Импульсный двигатель состоит из трех основных компонентов: топливный бак, ядерный реактор и пространственно-временная катушка.
Топливный бак содержит реагенты, используемые двигателем. Звездный флот использует в качестве топлива Дейтерий. Хотя он менее эффективен, чем смесь Дейтерия и Трития, но его легче производить. Тем более если использовать только один вид топлива, то нет необходимости строить дополнительные баки для другого вида топлива.
После того как топливо покинет бак, оно подвергается охлаждению. При этом Дейтерий превращается в ледяные шарики различного диаметра. Эти шарики направляются в реактор, где начинается ядерная реакция, продолжающаяся до тех пор, пока топливо находится в реакторе. Атомы Дейтерия соединяются вместе. При этом часть топлива преобразуется в энергию. Максимальный КПД такого двигателя 0,08533%. КПД может быть различным у разных типов импульсных двигателей. На звездолетах класса GALAXY используется стандартный реактор импульсного двигателя. Он представляет собой сферу диаметром 6 метров. В импульсном двигателе, как правило, используются несколько реакторов, которые передают друг другу энергию и топливо по цепочке. Каждый из восьми импульсных двигателей звездолета класса GALAXY имеет по три ядерных реактора.
Как только произойдет ядерная реакция, получившуюся в результате реакции плазменную струю пропускают через следующий основной компонент - пространственно-временную двигательную катушку. Но учитывая теорию относительности Эйнштейна, получается, что энергии обычного ядерного реактора не хватит, чтобы позволить кораблю приблизится к скорости света. Поэтому эта катушка генерирует вокруг корабля подпространственное поле искривления, которое уменьшает его массу и увеличивает ускорение. Но ускорение при полете на импульсных скоростях зависит не только от мощности реактора, но и от количества двигательных катушек. Самым быстрым кораблем, считался модернизированный CONSTITUTION, он мог достигать полного импульса (25% от скорости света или 75 000 км/с) за несколько секунд. Класс AMBASSADOR двигался с ускорением 10 км/c^2, и достигал полного импульса за 125 минут.
Когда плазменный поток пройдет через катушку, он выходит в космос. Если пространственно-временная катушка не активирована, то импульсный двигатель работает как обычная ракета на ядерном топливе. При этом его эффективность падает в десятки тысяч раз. Обычно такая схема работы применяется при маневрировании корабля.
На скоростях, близких к скорости света, важную роль начинает играть фактор времени. Когда корабль движется со скоростью, очень близкой к скорости света, временной эффект становится очень ощутимым. Например, если звездолет движется со скоростью, составляющей 92% от скорости света (максимальная импульсная скорость корабля класса GALAXY), то для независимого наблюдателя прошло бы 2,5 дня, в то время как на корабле прошел один день. Поэтому Федерация запретила всем кораблям флота летать с импульсной скоростью, превышающей 25% от скорости света. Эта скорость по праву называется "полным импульсом". Главной причиной этого запрета являлись боевые действия между кораблями. Реакция команды может быть замедленной, по сравнению с реакцией команды вражеского корабля из-за разницы скоростей между звездолетами. Поэтому звездолеты всех цивилизаций не летают со скоростями, очень близкими к скорости света.
На старых звездолетах были установлены так называемые "ретро-ракеты", которые использовались для замедления и остановки звездолета. Но когда стала использоваться пространственно-временная катушка, потребность в этих ракетах отпала. Так как эта катушка уменьшает массу корабля, то корабль быстро достигает высоких скоростей. Чтобы замедлить скорость корабля, двигательную катушку отключают. Сразу возрастает масса корабля, и его скорость соответственно уменьшается.
По сути дела, используя только пространственно-временную катушку можно изменять скорость корабля, а также изменять направление движения, просто плавно меняя его массу. Но не все так просто как кажется. Очень тяжело изменять направление поля искривления этой катушки. Ведутся исследования в этой области, но пока не наблюдается никакого прогресса.
ru.memory-alpha.wikia.com
В России испытали пульсирующий детонационный двигатель
Су-35СФото: КнААЗОпытно-конструкторское бюро имени Люльки разработало, изготовило и испытало опытный образец пульсирующего резонаторного детонационного двигателя с двухстадийным сжиганием керосиновоздушной смеси. Как сообщает ИТАР-ТАСС, средняя измеренная тяга двигателя составила около ста килограммов, а длительность непрерывной работы ─ более десяти минут. До конца текущего года ОКБ намерено изготовить и испытать полноразмерный пульсирующий детонационный двигатель.
По словам главного конструктора ОКБ имени Люльки Александра Тарасова, в ходе испытаний моделировались режимы работы, характерные для турбореактивного и прямоточного двигателей. Измеренные величины удельной тяги и удельного расхода топлива оказались на 30-50 процентов лучше, чем у обычных воздушно-реактивных двигателей. В ходе экспериментов производилось многократное включение и выключение нового двигателя, а также регулирование тяги.
На основе проведенных исследований, полученных при испытании данных, а также схемно-конструкторского анализа ОКБ имени Люльки намерено предложить разработку целого семейства пульсирующих детонационных авиационных двигателей. В частности, могут быть созданы двигатели с коротким ресурсом работы для беспилотных летательных аппаратов и ракет и самолетные двигатели с крейсерским сверхзвуковым режимом полета.
В перспективе на основе новых технологий могут быть созданы двигатели для ракетно-космических систем и комбинированных силовых установок самолетов, способных выполнять полеты в атмосфере и за ее пределами.
По оценке конструкторского бюро, новые двигатели позволят увеличить тяговооруженность самолетов в 1,5-2 раза. Кроме того, при использовании таких силовых установок дальность полета или масса авиационных средств поражения могут увеличиться на 30-50 процентов. При этом удельный вес новых двигателей будет в 1,5-2 раза меньше аналогичного показателя обычных реактивных силовых установок.
О том, что в России ведутся работы по созданию пульсирующего детонационного двигателя, сообщалось в марте 2011 года. Об этом заявил тогда Илья Федоров, управляющий директор научно-производственного объединения «Сатурн», в состав которого входит ОКБ имени Люльки. О каком именно типа детонационного двигателя шла речь, Федоров не уточнил.
В настоящее время известны три вида пульсирующих двигателей ─ клапанные, бесклапанные и детонационные. Принцип работы этих силовых установок заключается в периодической подаче в камеру сгорания топлива и окислителя, где происходит воспламенение топливной смеси и истечение продуктов сгорания из сопла с образованием реактивной тяги. Отличие от обычных реактивных двигателей заключается в детонационном горении топливной смеси, при котором фронт горения распространяется быстрее скорости звука.
Пульсирующий воздушно-реактивный двигатель был изобретен еще в конце XIX века шведским инженером Мартином Вибергом. Пульсирующий двигатель считается простым и дешевым в изготовлении, однако из-за особенностей горения топлива ─ малонадежным. Впервые новый тип двигателя был использован серийно во время Второй мировой войны на немецких крылатых ракетах Фау-1. На них устанавливался двигатель Argus As-014 компании Argus-Werken.
В настоящее время несколько крупных оборонных фирм мира занимаются исследованиями в области создания высокоэффективных пульсирующих реактивных двигателей. В частности, работы ведут французская компания SNECMA и американские General Electric и Pratt & Whitney. В 2012 году Научно-исследовательская лаборатория ВМС США объявила о намерении разработать спиновый детонационный двигатель, который должен будет заменить на кораблях обычные газотурбинные силовые установки.
Спиновые детонационные двигатели отличаются от пульсирующих тем, что детонационное горение топливной смеси в них происходит непрерывно ─ фронт горения перемещается в кольцевой камере сгорания, в которой топливная смесь постоянно обновляется.
sdelanounas.ru
Импульсный двигатель — Эта статья об объекте вымышленного мира описывает его только на основе самого художественного произведения. Статья, состоящая только из информации на базе самого произведения, может быть удалена. Вы можете помочь проекту … Википедия
Импульсный детонационный двигатель — Экспериментальный импульсный детонационный двигатель, работающий с частотой повторения импульсов в 35 Гц. Использует водяное охлаждение. Импульсный детонационный двигатель (Пульсирующий детонационный двигатель, англ. … Википедия
ИМПУЛЬСНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ — РДработающий в импульсном режиме (периодически включается на заданное короткое время) в результате периодич. впрыска топлива (в ЖРД), периодич. нагрева рабочего тела для его сублимации (в электрич. РД) и т. п. Осн. двигатель для ориентации и… … Большой энциклопедический политехнический словарь
Двигатель асинхронный — Асинхронная машина это электрическая машина переменного тока, частота вращения ротора которой не равна (меньше) частоте вращения магнитного поля, создаваемого током обмотки статора. Асинхронные машины наиболее распространённые электрические… … Википедия
Ядерный ракетный двигатель — (ЯРД) разновидность ракетного двигателя, которая использует энергию деления или синтеза ядер для создания реактивной тяги. Бывают реактивными (нагрев рабочего тела в ядерном реакторе и вывод газа через сопло) и импульсными (ядерные взрывы… … Википедия
Ядерный реактивный двигатель — Ядерный ракетный двигатель (ЯРД) разновидность ракетного двигателя, которая использует энергию деления или синтеза ядер для создания реактивной тяги. Бывают собственно реактивными (нагрев рабочего тела в ядерном реакторе и вывод газа через… … Википедия
жидкостный ракетный двигатель малой тяги — ЖРДМТ Ндп. микро ЖРД малый ЖРД жидкостный ракетный малый двигатель импульсный двигатель Жидкостный ракетный двигатель тягой не более 1600 Н. Пояснения ЖРДМТ используют в качестве исполнительного органа системы управления космических летательных… … Справочник технического переводчика
Варп-двигатель — Эта статья об объекте вымышленного мира описывает его только на основе самого художественного произведения. Статья, состоящая только из информации на базе самого произведения, может быть удалена. Вы можете помочь проекту … Википедия
Термоядерный ракетный двигатель — варианты конструкции ТЯРД Термоядерный ракетный двигатель (ТЯРД) перспективный ракетный двигатель для космических полётов, в котором для создания тяги предполагаетс … Википедия
Электрический ракетный двигатель сильноточный — Электромагнитный ракетный двигатель, плазменный ракетный двигатель, ЭРД электрический ракетный двигатель, создающий тягу за счёт разгона в электромагнитном поле рабочего тела, превращённого в плазму. Принципы работы ЭРД состоит из двух основных… … Википедия
Электрический ракетный двигатель импульсный — ЭРД, работающий в режиме кратковременных импульсов длительностью от нескольких микросекунд до нескольких милисекунд. Варьируя частоту включений РД и длительность импульсов, можно получать любые потребные значения суммарного импульса тяги. ДУ с… … Википедия
translate.academic.ru
Импульсные двигатели отличаются от ракетных тем, что корабли с подобным типом двигателя не несут на своем борту топливо. Их движение подобно движению выпущенного снаряда. Согласно классической формуле, кинетическая энергия движущегося тела Е:
E=mv2/2
где:
E - кинетическая энергия
m - масса тела
v - скорость тела
Так как половина выпущенной в результате сгорания топлива энергии отойдет кораблю (другая половина по закону сохранения импульса рассеется в противоположном направлении):
Внизу представлена таблица, в которой показано сколько требуется топлива на единицу полезного веса m/M для достижения определенной скорости (скорости показаны в единицах скорости света):
0,09 | 0,36 | 1 | 4 | 9 |
13,22 | 52,87 | 146,9 | 587,4 | 1322 |
24,89 | 99,55 | 276,5 | 1106 | 2489 |
101,1 | 404,4 | 1123 | 4494 | 10111 |
7,70Е+8 | 3,08Е+9 | 8,56Е+9 | 3,42Е+10 | 7,70Е+10 |
Как видите подобный способ значительно выигрывает у классического ракетного двигателя как по количеству топлива, так и по массе самого корабля (пусковая установка-двигатель расположена вне корабля).
Но неприятная особенность данного метода - колоссальные перегрузки во время пуска (вся скорость набирается за один раз во время взрыва, выстрела итп). Поэтому данный метод можно использовать только с противоперегрузочными системами.
Сайт создан в системе uCoz
wmpt.narod.ru
Импульсный детонационный ракетный двигатель содержит камеру сгорания, вход которой служит для порционного ввода детонационного топлива, систему импульсного зажигания и устройство запирания выхода камеры сгорания в момент заполнения ее порцией детонационного топлива и тяговое осесимметричное сопло и устройство запирания. Тяговое осесимметричное сопло установлено на выходе камеры сгорания и содержит канал в виде сопла Лаваля, сужающийся и быстро расширяющийся в направлении истечения продуктов детонации. Устройство запирания выполнено в виде роторного клапана, расположенного в критическом сечении сопла и выполненного в виде приводного цилиндрического тела с осью вращения, проходящей через критическое сечение тягового сопла и перпендикулярно его оси. В направлении оси сопла в цилиндрическом теле выполнен сквозной канал, внутренний профиль которого совпадает с контуром тягового сопла на длине поперечного размера цилиндрического тела. Ось вращения цилиндрического тела и ось тягового сопла лежат в одной плоскости. Двигатель также содержит лазерную систему импульсного зажигания лазерной искрой, возбуждаемой в камере сгорания, командный датчик синхронной подачи импульса зажигания и запирания выхода камеры сгорания роторным клапаном, один выход которого соединен с лазерной системой, а другой связан с приводом роторного клапана. Изобретение позволяет увеличить стабильность работы двигателя, расширить диапазон его рабочих режимов, уменьшить вибрационные нагрузи. 3 з.п. ф-лы, 2 ил.
Изобретение относится к двигателестроению, а точнее к импульсному детонационному ракетному двигателю.
Известны импульсные реактивные двигатели для создания управляющих моментов небольшой длительности (Реактивные системы управления космических летательных аппаратов. / Н.М.Беляев, Н.П.Белик, Е.И.Уваров. - М., Машиностроение, 1979 - 232 с.). Эти устройства (Фиг.1) включают камеру сгорания в виде детонационной трубы, импульсное воспламенительное устройство топливной смеси, размещенное в камере сгорания, газодинамическое осесимметричное тяговое сопло для создания направленного импульса тяги, расположенное на выходе камеры сгорания.
Известно что увеличение эффективности рабочего процесса в указанных двигателях может быть достигнуто путем перехода от дефлаграционного режима горения к детонационному режиму, когда тепловые процессы в камере сгорания проистекают взрывным образом.
При этом энергия, выделяющаяся при детонационном горении, будет больше, чем при дефлаграционном горении за счет более высокой температуры образующихся продуктов сгорания по сравнению с обычным дефлаграционным горением. (См., например, Фролов С.М. Перспективы использования детонационного сжигания топлива в энергетике и на транспорте. // Тяжелое машиностроение. - 2003. № 9 - С.18.)
Тяга в импульсных детонационных двигателях (см. Фиг.1) создается в результате воздействия продуктов сгорания на торцевую стенку высоким давлением за детонационной волной, которая может опосредованно инициироваться объемным микровзрывом в камере сгорания, заполненной горючей смесью.
Известны пульсирующие детонационные двигатели двух типов: воздушно-реактивные с потреблением атмосферного кислорода (импульсные детонационные воздушно-реактивные двигатели) и ракетные (импульсные детонационные ракетные двигатели). Режим работы микродвигателей в системе стабилизации и ориентации характеризуется временем одиночного импульса создания тяги и частотой следования импульсов включения двигателя, которая может составлять от одного импульса в секунду до одного импульса за несколько минут или часов. Для эффективной работы импульсного детонационного ракетного двигателя необходимо обеспечить высокую частоту повторения инициирования детонационной волны (порядка 100-200 Гц). При использовании импульсного детонационного ракетного двигателя в системе ориентации система управления должна обеспечивать условия периодического, кратковременного запирания тракта двигателя от внешней среды в момент наполнения свежей горючей смесью камеры сгорания после прохождения детонационной волны.
Известен импульсный детонационный двигатель (Патент США № 6,505,462 опубл. 2003 г.) с роторным клапаном, расположенным в детонационной трубе между компрессором и камерой сгорания. В качестве источника воспламенения в камере сгорания используется свеча зажигания. Клапан имеет вращаемый сердечник, который полностью перекрывает сечение детонационной трубы.
Поступление топлива в камеру сгорания осуществляется по отдельным каналам в сердечнике клапана. При вращении сердечника клапана относительно оси трубы и совпадении каналов сердечника с дренажными отверстиями в торцевой стенке камеры топливная смесь периодически, порционно поступает в камеру сгорания через дренажные отверстия в виде отдельных не перемешанных между собой струй топливной смеси по всему сечению детонационной трубы, что создает неравномерность распределения топливной смеси по объему камеры сгорания, препятствует эффективной детонации и уменьшает тяговый импульс двигателя.
Кроме того, данный известный детонационный двигатель является импульсным детонационным воздушно-реактивным двигателем с потреблением атмосферного кислорода. Наиболее близким техническим решением является импульсный детонационный ракетный двигатель (Патент РФ № 2026502, опубл. 09.01.1995 г.), содержащий камеру сгорания, в которую порционно с помощью пневмоклапанов и рычагов возвратно-поступательного движения подают компоненты топливной смеси, а выхлопной канал на выходе камеры в момент ее заполнения топливом и поджига от свечи зажигания герметично перекрывают гибкой лентой с помощью поперечной прижимной планки к выхлопному каналу камеры сгорания при обеспечении герметичного поступательного перемещения ленты по прижимной планке с помощью барабанов и пружин различной жесткости.
Недостатком данного устройства является использование в процессе работы двигателя расходного материала в виде гибкой ленты, перемещаемой по прижимной планке. В результате работы двигателя в детонационном режиме лента разрушается и требует периодической замены в процессе эксплуатации, что приводит к общей неравномерности работы двигателя и ухудшает экономические и эксплуатационные характеристики всей реактивной системы ориентации и управления в целом. Кроме того, применение в системах управления рабочим процессом двигателя механизмов, основанных на возвратно-поступательном движении рычагов и штоков, сопровождается повышенной вибрацией всей конструкции двигателя, что вызывает в свою очередь преждевременную изнашиваемость отдельных узлов и нестабильность работы детонационного двигателя в целом. Работа импульсных клапанов вызывает повышенный уровень вибраций, особенно в основных газопроводных магистралях с наибольшим проходным сечением.
В основу изобретения положена задача повышения эксплуатационных характеристик импульсного детонационного ракетного двигателя.
Техническим результатом является повышение стабильности работы и расширение диапазона рабочих режимов работы двигателя.
Другим техническим результатом является уменьшение вибрационных нагрузок и повышение стабильности работы импульсного детонационного ракетного двигателя за счет минимизации количества импульсных клапанов.
Поставленная задача решается тем, что импульсный детонационный ракетный двигатель, содержащий камеру сгорания, вход которой служит для порционного ввода горючей смеси, систему импульсного зажигания и устройство запирания выхода камеры сгорания в момент заполнения ее порцией горючей смеси, согласно изобретению дополнительно содержит тяговое осесимметричное сопло, установленное на выходе камеры сгорания и содержащее канал в виде сопла Лаваля, сужающийся и быстро расширяющийся в направлении истечения продуктов детонации, и устройство запирания в виде роторного клапана, причем клапан расположен в критическом сечении сопла и выполнен в виде приводного цилиндрического тела с осью вращения, проходящей через критическое сечение тягового сопла и перпендикулярно его оси, а в направлении оси сопла в цилиндрическом теле выполнен сквозной канал, внутренний профиль которого совпадает с контуром тягового сопла на длине поперечного размера цилиндрического тела, причем ось вращения цилиндрического тела и ось тягового сопла лежат в одной плоскости, и лазерную систему импульсного зажигания лазерной искрой, возбуждаемой в камере сгорания, командный датчик синхронной подачи импульса зажигания и запирания выхода камеры сгорания роторным клапаном, один выход которого соединен с лазерной системой, а другой связан с приводом роторного клапана.
Лазерная система импульсного зажигания должна содержать лазер, связанный с линзой, установленной в стенке камеры сгорания, и блок импульсного включения лазера, вход которого связан с командным датчиком, а выход соединен с лазером.
Привод цилиндрического тела роторного клапана может быть выполнен в виде ременной или червячной передачи.
Целесообразно чтобы импульсный детонационный ракетный двигатель был бы снабжен емкостью с предварительно перемешанной рабочей смесью детонационного топлива, выход которой через обратный клапан был соединен трубопроводом с входом в камеру сгорания.
Суть изобретения основана на организации циклической или периодической детонации смесей горючего с окислителем. Известно, - Г.Н.Абрамович. Прикладная газовая динамика. Из-во «Наука» М., 1976, 888 с.-, что направленный импульс тяги эффективно можно реализовать с помощью струи, истекающей через сопловое устройство типа сопла Лаваля, которое содержит дозвуковую часть, представляющую сужающийся канал в направлении течения, и сверхзвуковую часть - быстро расширяющийся канал, например, конической формы, от некоторого минимального сечения, которое называется критическим сечением.
Сопло со стороны дозвуковой части имеет неподвижную глухую заднюю стенку, взаимодействие с которой струи сопла создает тягу и соответствующий импульс. Задняя стенка является одновременно элементом конструкции камеры сгорания двигателя.
В дальнейшем изобретение поясняется описанием и фиг.1 и фиг.2, где представлена принципиальная схема импульсного детонационного ракетного двигателя, согласно изобретению, с роторным клапаном в открытом положении (фиг.1) и дополнительно показан тот же роторный клапан в закрытом положении (фиг.2).
Импульсный детонационный ракетный двигатель, согласно изобретению, содержит емкость 17 с предварительно перемешанной рабочей горючей смесью топлива, камеру сгорания 2 с задней стенкой 1, соединенную трубопроводом 19 с емкостью 17 через обратный клапан 18 одностороннего движения топливной смеси в камеру сгорания 2. Импульсный детонационный ракетный двигатель содержит также тяговое осесимметричное сопло 12, установленное на выходе камеры сгорания и содержащее канал в виде сопла Лаваля 12 (сужающийся 10 и быстро расширяющийся канал 11 в направлении истечения продуктов детонации) и устройство запирания в виде роторного клапана 9, причем клапан расположен в критическом сечении сопла 12 и выполнен с возможностью переключения расхода продуктов детонации через тяговое сопло. Для переключения роторный клапан 9 снабжен шкивом 13.
Кроме того, импульсный детонационный ракетный двигатель, согласно изобретению, содержит лазерную систему зажигания топливной смеси с лазерной искрой 3, возбуждаемой в камере сгорания 2. Применение лазерной искры позволяет наиболее эффективно возбуждать детонацию в камере двигателя за счет более высокой мощности излучения в лазерной искре по сравнению с действием традиционной свечи зажигания. Искровая лазерная система зажигания включает лазер, в частности твердотельный импульсно-периодический лазер Nd-Yag, например, компании Quantronics. Детонация горючей смеси в компактной камере сгорания может быть осуществима в метановоздушных горючих смесях с помощью современной лазерной техники, проверенной экспериментально (см., например, Тrаn X.PHUOC and FREDRICK P.WHITE. Laser-Induced Spark Ignition of Ch5/Air Mixtures. // Combustion and Flame. November 1999, volume 119, Number 3). Лазер 5 связан с фокусирующей линзой 6, размещенной в боковой стенке камеры сгорания 2, блок 4 импульсного включения лазера соединен с лазером 5, командный датчик 19 соединен с электродвигателем 14 и с блоком 4 для включения лазера синхронно с угловым положением привода роторного клапана 9 при его вращении шаговым электродвигателем 14. Роторный клапан выполнен в виде цилиндрического тела 9 с осью вращения 16, проходящей через критическое сечение тягового сопла 12 и перпендикулярно его оси 20, при этом в направлении оси сопла в цилиндрическом теле выполнен сквозной канал 21, внутренний профиль которого совпадает с контуром тягового сопла на длине поперечного размера цилиндрического тела, причем ось вращения цилиндрического тела и ось тягового сопла лежат в одной плоскости. Привод вращения цилиндрического тела 9 связан с командным датчиком 15 углового поворота роторного переключателя и синхронизован со временем включения импульсного лазера 5 блоком 4.
На фиг.1 сквозной канал 21 совпадает с контуром тягового сопла и сопло открыто; в положении фиг.2 тяговое сопло закрыто.
Импульсный детонационный ракетный двигатель согласно изобретению работает следующим образом. Рассмотрим в начале принцип работы двигателя в режиме одиночных импульсов. После прохождения детонационной волны и выброса продуктов сгорания через тяговое сопло создается единичный импульс тяги. После выброса продуктов сгорания роторный переключатель 9 приводится в закрытое положение, тяговое сопло запирается. Так как после прохождения детонационной волны сжатия следует волна разрежения, в камере сгорания создается разрежение, и свежая порция топливной смеси из емкости 17 по трубопроводу 19 через клапан 18 поступает в камеру сгорания 2, заполняя ее. Далее следует импульс включения лазера, возникает лазерная искра, которая инициирует детонационное сжигание очередной порции топливной смеси в камере сгорания. С помощью командного датчика 15 открывается роторный переключатель. Возникающая детонационная волна выбрасывает продукты горения, через тяговое сопло, создавая второй единичный импульс. Далее процесс может возобновляться периодически в автоматическом режиме с периодом, равным времени между положениями роторного переключателя «открыто» - «закрыто».
Предлагаемое устройство позволяет переходить в многочастотный режим, когда частота следования одиночных импульсов может быть сделана довольно большой и определяться в основном скоростью заполнения камеры сгорания и частотой работы импульсного лазера. В этом случае роторное устройство необходимо установить в положение «открыто», а работу лазера перевести в режим непрерывной импульсной модуляции с частотой следования импульсов порядка 100-200 Гц. При этом алгоритм детонационного процесса, как нетрудно понять, остается аналогичным описанному выше.
Изобретение может быть использовано при конструировании реактивных систем летательных аппаратов, включая космические.
1. Импульсный детонационный ракетный двигатель, содержащий камеру сгорания, вход которой служит для порционного ввода детонационного топлива, систему импульсного зажигания и устройство запирания выхода камеры сгорания в момент заполнения ее порцией детонационного топлива, отличающийся тем, что дополнительно содержит тяговое осесимметричное сопло, установленное на выходе камеры сгорания и содержащее канал в виде сопла Лаваля, сужающийся и быстро расширяющийся в направлении истечения продуктов детонации, и устройство запирания в виде роторного клапана, причем клапан расположен в критическом сечении сопла и выполнен в виде приводного цилиндрического тела с осью вращения, проходящей через критическое сечение тягового сопла и перпендикулярно его оси, а в направлении оси сопла в цилиндрическом теле выполнен сквозной канал, внутренний профиль которого совпадает с контуром тягового сопла на длине поперечного размера цилиндрического тела, причем ось вращения цилиндрического тела и ось тягового сопла лежат в одной плоскости, и лазерную систему импульсного зажигания лазерной искрой, возбуждаемой в камере сгорания, командный датчик синхронной подачи импульса зажигания и запирания выхода камеры сгорания, роторным клапаном, один выход которого соединен с лазерной системой, а другой связан с приводом роторного клапана.
2. Импульсный детонационный ракетный двигатель по п.1, отличающийся тем, что лазерная система импульсного зажигания содержит лазер, связанный с линзой, установленной в стенке камеры сгорания, и блок импульсного включения лазера, вход которого связан с командным датчиком, а выход соединен с лазером.
3. Импульсный детонационный ракетный двигатель по п.1, отличающийся тем, что привод цилиндрического тела роторного клапана выполнен в виде ременной или червячной передачи.
4. Импульсный детонационный ракетный двигатель по п.1, отличающийся тем, что снабжен емкостью с предварительно перемешанной рабочей горючей смесью топлива, выход которой через обратный клапан соединен трубопроводом с входом камеры сгорания.
www.freepatent.ru
Настоящее изобретение относится к импульсным детонационным воздушно-реактивным и ракетным двигателям и может быть использовано в качестве двигателя летательных аппаратов, а также в качестве двигателя газореактивного электрогенератора. Импульсный детонационный двигатель содержит камеру сгорания, выполненную в виде полусферического газодинамического резонатора, сопло двигателя, систему подачи и впрыска компонентов топлива, систему инициирования детонационного горения. Дополнительно в камеру сгорания установлена камера-ускоритель с системой крепежных распорок соосно камере сгорания. Передний торец камеры-ускорителя совпадает с центром полусферической тяговой стенки газодинамического резонатора, а задний ее конец непосредственно примыкает к сопловому блоку. Изобретение позволяет сократить преддетонационное расстояние топливно-воздушной или топливной смеси и увеличить удельный импульс тяги двигателя. 1 ил.
Изобретение относится к импульсным детонационным воздушно-реактивным и ракетным двигателям и может быть использовано в качестве двигателя летательных аппаратов, а также в качестве двигателя газореактивного электрогенератора.
К настоящему времени авиационные и жидкостные ракетные двигатели традиционных схем в значительной степени исчерпали возможности существенного улучшения своих удельных параметров. Одним из путей решения проблем создания новых более эффективных двигателей является переход от термодинамического цикла с подводом тепла при постоянном давлении (цикла Брайтона) к циклу с периодически повторяющимся (пульсирующим) детонационным сгоранием топлива, иными словами - к циклу с постоянным объемом. Известно [1-3], что при прочих равных условиях (температуре и степени сжатия) цикл с постоянным объемом имеет более высокий термодинамический коэффициент полезного действия, чем цикл при постоянном давлении.
Пульсирующий процесс в таком двигателе возникает за счет возбуждения высокочастотных автоколебаний в газодинамическом резонаторе (камере сгорании), периодически заполняющейся специально подготовленной топливно-воздушной или топливной смесью, а выделение тепла, усиливающее амплитуду этих колебаний, происходит вследствие детонационного сгорания этой смеси в ударно-волновых структурах, периодически образующихся в газодинамическом резонаторе.
Одним из наиболее существенных недостатков, присущих большинству модельных импульсных детонационных двигателей, являются достаточно высокий уровень энергии инициирования и большие преддетонационные расстояния топливно-воздушной или топливной смеси.
Известна [4] конструкция импульсного детонационного двигателя, в которой указанные недостатки в значительной степени устраняются введением в состав элементов двигателя связки трубок, расположенных в проточной части камеры сгорания.
Указанное техническое решение [4] обеспечивает существенное снижение энергии инициирования и сокращение преддетонационного расстояния топливно-воздушной или топливной смеси. Однако данной конструкции присущ такой недостаток, как относительно низкий удельный импульс тяги двигателя. Связано это с большим количеством трубок в проточной части детонационной камеры сгорания. Отраженные от тяговой стенки газообразные высокотемпературные продукты детонационного сгорания и ударные волны «натыкаются» на большое количество стенок металлических трубок в торцевой части связки. Как результат - потеря скорости истечения, частичное охлаждение продуктов сгорания, повышение вероятности турбулентного движения продуктов, диссипации энергии ударных волн.
Известен [5] импульсный детонационный двигатель, в конструкцию детонационной камеры сгорания которого для сокращения преддетонационного расстояния топливно-воздушной или топливной смеси включена полусферическая тяговая стенка - газодинамический резонатор. Данное техническое решение, являющееся наиболее близким по существу к заявляемому, принято за прототип.
Имея существенные преимущества перед другими конструкциями импульсных детонационных двигателей в плане сокращения преддетонационного расстояния, двигателю-прототипу присущ такой недостаток, как относительно высокое значение энергии инициирования топливно-воздушной или топливной смеси и относительно низкое значение удельного импульса тяги. Связано это с значительными потерями энергии при движении продуктов детонационного сгорания внутри камеры.
Задачей предложенного технического решения является создание эффективного импульсного детонационного двигателя с высокими энергобаллистическими характеристиками.
Технический результат, который может быть получен при его использовании, заключается в том, что существенно повышается удельный импульс тяги двигателя.
Указанный технический результат достигается тем, что в конструкцию известного «пульсирующего двигателя детонационного горения», состоящего из камеры сгорания, выполненной в виде полусферического газодинамического резонатора и сопла двигателя, системы подачи и впрыска горючего и окислителя, системы инициирования детонации топливной смеси, внесено изменение. В камере сгорания двигателя размещена дополнительная камера-ускоритель, представляющая собой трубу круглой, сплющенной или усечено-конической формы, располагаемая в проточной части детонационной камеры сгорания на одной с ней оси вращения, выполненная из того же конструкционного материала, что и сама камера сгорания (жаропрочной стали, титанового сплава), и жестко скрепленная с детонационной камерой сгорания системой крепежных распорок. Передний торец камеры-ускорителя совпадает с центром полусферической тяговой стенки; задний торец непосредственно примыкает к сопловому блоку. При отражении от тяговой стенки высокоэнергетические продукты детонационного сгорания и ударные волны фокусируются в плоскости передней стенки дополнительной камеры-ускорителя; происходит интегрирование их скоростей. Реализуется эффект, близкий к известному в физике высокоскоростных процессов «канальному» эффекту. Как результат - сокращение преддетонационного расстояния топливно-воздушной или топливной смеси и значительное увеличение удельного импульса тяги двигателя.
Заявляемое решение отличается от прототипа наличием новых существенных признаков. В конструкцию импульсного детонационного двигателя установлена дополнительная камера-ускоритель, располагаемая в проточной части камеры сгорания. Это отличие позволяет сделать вывод о соответствии заявляемого решения критерию «новизна».
В научно-технической литературе не обнаружено решений с такой совокупностью существующих признаков, следовательно, заявляемое решение соответствует критерию «изобретательский уровень».
Заявляемое устройство содержит стандартные элементы из областей двигателестроения и машиностроения, следовательно, предлагаемое изобретение соответствует критерию «промышленная значимость».
Схематично конструкция заявляемого импульсного детонационного двигателя показана на чертеже, где 1 - система впрыска горючего и окислителя, 2 - камера-ускоритель, 3 - сопло, 4 - камера сгорания, 5 - система инициирования, 6-полусферический газодинамический резонатор.
Положительный эффект по увеличению удельного импульса тяги предлагаемого устройства подтвержден экспериментально.
Удельный импульс тяги импульсного детонационного двигателя замеряли методом баллистического маятника.
В качестве импульсного детонационного двигателя использована модельная камера, представляющая собой металлическую трубу с полусферическим газодинамическим резонатором.
В качестве топливной смеси использовали стехиометрическую смесь паров керосина ТС-1 с воздухом.
Инициирование взрывчатого превращения производили взрывающейся от электрического разряда алюминиевой проволочкой с энергией инициирования 49-50 Дж.
По экспериментальным данным удельный импульс тяги модельного двигателя без камеры - ускорителя составил 7000 Н·с/кг, а с установленной камерой - ускорителем 10500 Н·с/кг.
Данный импульсный детонационный двигатель может быть использован в качестве двигателя летательных аппаратов авиационной и ракетно-космической техники, а также в качестве двигателя газореактивного электрогенератора. Представленный импульсный детонационный двигатель решает проблему сокращения предетонационного расстояния топливно-воздушной или топливной смеси и повышения удельного импульса тяги.
Источники информации
1. Нечаев Ю.Н. Термодинамический анализ процесса пульсирующих детонационных двигателей. - М.: ВВИА им. Н.Е. Жуковского, 2002.
2. Илларионов А.А., Нечаев Ю.Н. Оценка термодинамической эффективности и выбор оптимальных параметров ПуДД с наддувом // Проблемы создания перспективных авиационных двигателей: Сб. науч. тр. / Центральный институт авиационных моторов. - М., 2005.
3. Мохов А.А., Луковников А.В. Математическое моделирование расчета параметров силовых установок с пульсирующими детонационными двигателями в системе «Летательный аппарат - силовая установка» // Актуальные проблемы российской космонавтики: Тр. XXXI акад. чтений по космонавтике. Москва, январь-февраль 2007 г. / Под. общ. ред. А.К. Медведевой. - М.: Комиссия РАН.
4. Патент РФ № 2282044, 22.11.2004 г.
5. Фудживара Т. Исследования импульсных детонационных двигателей в Японии / Импульсные детонационные двигатели/ Под ред. д.ф. - м.н. Фролова С.М. - М.: ТОРУС ПРЕСС, 2006.
Импульсный детонационный двигатель, включающий камеру сгорания, выполненную в виде полусферического газодинамического резонатора, сопло двигателя, систему подачи и впрыска компонентов топлива, систему инициирования детонационного горения, отличающийся тем, что дополнительно в камеру сгорания установлена камера-ускоритель с системой крепежных распорок соосно камере сгорания, причем передний торец камеры-ускорителя совпадает с центром полусферической тяговой стенки газодинамического резонатора, а задний ее конец непосредственно примыкает к сопловому блоку.
www.freepatent.ru
Изобретение относится к электрореактивным двигателям, использующим электронно-детонационный тип разряда. Двигатель состоит из анода и катода с разрядным промежутком между ними, заполненным жидким рабочим телом в виде пленки. Электроды анод и катод выполнены из магнитомягкого материала, а источник магнитного поля электрически изолирован от электродов магнитопроводами типа феррит. Изобретение позволяет повысить удельные характеристики и кпд двигателя. 1 ил.
Изобретение относится к области электрических реактивных двигателей (ЭРД) импульсного действия, использующих преимущественно способ создания реактивной тяги с помощью электронной детонации (патент РФ №2129594, з. №96117878 от 12.09.1996 г. МПК F03H 1/00).
Известен импульсный плазменный реактивный двигатель торцевого типа на твердом рабочем теле тефлон (аналог фторопласта) (патент РФ №2146776, з. №98109266 от 14.05.1998 г., МПК F03H 1/00) с преобладающим электронно-детонационным типом разряда (Ю.Н. Вершинин «Электронно-тепловые и детонационные процессы при электрическом пробое твердых диэлектриков», Уральское отделение РАН, Екатеринбург, 2000 г.). В этих условиях реализуется выход преимущественно ионного компонента в продуктах истечения при перекрытии разрядом разрядного промежутка и ее последующей нейтрализации на завершающей дуговой фазе разряда. Такой ЭРД, названный по типу основного разряда как электронно-детонационный ракетный двигатель (ЭДРД), позволяет получать на рабочем теле тефлон более высокие удельные параметры. Однако в таком ЭРД при наработке ресурса зафиксированы неустойчивости разрядных процессов по поверхности рабочего тела в виде дрейфующих плазменных жгутов. Указанное явление ведет к интенсивному местному уносу рабочего тела из данных зон, что приводит к снижению ресурсных характеристик ЭРД ввиду неравномерности выработки рабочего тела в разрядном промежутке и низкого уровня стабильности выходных характеристик. Кроме того, в силу конструктивной специфики систем хранения и подачи для твердофазного рабочего тела, сформованного преимущественно в виде шашек цилиндрического типа, запасы его на борту ограничены габаритными возможностями электрической реактивной двигательной установки, и ресурс таких двигателей по суммарному импульсу тяги оказывается недостаточным для многих полетных задач.
Известен импульсный плазменный электрический реактивный двигатель (патент РФ №2319039, з. №2005102848 от 04.02.2005 г., МПК F03H 1/00) линейного типа, состоящий из анода и катода с разрядным промежутком в виде рабочей поверхности из диэлектрика, покрытого пленкой жидкого или гелеобразного рабочего тела. При этом в зоне между анодом и катодом с возможностью возвратно-поступательного движения помещен подвижный источник подачи жидкого или гелеобразного рабочего тела, содержащий пористо-капиллярный эластичный фитиль, начальный участок которого контактирует с жидким рабочим телом, находящимся в топливном баке.
Учитывая космические условия эксплуатации, в качестве рабочего тела применяют жидко фазный диэлектрик с низким значением давления насыщенных паров, например вакуумное масло или синтетические жидкости, а рабочую поверхность разрядного промежутка выполняют из смачиваемого рабочим телом диэлектрического материала, например керамики или капролона.
Такой двигатель имеет более высокие характеристики по ресурсу включений и удобству эксплуатации, чем аналог (патент РФ №2146776, з. №98109266 от 14.05.1998 г, МПК F03H 1/00) однако основные удельные характеристики близки друг к другу.
Задачей предлагаемого изобретения является создание электронно-детонационного двигателя линейного типа с повышенными удельными характеристиками и кпд.
Задача решается в электрическом реактивном двигателе линейного типа, состоящем из анода и катода, подключенных к генератору высоковольтных импульсов, с разрядным промежутком между ними, заполненным жидким рабочим телом в виде пленки, путем выполнения анода и катода в виде магнитопроводов, подключенных к источнику магнитного поля с ориентацией магнитных силовых линий вдоль разрядного промежутка, причем источник магнитного поля электрически разобщен с электродами анод и катод путем выполнения магнитопроводов из материала с высоким электрическим сопротивлением, например из феррита.
В этой конструкции исключается электрическое шунтирование разрядного промежутка анод-катод что, в свою очередь, позволяет максимально удобно организовать магнитные силовые линии вдоль разрядного промежутка.
Наличие магнитных силовых линий вдоль разрядного промежутка импульсного ЭРД на основе электронно-детонационного типа разряда организует движение электронов рабочего тела не по прямым траекториям (по кратчайшему пути), а по винтовым траекториям (А.И. Морозов «Введение в плазмодинамику» Физматлит, Москва, 2006 год), что ведет к дополнительному увеличению актов ионизации атомов рабочего тела. Как следствие, это приведет к увеличению тяги и кпд импульсного ЭРД.
Заявляемое изобретение поясняется чертежом. На приведенной фигуре показана конструктивная схема предлагаемого ЭРД. Основным его элементом является разрядный промежуток 1, содержащий систему из двух встречно-расположенных электродов, 2 - анод и 3 - катод, выполненных из магнитомягкого материала. Поступление рабочего тела в межэлектродный промежуток происходит методом его смачивания через пористо-капиллярный эластичный фитиль (смачиватель) 4, установленный, например, на подвижной каретке 5. Периодическое перемещение каретки 5 вдоль разрядного промежутка 1 осуществляется с помощью электропривода 6. Магнитное поле создаваемое постоянным магнитом или электромагнитом 7, через ферритовые магнитопроводы 8 поступает к электродам 2 и 3, выполненным из магнитомягкого материала, замыкаясь через разрядный промежуток 1 системой магнитных силовых линий.
ЭРД такого типа работает следующим образом. Перед началом импульсной работы ЭРД, система управления подает электрическую команду длительностью несколько секунд на электропривод 6 смачивателя 4 для нанесения жидкофазной пленки на рабочую поверхность 1 в межэлектродной зоне 2 (анод) - 3 (катод). Система подачи жидкого рабочего тела от бака к смачивателю условно не показана, так как является составной частью электрической реактивной двигательной установки. В случае использования в качестве источника магнитного поля 7 электромагнита, на его обмотку подается электрический потенциал постоянного тока или импульсного, синхронизированного с подачей высоковольтных импульсов на электроды 2 и 3 (анод, катод) ЭРД.
При подаче высоковольтных импульсов напряжения на электроды 2 и 3, по поверхности жидкой пленки распространяется разряд, генерирующий ионную (электронно-детонационный тип разряда), а затем плазменную (дуговую) составляющие разряда, создающие реактивный импульс тяги. При этом электроны, перемещаясь вдоль силовых магнитных линий разрядного промежутка по винтовой траектории, резко интенсифицируют процесс соударения с нейтральными атомами жидкого рабочего тела каждой из вышеупомянутых стадий разряда, что ведет к увеличению ионного компонента продуктов истечения, а это, в свою очередь, приводит к увеличению кпд и тяги двигателя, т.к. существенно возрастает процент высокоскоростных ионов по отношению к общей массе ионного и плазменного компонентов.
Импульсный электрический реактивный двигатель линейного типа, состоящий из анода и катода, подключенных к генератору высоковольтных импульсов, с разрядным промежутком между ними, заполненным жидким рабочим телом в виде пленки, отличающийся тем, что анод и катод являются магнитопроводами, подключенными к источнику магнитного поля с ориентацией магнитных силовых линий вдоль разрядного промежутка, причем источник магнитного поля электрически разобщен с электродами анод и катод путем выполнения магнитопроводов из материала с высоким электрическим сопротивлением, например из феррита.
www.findpatent.ru