессы. На рис. 3.11.3 изображены циклы, используемые в бензиновом карбюраторном и в дизельном двигателях. В обоих случаях рабочим телом является смесь паров бензина или дизельного топлива с воздухом. Цикл карбюраторного двигателя внутреннего сгорания состоит из двух изохор (1–2, 3–4) и двух адиабат (2–3, 4–1). Дизельный двигатель внутреннего сгорания работает по циклу, состоящему из двух адиабат (1–2, 3–4), одной изобары (2–3) и одной изохоры (4–1). Реальный коэффициент полезного действия у карбюраторного двигателя порядка 30 %, у дизельного двигателя – порядка 40 %.

Рис. 3.11.3 Циклы карбюраторного двигателя внутреннего сгорания (1) и дизельного двигателя (2)

В 1824 году французский инженер С. Карно рассмотрел круговой процесс, состоящий из двух изотерм и двух адиабат, который сыграл важную роль в развитии учения о тепловых процессах. Он называется циклом Карно (рис. 3.11.4).

Рис.3.11.4 Цикл Карно

Цикл Карно совершает газ, находящийся в цилиндре под поршнем. На изотермическом участке (1–2) газ приводится в тепловой контакт с горячим тепловым резервуаром (нагревателем), имеющим температуру T1. Газ изотермически расширяется, совершая работу A12, при этом к газу подводится некоторое количество теплоты Q1 = A12. Далее на адиабатическом участке (2–3) газ помещается в адиабатическую оболочку и продолжает расширяться в отсутствие теплообмена. На этом участке газ совершает работуA23 > 0. Температура газа при адиабатическом расширении падает до значения T2. На следующем изотермическом участке (3–4) газ приводится в тепловой контакт с холодным тепловым резервуаром (холодильником) при температуре T2 < T1. Происходит процесс изотермического сжатия. Газ совершает работу A34 < 0 и отдает теплоQ2 < 0, равное произведенной работе A34. Внутренняя энергия газа не изменяется. Наконец, на последнем участке адиабатического сжатия газ вновь помещается в адиабатическую оболочку. При сжатии температура газа повышается до значения T1, газ совершает работу A41 < 0. Полная работа A, совершаемая газом за цикл, равна сумме работ на отдельных участках: 

A = A12 + A23 + A34 + A41.

На диаграмме (p, V) эта работа равна площади цикла.

Процессы на всех участках цикла Карно предполагаются квазистатическими. В частности, оба изотермических участка (1–2 и 3–4) проводятся при бесконечно малой разности температур между рабочим телом (газом) и тепловым резервуаром (нагревателем или холодильником).

Как следует из первого закона термодинамики, работа газа при адиабатическом расширении (или сжатии) равна убыли ΔU его внутренней энергии. Для 1 моля газа 

A = –ΔU = –CV (T2 – T1),

где T1 и T2 – начальная и конечная температуры газа.

Отсюда следует, что работы, совершенные газом на двух адиабатических участках цикла Карно, одинаковы по модулю и противоположны по знакам 

По определению, коэффициент полезного действия η цикла Карно есть 

С. Карно выразил коэффициент полезного действия цикла через температуры нагревателя T1 и холодильника T2: 

Цикл Карно замечателен тем, что на всех его участках отсутствует соприкосновение тел с различными температурами. Любое состояние рабочего тела (газа) на цикле является квазиравновесным, т. е. бесконечно близким к состоянию теплового равновесия с окружающими телами (тепловыми резервуарами или термостатами). Цикл Карно исключает теплообмен при конечной разности температур рабочего тела и окружающей среды (термостатов), когда тепло может передаваться без совершения работы. Поэтому цикл Карно – наиболее эффективный круговой процесс из всех возможных при заданных температурах нагревателя и холодильника: 

studfiles.net

Классификация и принципы работы тепловых двигателей

из "Химмотология"

Тепловые двигатели предназначены для преобразования тепловой энергии, выделяющейся при сгорании топлива, в механическую. Тепловые двигатели подразделяют на двигатели с внешним сгоранием (паровые машины, паровые турбины и др.) и двигатели внутреннего сгорания. [c.22] Наибольшее распространспие среди тепловых двигателей получили двигатели внутреннего сгорания. В этих двигателях основные процессы — сжигание топлива, выделение теплоты и ее преобразование в механическую работу — происходят непосредственно внутри двигателя. Такие двигатели используют в качестве силовой установки во всех видах транспорта — автомобильном, железнодорожном, водном и авиационном. Они же являются источником механической энергии в сельскохозяйственном производстве и в строительстве, в нефтяной и газовой промышленности, а также в других областях народного хозяйства. [c.22] Первыми тепловыми машинами с внутренним сгоранием были поршневые двигатели, характерной особенностью которых является периодичность процесса сгорания. И до настоящего времени под термином двигатели внутреннего сгорания в первую очередь подразумевают поршневые двигатели. В последние 40—50 лет интенсивно развивается другая группа двигателей внутреннего сгорания, куда входят реактивные двигатели и газовые турбины (рис, 1), процесс сгорания в которых осуществляется непрерывно. [c.22] Особенности работы этих двух наиболее распространенных типов двигателей внутреннего сгорания рассмотрим более подробно. Принципиальные схемы двигателей внутреннего сгорания приведены на рис. 2. [c.23] Двигатели с периодическим.сгоранием топлива (поршневые двигатели). Спецификой работы поршневых двигателей является цикличность, обусловленная периодичностью процесса сгорания топлива, т. е. того процесса, в результате которого и преобразуется тепловая энергия в механическую. Основные детали поршневых двигателей следующие (см. рис. 2) цилиндр 2, головка цилиндра 5, поршень 6, шатун 7, коленчатый вал 8, картер 1, впускные 3 и выпускные 4 клапаны. Пространство, ограниченное стенками цилиндра, головкой и поршнем, называют камерой сгорания. В него вводятся топливо и воздух, необходимый для сгорания-топлива. [c.23] При сгорании топливовоздушной смеси выделяется большое количество тепла, а образующиеся при этом газы давят на поршень и перемещают его в цилиндре. Поступательное движение поршня передается через шатун на коленчатый вал, где оно преобразуется во вращательное движение. Последнее, как правило, и требуется потребителю механической энергии, например колесам автомобиля, гребному винту катера и т. п. [c.23] Полезная работа, совершаемая двигателем, зависит от того, сколько воздуха находится в камерах сгорания и соответственно сколько топлива можно сжечь в этом объеме воздуха. Естественно, чем больше общий объем всех камер сгорания, тем больший объем воздуха они могут вместить, а следовательно, тем больше топлива можно сжечь и получить большую мощность двигателя. [c.24] Однако в последние годы находит применение другой способ увеличения мощности поршневых двигателей — так называемый способ наддува . В двигатель подается воздух не при атмосферном давлении, а при некотором избыточном давлении. Тогда в том же объеме камеры сгорания удается сосредоточить больше воздуха, сжечь больше топлива и получить большую мощность. [c.24] Для создания избыточного давления воздуха устанавливают специальный компрессор, на привод которого расходуется часть мощности двигателя. Двигатели с наддувом получают широкое применение в технике. [c.25] В поршневых двигателях внутреннего сгорания воспламенение рабочей смеси может осуществляться по двум, принципиально различным схемам. В одной схеме воспламенение смеси топлива с воздухом предусматривается от постороннего источника, обычно от электрической искры, в другой — смесь самовоспламеняется от горячего воздуха, нагретого в процессе сжатия. [c.25] По первой схеме топливо испаряется, и пары его смешиваются с воздухом вне цилиндра двигателя. Получен ая горючая смесь засасывается в цилиндр двигателя через впускной клапан при движении поршня от камеры сгорания в направлении коленчатого вала. Этот такт работы двигателя называют впуском. В конце такта впуска впускной клапан закрывается. Далее поршень идет в направлении камеры сгорания, и горючая смесь подвергается сжатию. В период такта сжатия пары топлива хорошо перемешиваются с воздухом, и смесь подготавливается к сгоранию. В конце этого такта в камеру сгорания с помощью специального устройства —свечи зажигания — подается электрическая искра, от которой смесь воспламеняется и сгорает. В результате резко повышается температура и давление в камере сгорания под действием давления поршень в цилиндре перемещается (рабочий ход), расширяющиеся газы совершают полезную работу. После расширения температура и давление газов в цилиндре понижаются, открывается выпускной клапан и поршень выталкивает продукты сгорания в атмосферу происходит очистка цилиндра, это — такт выпуска. Далее рабочий цикл повторяется. [c.25] За четыре движения поршия в цилиндре двигателя, т. е. за два оборота коленчатого вала, только один ход поршня является рабочим, тактом — совершается за счет расширения газов, все остальные — за счет инерции маховика, укрепленного на коленчатом валу. Для обеспечения равномерной работы двигателя в одном блоке располагают несколько цилиндров (блок цилиндров), поршни которых через шатуны приводят во вращение один коленчатый вал. Сгорание и расширение газов в каждом из цилиндров происходит поочередно, что обеспечивает стабильную и равномерную работу двигателя. [c.25] В двигателях с воспламенением от искры процесс смесеобразования происходит главным образом вне цилиндра, как правило, в специальном устройстве — карбюраторе. Карбюратор служит для дозирования распыливания, частичного испарения и смешения топлива с воздухом. [c.25] Таким образом, характерным отличием второй схемы рабочего цикла от первой является самовоспламенение топлива. Двигатели, рабочий цикл у которых протекает по второй схеме, называют дизелями. Процесс образования горючей смеси в да-зелях происходит внутри цилиндра. Для достижения высоких температур в дизельном двигателе приходится сжимать воздух во много раз больше (в 15—17 раз), чем сжимают топливовоздушную смесь в двигателе с принудительным воспламенением (в 7—9 раз). Более высокая степень сжатия в дизеле обеспечивает и более высокий коэффициент полезного действия в таких двигателях. Для совершения одной и той же работы в дизеле расходуется топлива примерно на 25—30% меньше, чем в двигателе с принудительным зажиганием. Высокая степень сжатия в дизеле обусловливает и высокие давления и нагрузки, что требует применения более прочных деталей. При одной и той же мощности материалоемкость дизельного двигателя обычно больше. Тем не менее планами развития народного хозяйства нашей страны предусмотрена широкая дизелизация автомобильного парка и значительное расширение использования дизелей во всех отраслях промышленности. [c.26] Описанные выше двигатели с принудительным зажиганием и дизели называют четырехтактными за один оборот коленчатого вала происходят впуск и сжатие, за следующий оборот— расширение и выпуск. Но существуют и двухтактные двигатели, у них некоторые процессы совмещены, и весь цикл про текает за один оборот коленчатого вала. В конце такта расширения открывается выпускное окно, куда выводятся отработавшие газы, и затем открывается впускное окно, через которое в цилиндр поступает горючая смесь или воздух (в дизеле). Поршень доходит до нижней мертвой точки и начинает подниматься вверх, перекрывает впускное и выпускное окна, и смесь или воздух в цилиндре сжимается. Перед подходом поршня к верхней мертвой точке в камеру сгорания подается искра или с помощью форсунки впрыскивается топливо (в дизелях) вновь начинается процесс расширения. Такие двухтактные двигатели устанавливают на мотоциклах, на моторных лодках и в других видах техники. Эти двигатели менее экономичны, чем четырехтактные, но они имеют и преимущества. [c.26] Двигатели с непрерывным сгоранием топлива. Основной элемент двигателей с непрерывным сгоранием топлива — камера сгорания постоянного объема. В нее подаются горючее и окислитель. Газовый поток продуктов сгорания за счет высокой температуры и расширения приобретает большую кинетическую энергию, которая преобразуется в так называемую реактивную силу тяги двигателя или энергию врашения ротора газовой турбины. Возникновение реактивной силы хорошо иллюстрирует опыт из школьного курса физики — вращение сегнерова колеса вода, вытекая из колеса в одну сторону, заставляет вращаться колесо в противоположную сторону. [c.27] Реактивная сила тяги, возникающая при истечении газов из сопла, не зависит от скорости движения реактивной установки, а также от плотности окружающей среды и может обеспечивать движение летательных аппаратов в безвоздушном, межпланетном пространстве. Эта особенность реактивного движения легла в основу создания ракет. [c.27] Ракетами называют такие летательные аппараты, которые используют принцип реактивного движения и несут с собой на борту горючее и окислитель. В качестве горючего употребляют различные вещества нефтяные фракции, спирты, аммиак, гидразин, ксилидин, жидкий водород и др. Окислителями служат жидкий кислород, пероксид водорода, азотная кислота и оксиды азота, тетранитрометан, фтор и его соединения и др. Присутствие в ракете и горючего и окислителя позволяет осуществлять полет как у поверхности земли, так и на больших высотах в разреженном воздухе, в безвоздушном пространстве и даже под водой. Принцип реактивного движения используют не только в межпланетных и космических кораблях, в межконтинентальных ракетах, но и в обычных самолетах современной авиации. При этом на борту самолета размещают одно горючее, а окислителем служит кислород воздуха. Такие двигатели, рассчитанные на применение кислорода воздуха, получили название воздушно-реактивных они не могут работать в безвоздушном пространстве. Подавляющее большинство современных самолетов оборудованы воздушно-реактивными двигателями. [c.27] Обычно в воздушно-реактивных двигателях между камерой сгорания и реактивным соплом устанавливают газовую турбину. Основной рабочий орган в газовой турбине — рабочее колесо, по периферийной части которого расположены лопатки специального профиля. [c.27] После камеры сгорания можно установить не одно колесо турбины, а несколько последовательно расположенных рядов направляюших и рабочих лопаток, это — многоступенчатые турбины. В таком варианте всю кинетическую энергию газов можно преобразовать во вращательное движение вала газовой турбины. В газовой турбине вся кинетическая энергия продуктов сгорания преобразуется в механическую. Главное преимущество газовых турбин — получение большой мощности при сравнительно малых габаритах двигателя. Однако газовые турбины пока уступают по экономичности поршневым двигателям. Совершенствование газовых турбин сопровождается улучшением их показателей, что позволяет надеяться на расширение областей их использования. [c.28]

Вернуться к основной статье

chem21.info

Классификация и принцип действия тепловых двигателей. Анализ факторов, влияющих на экономичность и мощность двигателя внутреннего сгорания. Система охлаждения двигателя внутреннего сгорания

Работа роторно – поршневого двигателя осуществляется следующим образом (см. рис.1.17.).

В положении а) при вращении ротора объем под гранью АС увеличивается и через впускное окно топливовоздушная смесь засасывается в рабочий объем. В положении б) впускное окно закрывается и при дальнейшем вращении ротора смесь сжимается. В положении в) при максимальном сжатии объема под гранью АС смесь воспламеняется. Давление продуктов сгорания на поверхность  грани АС несбалансированно относительно точки зацепления ротора с неподвижной шестерней, и возникает момент на вращение ротора. Угол поворота ротора от точки воспламенения смеси  до прохождения вершиной А выпускного окна является рабочим ходом. При дальнейшем повороте ротора продукты сгорания вытесняются через выпускное окно при уменьшении рабочего объема.

Рис.1.17. Схема работы роторно – поршневого двигателя

 
         В процессе выпуска рабочий объем не может уменьшиться до нуля, его минимальный объем будет равен объему максимально сжатой смеси.

Это значит, что продукты сгорания будут переноситься в объем новой порции смеси, что значительно ухудшает процесс горения. Для исключения этого явления необходимо осуществлять продувку рабочего объема перед фазой всасывания. Продувка производится топливовоздушной смесью в положении г). После закрытия всасывающего окна вершиной В ротора поток смеси по инерции проходит через полость А – В и сбрасывается в выпускное окно. 

Общий вид конструкции двигателя Ванкеля показан на рис.1.18.

Надпись:

Надпись: Рис.1.18 Общий вид двигателя Ванкеля

Преимущества роторно-поршневого двигателя – полная уравновешенность масс; компактная конструкция; отсутствие клапанного механизма.

Недостатки – высокие выбросы углеводородов; повышенный расход топлива; сложность изготовления, а, значит, и высокая стоимость изготовления; высокое расположение ведущего вала; невозможность изменения степени сжатия горючей смеси, поскольку она однозначно определена соотношением объемов камер с профилем эпитрохоиды.

Практическое применение получили двигатели с трехгранными роторами, с отношением радиусов шестерни и зубчатого колеса: r:R = 2:3, которые устанавливают на автомобилях, лодках и т.п.

Роторно-поршневой двигатель Ванкеля в 1974г. в CCCР впервые был установлен на нескольких десятках экспериментальных ВАЗ-2101(в свободную продажу не поступила ни одна). Затем эти двигатели устанавливались на ВАЗ-2108-97 стоимостью $6тыс. При этом роторная «восьмерка» стала разгоняться на первой передаче до 55 км/ч за 5 сек, а на второй до 100 км/ч еще за 3,3 сек. с рабочим объемом всего 1,3 л. Такую разгонную динамику (100 км/ч за 8,3с) выдает Mercedes CLK объемом 3,2 л. и мощностью 218 л.с. Однако устанавливать новый ротор на «восьмерке» приходится через каждые 40-60тыс. км. пробега.С целью безопасности и для повышения моторесурса на серийных машинах установлен ограничитель оборотов до 6 тыс. Расход бензина – 15литров на 100 км пробега.

Кроме России, роторно-поршневой двигатель RX на серийно выпускаемые автомобили, устанавливала только японская корпорация Mazda. Двигатель Ванкеля пока не получил широкого распространения, поскольку считают,что он неэкономичен, обладает небольшим моторесурсом и очень сложен и дорог в ремонте, практически после износа подлежит замене на новый.

К классу роторных  следует отнести и роторно-волновой двигатель (пат. России № 2155272, автор Седунов И.П., г.Санкт-Петербург). В этом двигателе совершенно устранено возвратно-поступательное движение рабочих органов, ротор полностью уравновешен и вращается с постоянной угловой скоростью. Рабочее тело, как и в турбине, движется вдоль оси двигателя, траектория движения – винтовая линия. В конструкции отсутствует вредное пространство, ограничивающее рост степени сжатия рабочего тела. Из-за отсутствия уплотнительных элементов и, соответственно трения в проточной части, снимаются ограничения по ресурсу и числам оборотов двигателя. Рабочий процесс допускает произвольно изменять степень сжатия и расширения рабочего тела и без дополнительных регулировок и остановки двигателя осуществлять переход на любой сорт топлива. Обороты роторно-волнового двигателя (РВД) будут находиться в пределах 2500…30000 об/мин.(для сравнения : современный поршневой ДВС – 4500…6000 об/мин, а газовая турбина – 50000…70000 об/мин.).

Расчетные оценки автора показали, что индикаторный КПД цикла

vunivere.ru

Классификация и принципы работы тепловых двигателей

из "Автомобильные бензины свойства и применение"

Первыми ДВС были поршневые двигатели, главная особенность которых — периодичность процесса сгорания. И в настоящее время под термином двигатели внутреннего сгорания в первую очередь подразумевают поршневые двигатели. В последние 50 лет интенсивно развивается другая группа ДВС, куда входят реактивные двигатели и газовые турбины (рис. 1.1), сгорание топлива в которых происходит непрерывно. [c.8] Бензины применяются только в поршневых ДВС. Рассмотрим особенности работы этих наиболее распространенных двигателей. [c.8] Спецификой работы поршневого ДВС являются цикличность и обусловленная ею периодичность процесса сгорания и преобразования тепловой энергии в механическую. Поршневой ДВС состоит из следующих основных частей (рис. 1.2) цилиндра 2, головки цилиндра 5, поршня 6, шатуна 7, коленчатого вала 8, картера 1, впускного 3 и выпускного 4 клапанов. Пространство, ограниченное стенками цилиндра, головкой и поршнем, называют камерой сгорания. В камеру сгорания вводятся топливо и воздух, необходимый для сгорания топлива. [c.8] Поступательное движение поршня передается через шатун на коленчатый вал, где оно преобразуется во вращательное движение. Последнее, как правило, и требуется потребителю механической энергии, например колесам автомобиля, пропеллеру самолета, гребному винту судна и т.п. [c.9] Процесс сгорания в поршневом двигателе происходит в ограниченном объеме камеры сгорания. Для совершения полезной работы используется процесс расширения продуктов сгорания. После стадии расширения газов для сжигания новой порции топлива необходимо удалить отработавшие газы из рабочей полости двигателя и вновь наполнить ее топливовоздушной смесью определенного состава. [c.9] Возвратно-поступательное движение поршня в цилиндре двигателя обеспечивает возможность сжигания топлива лишь последовательными порциями. При этом сгоранию каждой порции должно предшествовать несколько подготовительных стадий, которые протекают в цилиндре двигателя в строгой последовательности. Совокупность этих стадий называют рабочим циклом. Такие циклы во время работы двигателя непрерывно повторяются. [c.9] Полезная работа, совершаемая двигателем, зависит от того, сколько воздуха находится в камерах сгорания и соответственно сколько топлива можно сжечь в этом объеме воздуха. Естественно, чем больше общий объем всех камер сгорания, тем больше они могут вместить топлива, а следовательно, тем больше можно сжечь топлива за один цикл и получить большую мощность двигателя. [c.9] Увеличение мощности двигателя можно также обеспечить, подавая воздух не при атмосферном, а при некотором избыточном давлении. Тогда в том же объеме камеры сгорания можно сжечь больше топлива. Для создания избыточного давления воздуха устанавливают специальный компрессор, на привод которого расходуется часть мощности двигателя. Двигатели с воздушным компрессором называют двигатели с наддувом . [c.9] По первой схеме топливо, как правило, испаряется, и пары его смешиваются с воздухом вне цилиндра двигателя в специальном приборе — карбюраторе. Полученная горючая смесь засасывается в цилиндры двигателя через впускной клапан при движении поршня в направлении коленчатого вала. Этот такт работы двигателя называют впуском. В конце такта впуска впускной клапан закрывается. Далее поршень идет в направлении головки цилиндра, и топливовоздушная смесь подвергается сжатию. В период такта сжатия пары топлива хорошо перемешиваются с воздухом и смесь подготавливается к сгоранию. В конце этого такта в камере сгорания с помощью специального устройства — свечи зажигания — создается электрическая искра, от которой топливовоздушная смесь воспламеняется и сгорает. [c.10] В результате резко повышаются температура и давление в камере сгорания. Под действием давления поршень в цилиндре перемещается в сторону коленчатого вала (рабочий ход), расширяющиеся газы совершают полезную работу. После расширения температура и давление газов в цилиндре понижаются, открывается выпускной клапан и поршень, двигаясь к крышке цилиндра, выталкивает продукты сгорания в атмосферу происходит очистка цилиндра от продуктов сгорания (отработавших газов). Это — такт выпуска. Далее рабочий цикл повторяется. [c.10] За четыре движения поршня в цилиндре двигателя, т.е. за два оборота коленчатого вала, только один ход поршня является рабочим тактом, который совершается за счет расширения газов, остальные три такта — за счет инерции маховика, закрепленного на коленчатом валу. [c.10] В ДВС с воспламенением от искры процесс смесеобразования происходит, как правило, в специальном приборе — карбюраторе, который служит для дозирования, распыливания, частичного испарения и смешения топлива с воздухом. Однако за последнее десятилетие все большее распространение получают так называемые двигатели с непосредственным впрыском, в которых топливо подается в цилиндры двигателя раздельно от воздуха в тактах впуска или сжатия через форсунки, установленные у впускных клапанов или непосредственно в каждом цилиндре в камере сгорания. В двигателях с непосредственным впрыском обеспечиваются более равномерное распределение топлива по каждому цилиндру и более точное соотношение топливо/воздух, а следовательно, возрастает полнота сгорания топлива, повышается экономичность двигателя, снижается токсичность отработавших газов. [c.11] Вторая схема воспламенения в поршневом ДВС предусматривает самовоспламенение топлива от горячего воздуха без какого-либо постороннего источника воспламенения. По этой схеме цилиндры двигателя во время такта впуска заполняются не горючей смесью, а воздухом. Затем за счет повышения давления в цилиндре в такте сжатия воздух сильно нагревается. В конце процесса сжатия в нагретый воздух через форсунку при высоком давлении впрыскивается топливо. При этом топливо мелко распыливается, испаряется и перемешивается с воздухом, образуя горючую смесь. Процесс сгорания начинается с самовоспламенения смеси за счет высокой температуры в цилиндре, которая достигается в процессе сжатия воздуха. Все остальные процессы — сгорание, расширение газов и их удаление из камер сгорания — по второй схеме воспламенения происходят так же, как и по первой схеме. [c.11] Описанные выше двигатели с принудительным зажиганием и дизели называют четырехтактными за один оборот коленчатого вала происходят впуск и сжатие, за следующий оборот — расширение и выпуск. Но существуют и двухтактные двигатели. У них некоторые процессы совмещены, и весь цикл протекает за один оборот коленчатого вала. В конце такта расширения открывается выпускное окно, куда выводятся отработавшие газы, и затем открывается впускное окно или впускной клапан, через которые в цилиндр поступает горючая смесь или воздух (в дизеле). Поршень доходит до нижней мертвой точки (крайнее положение при движении поршня в сторону коленчатого вала) и начинает возвращаться к головке цилиндра, перекрывает впускные и выпускные окна, и смесь или воздух в цилиндре сжимается. Перед подходом поршня к верхней мертвой точке в камеру сгорания подается электрическая искра или с помощью форсунки впрыскивается топливо (в дизелях), и вновь начинается процесс расширения. [c.12] Двухтактные двигатели обычно устанавливают на мотоциклах, моторных лодках, мотоблоках, бензопилах и других малогабаритных агрегатах. Эти двигатели менее экономичны, чем четырехтактные, но они имеют и преимущества — малые вес и габариты, высокую литровую мощность (мощность, приходящаяся на единицу объема цилиндров), относительную простоту технического обслуживания и др. [c.12]

Вернуться к основной статье

chem21.info