ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Двигатель постоянного тока - коллектроный и бесколлекторный вариант. Двигатель постоянного


Двигатель постоянного тока — устройство и принцип работы

Несмотря на широкое распространение сетей переменного тока как с тремя фазами, так и однофазных, электрические сети постоянного тока (пт) давно существуют и развиваются, совершенствуясь. Наиболее старые электросети пт обслуживают электротранспорт. Двигатель постоянного тока (в сокращении дпт) — наиболее распространенный мотор на городском электрическом транспорте. При постоянном токе индуктивность и емкость почти не оказывают влияние на протекающие процессы, и по этой причине не только электротранспорт, но и многие другие системы, потребляющие электрическую энергию, работают намного эффективнее.

Далее в статье мы расскажем о дпт, включая:

Некоторые модели дпт
Некоторые модели дпт

Что положено в основу

Вскоре после того как было обнаружено взаимодействие магнита и проводника с электрическим током, исследователи догадались усилить электромагнитное поле, создаваемое проводником, придав последнему специальную форму. Так появился виток и рамка как разновидность витка. Рамка в поле постоянного магнита обнаружила свойство стремиться занимать только одно положение. Она всегда устанавливается своей плоскостью поперек силовых линий магнита. Если рамка может вращаться на оси, то при наличии тока она будет поворачиваться вокруг этой оси до тех пор, пока не станет поперек силовых линий магнита.

Рамка с током в поле постоянного магнита Рамка с током в поле постоянного магнита

В процессе поворота ток в рамке должен течь непрерывно. До недавних пор, пока не появились полупроводниковые приборы достаточной мощности, единственным решением этого были скользящие контакты — щетки. Они скользят по контактам рамки, которые в виде пластин размещаются на поверхности цилиндра, расположенного коаксиально с рамкой. Коллектор — так называется этот цилиндр с контактами. Чтобы получить непрерывное вращение несколько рамок, и коллектор располагают на общей оси. Тогда станет возможно преодолеть устойчивое состояние каждой рамки в ее крайнем положении.

Когда рамок становится достаточно много, коллекторная сборка контактов получается все более многочисленной, а контакты узкими, в результате чего количество их увеличивается на 2 с каждой новой рамкой. Посчитав количество пластин и разделив полученное число на 2, можно узнать количество рамок в конструкциях движков. Чтобы взаимодействие рамки с магнитом в электродвигателях получалось наиболее эффективным, все внутреннее пространство заполняется металлом — ферромагнетиком. Таким способом получаются роторы, которыми снабжены электродвигатели постоянного тока.

Конструкция и технические возможности

В цилиндре делаются пазы, в нее укладываются провода в виде рамки, и коллектор присоединяют к пластинам. Так делается большинство роторов дпт. Поскольку щетки присоединяются к источнику питания, и только они вместе с коллектором определяют работу движка и состоят в связи с электросетью, ротор дпт — это якорь. В этом и есть отличие якоря электродвигателей пт. Якорю в асинхронном и синхронном моторах присуще быть статором. 

Ротор дпт Ротор дпт

Изображение конструкции ротора электромотора, показанное выше, наглядно дает понимание того, как работает двигатель постоянного тока. Щетки подают на пластины коллектора постоянное напряжение. Обмотка на сердечнике — это своего рода соленоид. На постоянном токе сердечник соленоида намагничивается и обретает полюса. В результате устройство электродвигателя — это, по сути, взаимодействующие постоянные магниты. Эти принципы взаимодействия хорошо известны всем. И наверняка каждый человек, державший в руках два магнита, помнит, что одноименные полюса их отталкиваются, а разноименные — притягиваются.

Как устроен дпт Как устроен дпт

По такому же принципу работают все электрические машины, выполняющие функции электромоторов. Как на переменном, так и на постоянном токе. Электрический двигатель постоянного тока имеет щеточный коллекторный узел. Он в определенный момент отключает от источника питания одну обмотку-рамку и питает током следующую. В результате такого устройства полюсы соленоида смещаются. А основанное на принципе взаимодействия постоянных магнитов вращение ротора продолжается. 

Принцип действия электродвигателя постоянного тока не предусматривает обязательное применение постоянных магнитов в статоре. В большинстве мощных коллекторных движков по причине дороговизны постоянных магнитов конструкцию статора делают на основе электромагнита. Это не только дешевле. Такая конструкция совместно с использованием щеточно-коллекторного узла в моторе и работающая на тех же принципах, что и движки с постоянными магнитами, позволяет совместить в одном устройстве способность работать как на постоянном, так и на переменном напряжении. 

Если в статоре применен постоянный магнит, направление тока в рамке, которое определено полярностью щеток, будет обуславливать вращение вала (рамки) в ту или противоположную сторону. Двигатель постоянного тока с электромагнитным статором называют также универсальным электродвигателем. Обмотку статора и щетки можно в нем соединять либо последовательно, либо параллельно. В любом из этих соединений принцип работы электродвигателя пт обеспечит однонаправленное вращение вала при подключении к переменному напряжению.

Преимущества и недостатки

Одновременная смена полярности в статоре и роторе обеспечит электродвигателю одно и то же направление силы Лоренца в течение всего времени воздействия переменного напряжения. Это расширяет полезные свойства двигателя, работающего на пт. Однако на постоянном токе сердечники дпт могут работать в режиме насыщения, обеспечивая при взаимодействии ротора и статора максимальную силу.

А вот недостаток дпт по сути только один — это коллектор. Самое худшее в электротехнике — это контакты. Большинство проблем и неисправностей обусловлено именно этими деталями. А коллектор — это и есть контакты, много контактов. Причем колектору присущи следующие недостатки:

Круговой огонь на коллекторе Круговой огонь на коллектореКруговой огонь на коллекторе Круговой огонь на коллектореУзел коллектора дпт, загрязненный палью от истирающихся щеток Узел коллектора дпт, загрязненный палью от истирающихся щеток

Устранить недостатки дпт путем изменения его конструкции стало возможным только с появлением полупроводниковых ключей, запираемых при пт. Но при этом получается новый тип двигателя, который часто именуется шаговым. Применение электромагнитов в роторе и статоре все равно не избавляет от контактов. Для питания рамок ротора нужны те же щетки, но уже не коллектор, а кольца. Полупроводниковый коммутатор в цепи каждой рамки подключает ее к кольцам, и рамка поворачивается. Скорость вращения вала в таком двигателе зависит и от напряжения, и от работы коммутаторов.

От колец в шаговом двигателе можно отказаться, если ротор сделать на основе постоянного магнита, а рамки с полупроводниковыми коммутаторами разместить на статоре. По сути, получается синхронная машина пт, в которой статор с коммутаторами создает вращающееся магнитное поле. Это наиболее функциональное и современное техническое решение. Оно позволяет получить наибольший крутящий момент применительно к габаритам движков. Но в принципе, шаговые двигатели, так же как и еще одна разновидность дпт — униполярные электродвигатели, — это уже совсем другая история…

Похожие статьи:

domelectrik.ru

устройство, принцип работы, характеристики, КПД

Трудно даже представить, как выглядел бы современный мир без электродвигателя постоянного тока (впрочем, и переменного тоже). Любой современный механизм оснащен электродвигателем. Он может иметь разное предназначение, но его наличие, как правило, критически важно. Ожидается, что в ближайшем будущем роль электродвигателя постоянного тока будет лишь возрастать. Уже сегодня без этого устройства невозможно создать качественное, надежное и бесшумное оборудование с регулируемыми скоростями работы. А ведь это – залог развития государства, да и мировой экономики в целом.

Физические основы

Из истории двигателя постоянного тока

В ходе проведения опытов в 1821 году известный ученый Фарадей случайно обнаружил, что магнит и проводник с током каким-то образом воздействуют друг на друга. В частности, постоянный магнит может вызывать вращение простейшего контура из проводника с током. Результаты этих экспериментов были использованы для дальнейших исследований.

Уже в 1833 году Томасом Дэвенпортом создается модель поезда с небольшим электродвигателем, способным приводить его в движение.

В 1838 году в Российской Империи построен пассажирский катер на 12 мест. Когда это плавательное средство с электромотором пошло по Неве против течения, это вызвало настоящий взрыв эмоций в научных кругах и не только.

Устройство простейшего электродвигателя

Как работает электродвигатель постоянного тока

Если рассматривать работу поверхностно, как это делают в школе на уроках по физике, то может показаться, что в ней нет абсолютно ничего сложного. Но это только на первый взгляд. На самом же деле наука об электроприводе является одной из наиболее тяжелых в цикле технических дисциплин. При работе электродвигателя протекает целый ряд сложных физических явлений, которые до сих пор в полной мере не изучены и объясняются различными гипотезами и предположениями.

В упрощенном варианте принцип работы электродвигателя постоянного тока можно описать следующим образом. В магнитное поле помещают проводник и пускают через него ток. При этом если рассматривать сечение проводника, то вокруг него возникают невидимые силовые концентрические окружности – это магнитное поле, которое формируется током в проводнике. Как уже было сказано, данные магнитные поля являются невидимыми для глаза человека. Но существует нехитрый прием, позволяющий визуально наблюдать их. Самый простой способ – проделать в фанере или в плотном листе бумаги отверстие, через которое и пропустить провод. При этом поверхность вблизи отверстия необходимо покрыть тонким слоем мелкодисперсного магнитного металлического порошка (можно использовать и мелкие опилки). При замыкании цепи частицы порошка выстраиваются по форме магнитного поля.

Собственно, на этом явлении и основан принцип работы электродвигателя постоянного тока. Проводник с током помещается между северным и южным полюсами U-образного магнита. В результате взаимодействия магнитных полей, проволока приводится в движение. Направление движения зависит от того, как расположены полюса, и может точно определяться так называемым правилом «буравчика».

Сила Ампера

Сила, которая выталкивает проводник с током за пределы поля постоянного магнита, называется силой Ампера – по имени известного исследователя электрических явлений. Его имя также носит единица измерения силы тока.

Чтобы найти численное значение данной силы, нужно умножить силу тока в рассматриваемом проводнике на его длину и на величину (вектор) индукции магнитного поля.

Формула будет выглядеть следующим образом:

F = IBL.

Модель простейшего двигателя

Грубо говоря, чтобы построить самый примитивный двигатель, необходимо помесить рамку из токопроводящего материала (провода) в магнитное поле и запитать ее током. Рамка повернется на определенный угол и застопорится. Данное положение на сленге специалистов в области электропривода называется «мертвым». Причина остановки заключается в том, что магнитные поля, так сказать, компенсируются. Иными словами, подобное происходит тогда, когда равнодействующая сила становится равной нулю. Поэтому устройство электродвигателя постоянного тока включает не одну, а несколько рамок. В реальном агрегате промышленного назначения (который устанавливается на оборудование) таких элементарных контуров может быть очень и очень много. Так, когда на одной рамке силы уравновешиваются, другая рамка выводит ее из «ступора».

Устройство электродвигателя постоянного тока

Особенности устройства двигателей разной мощности

Даже человек, далекий от мира электротехники, сразу же смекнет, что без источника постоянного магнитного поля ни о каком электродвигателе постоянного тока просто не может идти и речи. В качестве таких источников применяются самые разные устройства.

Для маломощных электродвигателей постоянного тока (на 12 вольт и менее) самым идеальным решением является постоянный магнит. Но этот вариант не подойдет для агрегатов большой мощности и размеров: магниты будут слишком дорогими и тяжелыми. Поэтому для электродвигателей постоянного тока на 220 В и более целесообразней применять индуктор (обмотку возбуждения). Чтобы индуктор стал источником магнитного поля, его необходимо запитать.

Ремонт электродвигателя постоянного тока

Конструкция электродвигателя

В общем случае конструкция любого двигателя на постоянном токе включает следующие элементы: коллектор, статор и якорь.

Якорь служит несущим элементом для обмотки электродвигателя. Он состоит из тонких листов стали электротехнического назначения с углублениями по периметру для укладки провода. Материал изготовления в данном случае очень важен. Как уже было сказано, применяется электротехническая сталь. Такая марка материала отличается большим размером искусственно выращенного зерна и мягкостью (в результате низкого содержания углерода). Кроме того, вся конструкция состоит из тонких, изолированных листов. Все это не позволяет возникать паразитным токам и предотвращает перегрев якоря.

Статор является неподвижной частью. Он выполняет роль магнита, рассмотренного ранее. Для демонстрации работы модели двигателя в лабораторных условиях для наглядности и лучшего понимания принципов используют статор с двумя полюсами. В реальных промышленных двигателях применяются устройства с большим числом пар полюсов.

Под коллектором понимается коммутатор (соединитель), который подает ток на контуры обмотки электродвигателя постоянного тока. Его наличие строго необходимо. Без него двигатель будет работать рывками, не плавно.

Приводы станков с ЧПУ

Разновидности двигателей

Не существует одного универсального двигателя, который бы применялся абсолютно во всех отраслях техники и народного хозяйства и удовлетворял всем требованиям в сфере безопасности и надежности при эксплуатации.

Следует очень ответственно подходить к выбору электродвигателя постоянного тока. Ремонт – чрезвычайно сложная и дорогостоящая процедура, которую могут выполнить лишь специалисты с соответствующей квалификацией. И если конструкция и возможности двигателя не будут отвечать требованиям, то на ремонт будут уходить значительные денежные средства.

Существует четыре основные разновидности двигателей постоянного тока: коллекторные, инверторные, униполярные, а также универсальные коллекторные двигатели постоянного тока. Каждый из перечисленных видов имеет свои положительные и отрицательные качества. Следует дать краткую характеристику каждому из них.

Область применение двигателей постоянного тока

Коллекторные двигатели постоянного тока

Существует большое количество возможных способов реализации двигателей данного типа: один коллектор и четное количество контуров, несколько коллекторов и несколько контуров обмотки, три коллектора и столько же витков обмотки, четыре коллектора и два витка обмотки, четыре коллектора и четыре контура на якоре, и наконец – восемь коллекторов с якорем без рамки.

Данный тип двигателя отличается сравнительной простотой исполнения и производства. Именно по этой причине он прослыл широкоуниверсальным двигателем, применение которого очень обширно: от игрушечных автомобилей на радиоуправлении до очень сложных и высокотехнологичных станков с программным управлением немецкого или японского производства.

Об инверторных двигателях

В общем и целом данный тип двигателей сильно похож на коллекторный и имеет те же достоинства и недостатки. Единственное отличие заключается в механизме запуска: он более совершенный, что позволяет без труда осуществлять реверсирование оборотов и регулировку частоты вращения ротора. Таким образом, эксплуатационные характеристики электродвигателя постоянного тока данного типа превосходят по ряду параметров коллекторные двигатели.

Но если в чем-либо получается выигрыш, то в каких-либо вещах обязательно будет наблюдаться проигрыш. Это неоспоримый закон Вселенной. Так и в этом случае: превосходство обеспечивается довольно сложной и капризной техникой, которая часто выходит из строя. По словам опытных специалистов, ремонт электродвигателей постоянного тока инверторного типа осуществить довольно сложно. Порой даже бывалые электрики не могут диагностировать неисправность в системе.

Обмотки двигателей постоянного тока

Особенности униполярных двигателей постоянного тока

Принцип действия остается прежним и основан на взаимодействии магнитных полей проводника с током и магнитом. Но проводником тока служит не проволока, а диск, вращающийся на оси. Подача тока осуществляется следующим образом: один контакт замыкается на металлическую ось, а другой посредством так называемой щетки соединяет край металлического круга. Такой двигатель, как видно, имеет довольно сложную конструкцию и поэтому часто выходит из строя. Основное применение – научные исследования в области физики электричества и электропривода.

Особенности универсальных коллекторных электродвигателей

Принципиально ничего нового данный тип двигателей не несет. Но он имеет очень важную особенность – возможность работать как от сети постоянного тока, так и от сети переменного тока. Порой это его свойство может позволить сэкономить значительные денежные средства на ремонте и модернизации оборудования.

Частота переменного тока жестко регламентирована и составляет 50 Герц. Иными словами, направление движения отрицательно заряженных частиц меняется 50 раз в секунду. Некоторые ошибочно полагают, что и ротор электродвигателя должен менять направление вращения (по часовой стрелке – против часовой стрелки) 50 раз в секунду. Если бы это было действительно так, то о каком-либо полезном применении электрических двигателей переменного тока не могло бы быть и речи. Что происходит в действительности: ток обмотки якоря и статора синхронизируется при помощи простейших конденсаторов. И поэтому, когда меняется направление тока на рамке якоря, меняется его направление и на статоре. Таким образом, ротор постоянно вращается в одну сторону.

К сожалению, КПД электродвигателя постоянного тока данного типа значительно ниже, чем у инверторных и униполярных двигателей. Поэтому его применение ограничено довольно узкими областями – там где необходимо получить максимальную надежность любой ценой, без учета затрат на эксплуатацию (например, военное машиностроение).

Заключительные положения

Технологии не стоят на месте, и сегодня множество научных школ по всему миру конкурируют между собой и стремятся создать дешевый и экономичный двигатель с высоким КПД и эксплуатационными характеристиками. Мощность электродвигателей постоянного тока из года в год растет, при этом падает их энергопотребление.

По прогнозам ученых, будущее будет определяться электрооборудованием, а эпоха нефти завершится уже довольно скоро.

fb.ru

Двигатель постоянного тока - коллектроный и бесколлекторный вариант

Электрические машины можно поделить на два вида по их назначению: это генератор и двигатель постоянного тока. Что примечательно, они устроены почти одинаково. Отличие лишь в том, что генератор преобразовывает механическую энергию вращения ротора в магнитном поле, создаваемом обмоткой статора, в электрическую, а двигатель – наоборот (преобразовывает электрическую энергию в энергию вращения, то есть механическую).

двигатель постоянного тока

Двигатель постоянного тока имеет в своей конструкции якорь с уложенными в его пазы проводниками. Второй основной частью этой машины является статор и его обмотки возбуждения с несколькими полюсами. Принцип работы такого устройства достаточно прост. Пропуская по проводу верхней части якоря постоянный ток в различных направлениях (с одной стороны «от нас», а с другой «на нас»). Согласно знаменитому правилу левой руки, те проводники, что находятся вверху, начнут выталкиваться из создаваемого статором магнитного поля влево, а проводники, расположеные внизу якоря, будут отталкиваться вправо.

Так как медные проводники уложены в специальные пазы, то силы воздействия будут передаваться якорю и поворачивать его.

бесколлектроный двигатель постоянного тока

Когда одна часть проводника провернется и встанет напротив южного полюса статора, начнется процесс торможения (проводник начнет вдавливаться в левую сторону). Для предупреждения этого процесса необходимо изменить направление тока в проводе. Для этого используют так называемый коллектор, а двигатель с таким принципом действия получил название коллекторного двигателя постоянного тока.

В нем обмотка якоря будет передавать вращающий момент на вал мотора, а тот – приводить в движение нужные механизмы оборудования. Нужно отметить, что весь принцип действия такого оборудования основан на инвертировании постоянного тока в якорной цепи.

коллектрорный двигатель постоянного тока

Однако существует и бесколлекторный двигатель постоянного тока. В отличие от коллекторного, он не имеет в своем устройстве щеток, которые создают дополнительную опасность в процессе эксплуатации двигателя (щетки трутся о вращающийся ротор и могут создавать искры, что может привести к возгоранию плохо изолированных частей электрической машины).

Двигатель постоянного тока без коллектора имеет в своей конструкции подшипники и специальные контроллеры, запрограммированные на обеспечение всех процессов коммутации внутри двигателя. Кроме того, в нем есть микроприводы с высокоточным позиционированием.

Именно поэтому такое устройство будет стоить значительно дороже, чем обычный коллекторный двигатель постоянного тока. Однако использование такого двигателя вполне себя оправдывает: увеличена его износостойкость, надежность, безопасность. Значительно выше и коэффициент полезного действия (КПД), и устойчивость к перегрузкам.

В отличии от коллекторного двигателя постоянного тока, модернизация которого фактически прекращена, бесколлекторная модель постоянно обновляется. Например, совсем недавно был разработан безконтактный трехфазный двигатель постоянного тока без коллектора.

fb.ru

Двигатели постоянного тока

Министерство образования и науки Российской Федерации

ГОУ ВПО Южно-Уральский государственный университет

Филиал в г. Златоусте

Реферат

Двигатели постоянного тока

ЗД-431.583.270102

Выполнил: Шарипова Ю.Р.

Группа: ЗД-431

Проверил: Румянцев.Е.

Содержание

1. Введение

2. Устройство и принцип действия двигателей постоянного тока

3. Пуск двигателей

4. Технические данные двигателей

5. Кпд двигателей постоянного тока

6 Характеристики двигателя постоянного тока

6.1 Рабочие характеристики

6.2 Механическая характеристика

7. Список используемой литературы

1.Введение

Электрические машины постоянного тока широко применяются в различных отраслях промышленности.

Значительное распространение электродвигателей постоянного тока объясняется их ценными качествами: высокими пусковым, тормозным и перегрузочным моментами, сравнительно высоким быстродействием, что важно при реверсировании и торможении, возможностью широкого и плавного регулирования частоты вращения.

Электродвигатели постоянного тока используют для регулируемых приводов, например, для приводов различных станков и механизмов. Мощности этих электродвигателей достигают сотен киловатт. В связи с автоматизацией управления производственными процессами и механизмами расширяется область применения маломощных двигателей постоянного тока общего применения мощностью от единиц до сотен ватт.

В зависимости от схемы питания, обмотки возбуждения машины постоянного тока разделяются на несколько типов (с независимым, параллельным, последовательным и смешанным возбуждением).

Ежегодный выпуск машин постоянного тока в РФ значительно меньше выпуска машин переменного тока, что обусловлено дороговизной двигателей постоянного тока.

Вначале создавались машины постоянного тока. В дальнейшем они в значительной степени были вытеснены машинами переменного тока. Благодаря возможности плавного и экономичного регулирования скорости вращения двигатели постоянного тока сохраняют свое доминирующее значение на транспорте, для привода металлургических станков, в крановых и подъемно-транспортных механизмах. В системах автоматики машины постоянного тока широко используются в качестве исполнительных двигателей, двигателей для привода лентопротяжных самозаписывающих механизмов, в качестве тахогенераторов и электромашинных усилителей.

2. Устройство и принцип действия двигателей постоянного тока

Устройство машин постоянного тока (генераторов и двигателей) в упрощенном виде показано на рис.1. К стальному корпусу 1 статора машины прикреплены главные 2 и дополнительные 4 полюса. На главных полюсах расположена обмотка возбуждения 3, на дополнительных - обмотка дополнительных полюсов 5. Обмотка возбуждения создает магнитный поток Ф машины.

Рис.1

На валу 10 двигателя закреплен цилиндрический магнитопровод 6, в пазах которого расположена обмотка якоря 7. Секции обмотки якоря присоединены к коллектору 9. К нему же прижимаются пружинами неподвижные щетки 8. Закрепленный на валу двигателя коллектор состоит из ряда изолированных от него и друг от друга медных пластин. С помощью коллектора, и щеток осуществляется соединение обмотки якоря с внешней электрической цепью. У двигателей они, кроме того, служат для преобразования постоянного по направлению тока внешней цепи в изменяющийся по направлению ток в проводниках обмотки якоря.

Дополнительные полюса с расположенной на них обмоткой уменьшают искрение между щетками и коллектором машины. Обмотку дополнительных полюсов соединяют последовательно с обмоткой якоря и на электрических схемах часто не изображают.

Для уменьшения потерь мощности магнитопровод якоря выполнен из отдельных стальных листов. Все обмотки изготовлены из изолированного провода. Кроме двигателей, имеющих два главных полюса, существуют машины постоянного тока с четырьмя и бόльшим количеством главных полюсов. При этом соответственно увеличивается количество дополнительных полюсов и комплектов щеток.

Если двигатель включен в сеть постоянного напряжения, то при взаимодействии магнитного поля, созданного обмоткой возбуждения, и тока в проводниках якоря возникает вращающий момент, действующий на якорь:

(1)

(2)

где КМ - коэффициент, зависящий от конструктивных параметров машины; Ф - магнитный поток одного полюса; IЯ - ток якоря.

Если момент двигателя при n = 0 превышает тормозящий момент, которым нагружен двигатель, то якорь начнет вращаться. При увеличении частоты вращения n возрастает индуцируемая в якоре ЭДС. Это приводит к уменьшению тока якоря:

(3)

где rЯ - сопротивление якоря.

Следствием уменьшения тока IЯ является уменьшение момента двигателя. При равенстве моментов двигателя и нагрузки частота вращения перестает изменяться.

Направление момента двигателя и, следовательно, направление вращения якоря зависят от направления магнитного потока и тока в проводниках обмотки якоря. Чтобы изменить направление вращения двигателя, следует изменить направление тока якоря либо тока возбуждения.

3. Пуск двигателей

Из формулы (3) следует, что в первое мгновение после включения двигателя в сеть постоянного напряжения, т.е. когда  и ,

Так как сопротивление rЯ невелико, то ток якоря может в 10…30 раз превышать номинальный ток двигателя, что недопустимо, поскольку приведет к сильному искрению и разрушению коллектора. Кроме того, при таком токе возникает недопустимо большой момент двигателя, а при частых пусках возможен перегрев обмотки якоря.

Чтобы уменьшить пусковой ток в цепи якоря, включают пусковой резистор, сопротивление которого по мере увеличения частоты вращения двигателя уменьшают до нуля. Если пуск двигателя автоматизирован, то пусковой резистор выполняют из нескольких ступеней, которые выключают последовательно по мере увеличения частоты вращения.

Пусковой ток якоря

По мере разгона двигателя в обмотке якоря возрастает ЭДС, а как следует из формулы (3), это приводит к уменьшению тока якоря IЯ. Поэтому по мере увеличения частоты вращения двигателя сопротивление в цепи якоря уменьшают. Чтобы при сравнительно небольшом пусковом токе получить большой пусковой момент, пуск двигателя осуществляют с наибольшим магнитным потоком. Следовательно, ток возбуждения при пуске должен быть максимально допустимым, т.е. номинальным.

4.Технические данные двигателей

В паспорте двигателя и справочной литературе на двигатели постоянного тока указаны следующие технические данные: номинальные напряжение Uи, мощность Pн, частота вращения nн, ток Iн, КПД.

Под номинальным Uн понимают напряжение, на которое рассчитаны обмотка якоря и коллектор, а также в большинстве случаев и параллельная обмотка возбуждения. С учетом номинального напряжения выбирают электроизоляционные материалы двигателя.

Номинальный ток Iн – максимально допустимый ток (потребляемый из сети), при котором двигатель нагревается до наибольшей допустимой температуры, работая в том режиме (длительном, повторно-кратковременном, кратковременном), на который рассчитан:

где Iян — ток якоря при номинальной нагрузке; Iвн – ток обмотки возбуждения при номинальном напряжении.

Следует отметить, что ток возбуждения Iвн двигателя параллельного возбуждения сравнительно мал, поэтому при номинальной нагрузке обычно принимают

Номинальная мощность Рн - это мощность, развиваемая двигателем на валу при работе с номинальной нагрузкой (моментом) и при номинальной частоте вращения nн.

Частота вращения nн, и КПД соответствуют работе двигателя с током Iн, напряжением Uн без дополнительных резисторов в цепях двигателя.

В общем случае мощность на валу P2, момент М и частота вращения n связаны соотношением:

Потребляемая двигателем из сети мощность Р1, величины P2, КПД, U, I связаны соотношениями:

где

Очевидно, что эти соотношения справедливы также и для номинального режима работы двигателя.

5. КПД двигателей постоянного тока

Коэффициент полезного действия является важнейшим показателем двигателей постоянного тока. Чем он больше, тем меньше мощность Р и ток I, потребляемые двигателем из сети при одной и той же механической мощности. В общем виде зависимостьть  такова:

(9)

где  - потери в обмотке якоря;  - потери в обмотке возбуждения;  - потери в магнитопроводе якоря;  - механические потери.

Потери мощности  не зависят,  и  мало зависят от нагрузки двигателя.

Двигатели рассчитываются таким образом, чтобы максимальное значение КПД было в области, близкой к номинальной мощности. Эксплуатация двигателей при малых нагрузках нежелательна вследствие малых значений rя. Значения КПД двигателей с различными способами возбуждения и мощностью от 1 до 100 кВт при номинальной нагрузке разные и составляют в среднем 0,8.

6.Характеристики двигателей постоянного тока

6.1. Рабочие характеристики

Рабочими называются регулировочная, скоростная, моментная и к.п.д. характеристики.

Регулировочная характеристика

Регулировочная характеристика представляет зависимость скорости вращения П от тока Iв возбуждения в случае, если ток Iа якоря и напряжение U сети остаются неизменными, т. е. n=f(Iв) при Ia=const и U=const.

До тех пор, пока сталь магнитопривода машины не насыщена, поток Ф изменяется пропорционально току возбуждения Iв. В этом случае регулировочная характеристика является гиперболической. По мере насыщения при больших токах Iв характеристика приближается к линейной (рис. 2). При малых значениях тока Iв скорость вращения резко возрастает. Поэтому при обрыве цепи возбуждения двигателя (Iв = 0) с параллельным возбуждением скорость его вращения достигает недопустимых пределов, как говорят: «Двигатель идет вразнос». Исключение могут составлять микродвигатели, которые имеют относительно большой момент М0 холостого хода.

Рис. 2. Регулировочная характеристика двигателя

В двигателях последовательного возбуждения Iв = Iа. При малых нагрузках ток якоря Iа мал и скорость вращения может быть слишком большой, поэтому пуск и работа при малых нагрузках недопустимы. Микродвигатели так же, как и. в предыдущем случае, могут составлять исключение.

Скоростные характеристики.

Скоростные характеристики дают зависимость скорости вращения п от полезной мощности Р2 на валу двигателя в случае, если напряжение U сети и сопротивление rв регулировочного реостата цепи возбуждения остаются неизменными, т. е. n=f(P2), при U=const и rв = const.

Рис. 3. Скоростные характеристики

С возрастанием тока якоря при увеличении механической нагрузки двигателя параллельного возбуждения одновременно увеличивается падения напряжения в якоре и появляется реакция якоря, которая обычно действует размагничивающим образом. Первая причина стремится уменьшить скорость вращения двигателя, вторая — увеличить. Действие падения напряжения в якоре обычно оказывает большее влияние. Поэтому скоростная характеристика двигателя параллельного возбуждения имеет слегка падающий характер (кривая 1, рис. 3).

В двигателе последовательного возбуждения ток якоря является током возбуждения. В результате скоростная характеристика двигателя с последовательным возбуждением имеет характер, близкий к гиперболическому. При увеличении нагрузки по мере насыщения магнитной цепи характеристика приобретает более прямолинейный характер (кривая 3 на рис. 3).

В компаундном двигателе при согласном включении обмоток скоростная характеристика занимает промежуточное положение между характеристиками двигателя параллельного и последовательного возбуждения (кривая 2).

Моментные характеристики.

Моментные характеристики показывают, как изменяется момент М при изменении полезной мощности Р2 на валу двигателя, если напряжение U сети и сопротивление rв регулировочного реостата в цепи возбуждения остаются неизменными, т. е. М = f(P2), при U=const, rв=const.

Полезный момент на валу двигателя

Если скорость вращения двигателя параллельного возбуждения не изменялась бы с нагрузкой, то зависимость момента Ммех от полезной мощности графически представляла бы прямую линию, проходящую через начало координат. В действительности скорость вращения с увеличением нагрузки падает. Поэтому характеристика полезного момента несколько загибается кверху (кривая 2, рис. 4). При этом кривая электромагнитного момента М проходит выше кривой полезного момента Ммех на постоянную величину, равную моменту холостого хода М0 (кривая 1).

Рис. 4. Моментные характеристики

В двигателе последовательного возбуждения вид моментной характеристики приближается к параболическому, так как изменение момента от тока нагрузки происходит, по закону параболы, пока сталь не насыщена. По мере насыщения зависимость приобретает более прямолинейный характер (кривая 4). В компаундном двигателе моментная характеристика (кривая 3) занимает промежуточное положение между характеристиками двигателя параллельного и последовательного возбуждения.

Характеристика изменения коэффициента полезного действия.

Кривая зависимости к. п. д. от нагрузки имеет характерный для всех двигателей вид (рис 5). Кривая проходит через начало координат и быстро растет при увеличении полезной мощности до 1/4 номинальной. При мощности Р2, равной примерно 2/3 номинальной, к. п. д. обычно достигает максимального значения. При увеличении нагрузки до номинальной к. п. д. остается постоянным или незначительно падает.

Рис. 5. Изменение к. п. д. двигателя

6.2 Механическая характеристика

Важнейшей характеристикой двигателя является механическая n(M). Она показывает, как зависит частота вращения двигателя от развиваемого момента. Если к обмоткам двигателя подведены номинальные напряжения и отсутствуют дополнительные резисторы в его цепях, то двигатель имеет механическую характеристику, называемую естественной. На естественной характеристике находится точка, соответствующая номинальным данным двигателя (Мн, Ря и т.д.). Если же напряжение на обмотке якоря меньше номинального, либо Iв < Iвн, то двигатель будет иметь различные искусственные механические характеристики. На этих характеристиках двигатель работает при пуске, торможении, реверсе и регулировании частоты вращения.

Преобразовав выражение (3) относительно частоты вращения, получим уравнение электромеханической характеристики n(Iя):

(7)

После замены в уравнении (7) тока Iя согласно формуле (1), получим уравнение механической характеристики n(М):

(8)

При Ф = соnst, электромеханическая n(Iя) и механическая n(М) характеристики двигателя параллельного возбуждения представляют собой прямые линии. Так как за счет реакции якоря магнитный поток немного изменяется, то характеристики в действительности несколько отличаются от прямых.

При работе вхолостую (М = 0) двигатель имеет частоту вращения холостого хода, определяемую первым членом уравнения (8). С увеличением нагрузки n уменьшается. Как следует из уравнения (8), это объясняется наличием сопротивления якоря rя.

Поскольку rя не велико, частота вращения двигателя при увеличении момента изменяется мало, и двигатель имеет жесткую естественную механическую характеристику (рис.6, характеристика 1).

Из уравнения (8) следует, что регулировать частоту вращения при заданной постоянной нагрузке (М = const) можно тремя способами:

а) изменением сопротивления цепи якоря;

б) изменением магнитного потока двигателя;

в) изменением напряжения на зажимах якоря.

Рис. 6 Механические характеристики

Для регулирования частоты вращения первым способом в цепь якоря. должно быть включено добавочное сопротивление rд. Тогда сопротивление в уравнении (8) необходимо заменить на rя + rд.

Как следует из уравнения (8), частота вращения n связана с сопротивлением цепи якоря rя + rд при постоянной нагрузке (М = const) линейной зависимостью, т.е. при увеличении сопротивления частота вращения уменьшается. Разным сопротивлениям rд соответствуют различные искусственные механические характеристики, одна из которых приведена на рис.2 (характеристика 2). С помощью характеристики 2 при заданном моменте М1 можно получить частоту вращения n2.

Изменение частоты вращения вторым способом осуществляется с помощью регулируемого источника напряжения UD2. Изменяя его напряжение регулятором R2, можно изменить ток возбуждения IВ и тем самым магнитный поток двигателя. Как видно из уравнения (8), при постоянной нагрузке (М = соnst) частота вращения находится в сложной зависимости от магнитного потока Ф. Анализ уравнения (8) показывает, что в некотором диапазоне изменения магнитного потока Ф уменьшение последнего приводит к увеличению частоты вращения. Именно этот диапазон изменения потока используют при регулировании частоты вращения.

Каждому значению магнитного потока соответствует искусственная механическая характеристика двигателя, одна из которых приведена на рис.2 (характеристика 4). С помощью характеристики 4 при моменте М1 можно получить частоту вращения n4.

Чтобы регулировать частоту вращения изменением напряжения на зажимах якоря, необходимо иметь относительно мощный регулируемый источник напряжения. Каждому значению напряжения соответствует искусственная механическая характеристика двигателя, одна из которых приведена на рис.2(характеристика 3). С помощью характеристики 3 при заданном моменте М1 можно получить частоту вращения n3.

Список используемой литературы

1. Кацман М.М. Электрические машины. -М.: Высш. шк., 1993.

2. Копылов И.П. Электрические машины. -М.: Энергоатомиздат, 1986

baza-referat.ru

Двигатель постоянного тока - это... Что такое Двигатель постоянного тока?

Рис. 1 Устройство простейшего коллекторного двигателя постоянного тока с двухполюсным статором и с двухполюсным ротором

Двигатель постоянного тока — электрическая машина, машина постоянного тока, преобразующая электрическую энергию постоянного тока в механическую энергию.

История

Краткое описание коллекторного двигателя постоянного тока

Простейший двигатель на рис. 1 является машиной постоянного тока, состоит из одного постоянного магнита на статоре, из одного электромагнита с явно выраженными полюсами на роторе (двухполюсного ротора с явно выраженными полюсами и с одной обмоткой из двух частей), щёточноколлекторного узла с двумя пластинами (ламелями) и двумя щётками. Имеет два положения ротора (две «мёртвые точки»), из которых невозможен самозапуск, и неравномерный крутящий момент, в первом приближении (магнитное поле полюсов статора B — равномерное (однородное) и др.) равный

M_s=s\cdot 2\cdot B\cdot I\cdot L\cdot r\cdot sin(w\cdot t) \,\!, где s\,\! - число витков обмотки ротора, B\,\! - индукция магнитного поля полюсов статора, I\,\! - ток в обмотке ротора [А], L\,\! - длина рабочей части витка обмотки [м], r\,\! - расстояние от оси ротора до рабочей части витка обмотки ротора (радиус) [м], sin \,\! - синус угла между направлением северный-южный полюс статора и аналогичным направлением в роторе [рад], w\,\! - угловая скорость [рад/сек], t\,\! - время [сек].

Из-за наличия угловой ширины щёток и углового зазора между пластинами (ламелями) коллектора в двигателе этой конструкции имеются динамически постоянно короткозамкнутые щётками части обмотки ротора. Число короткозамкнутых частей обмотки ротора равно числу щёток. Эти короткозамкнутые части обмотки ротора не участвует в создании общего крутящего момента.

Суммарная короткозамкнутая часть ротора в двигателях с одним коллектором равна:

n\cdot alfa/(2\cdot \pi) \!, где n - число щёток, alfa - угловая ширина одной щётки [радиан].

Без учёта короткозамкнутых щётками частей крутящего момента средний крутящий момент s рамок (витков) с током за один оборот равен площади под интегральной кривой крутящего момента, делённой на длину периода (1оборот = 2\cdot \pi):

Mkrsr=(2\cdot \int\limits_0^{\pi} s\cdot 2\cdot B\cdot I\cdot L\cdot r\cdot sin(w\cdot t) d(w\cdot t))/(2\cdot \pi)=s\cdot 2\cdot B\cdot I\cdot L\cdot r\cdot (\int\limits_0^{\pi} sin(w\cdot t) d(w\cdot t))/\pi.

Рис. 2 Коллекторный двигатель постоянного тока с двухполюсным статором и с трёхполюсным ротором

Двигатель на рис. 2 состоит из одного электромагнита на статоре (двухполюсного статора) с явно выраженными полюсами и с одной обмоткой, трёхполюсного ротора с явно выраженными полюсами и с тремя обмотками (обмотки ротора могут быть включены звездой или треугольником), щёточноколлекторного узла с тремя пластинами (ламелями) и с двумя щётками. Самозапуск возможен из любого положения ротора. Имеет меньшую неравномерность крутящего момента, чем двигатель с двухполюсным ротором (рис. 1).

ДПТ являются обратимыми электрическими машинами, то есть в определённых условиях способны работать как генераторы.

Сокращение ДПТ (двигатель постоянного тока) является неудачным, так как название "двигатель переменного тока" имеет то же сокращение - ДПТ. Но так как двигатели переменного тока разделяются на ассинхронные (АД) и синхронные (СД), сокращение ДПТ относят к двигателям постоянного тока.

Статор

На статоре ДПТ располагаются в зависимости от конструкции:

В простейшем случае имеет два полюса, т.е. один магнит с одной парой полюсов.

Ротор

Состоит из электромагнитов с переключаемой полярностью и датчика положения ротора и переключателя (коллектора). В простейшем случае ротор состоит из одного электромагнита с двумя полюсами, т.е. имеет одну пару полюсов, при этом есть две "мёртвые точки" из которых невозможен самозапуск двигателя.

Рис. 3 Ротор

Ротор с тремя полюсами (полторы пары) имеет наименьшее число полюсов ротора при которых самозапуск возможен из любого положения ротора. На самом деле один полюс всё время делится на две части, т.е. ротор имеет неявные две пары полюсов. Ротор любого ДПТ состоит из многих катушек, на часть которых подаётся питание в зависимости от угла поворота ротора относительно статора. Применение большого числа (несколько десятков) катушек необходимо для уменьшения неравномерности крутящего момента, для уменьшения коммутируемого (переключаемого) тока, для обеспечения оптимального взаимодействия между магнитными полями ротора и статора (то есть для создания максимального момента на роторе).

При вычислении момента инерции ротора его в первом приближении можно считать сплошным однородным цилиндром с моментом инерции равным J_a=(1/2)\cdot m\cdot R^2, где m\,\! - масса цилиндра (ротора), а R\,\! - радиус цилиндра (ротора).

Коллектор (коллекторный узел, щёточный узел, коллекторно-щёточный узел, щёточно-коллекторный узел)

Коллектор (щёточно-коллекторный узел) выполняет одновременно две функции - является датчиком углового положения ротора и переключателем тока со скользящими контактами.

Конструкции коллекторов имеют множество разновидностей.

Выводы всех катушек объединяются в коллекторный узел. Коллекторный узел обычно представляет собой кольцо из изолированных друг от друга пластин-контактов (ламелей), расположенных по оси (вдоль оси) ротора. Существуют и другие конструкции коллекторного узла.

Рис. 4 Графитовые щётки

Щёточный узел необходим для подвода электроэнергии к катушкам на вращающемся роторе и переключения тока в обмотках ротора. Щётка — неподвижный контакт (обычно графитовый или медно-графитовый).

Щётки часто размыкают и замыкают пластины-контакты коллектора ротора, как следствие при работе ДПТ происходят переходные процессы в обмотках ротора. Эти процессы приводят к искрению на коллекторе, что значительно снижает ресурс ДПТ. Искрение уменьшают выбором положения щёток относительно статора (снижая ток коммутации), а также подключением внешних реактивных элементов (конденсаторов).

При больших токах в роторе ДПТ возникают мощные переходные процессы, в результате чего искрение может постоянно охватывать все пластины коллектора, независимо от положения щёток. Данное явление называется кольцевым искрением коллектора или «круговой огонь». Кольцевое искрение опасно тем, что одновременно выгорают все пластины коллектора и срок его службы значительно сокращается. Визуально кольцевое искрение проявляется в виде светящегося кольца около коллектора. Эффект кольцевого искрения коллектора не допустим, при проектировании приводов устанавливаются соответствующие ограничения на максимальные моменты (а следовательно и токи в роторе), развиваемые двигателем.

Классификация

Двигатели постоянного тока различаются по способу коммутации обмоток возбуждения. Вид подключения обмоток возбуждения существенно влияет на тяговые и электрические характеристики электродвигателя. Существуют схемы независимого, параллельного, последовательного и смешанного включения обмоток возбуждения.

Принцип работы

В принципе работы электродвигателя постоянного тока есть два подхода: 1. рамка (2 стержня) с током в магнитном поле статора, 2. взаимодействие магнитных полей статора и ротора.

Рамка с током в однородном магнитном поле полюсов статора

В однородном магнитном поле полюсов статора с индукцией B\,\! на два стержня рамки длиной L\,\! с током I\,\! действуют силы Ампера F\,\! постоянной величины, равные

F=B\cdot I\cdot L\,\! и направленные в противоположные стороны.

Эти силы прикладываются к плечам p\,\!, равным

p=r\cdot sin(w\cdot t)\,\!, где r\,\! - радиус рамки, и создают крутящий момент M_k\,\!, равный

M_k=F\cdot p=B\cdot I\cdot L\cdot r\cdot sin(w\cdot t)\,\!.

Для двух стержней рамки суммарный крутящий момент равен

M_ks=2\cdot M_k=2\cdot B\cdot I\cdot L\cdot r\cdot sin(w\cdot t)\,\!. Практически из-за того, что угловая ширина щётки alfa\,\! [радиан] немного меньше угловой ширины зазора betta\,\! между пластинами (ламелями) коллектора, чтобы источник питания не замыкался накоротко, четыре небольших части под кривой крутящего момента, равные 2\cdot B\cdot I\cdot L\cdot r\cdot \int\limits_0^{delta/2} sin(w\cdot t) d(w\cdot t), где delta=betta-alfa\,\!, не участвуют в создании общего крутящего момента.

При числе витков в обмотке равном s крутящий момент будет равен M_s=s\cdot 2\cdot B\cdot I\cdot L\cdot r\cdot sin(w\cdot t)\,\!.

Наибольший крутящий момент будет при угле поворота рамки равном \pi/2\,\!, т.е. 90°, при этом угле поворота рамки с током вектора магнитных полей статора и ротора (рамки) будут перпендикулярны друг к другу, т.е. под углом 90°. При угле поворота ротора (рамки) 180° крутящий момент равен нулю из-за нулевого плеча, но силы не равны нулю и это положение ротора (рамки), при отсутствии переключения тока, весьма устойчиво и подобно одному шагу в шаговом двигателе.

Без учёта короткозамкнутых щётками частей крутящего момента средний крутящий момент за один оборот (период) равен площади под интегральной кривой крутящего момента делённой на длину периода (2\cdot \pi):

Mkrsr=(2\cdot \int\limits_0^{\pi} B\cdot I\cdot L\cdot r\cdot sin(w\cdot t) d(w\cdot t))/(2\cdot \pi)=B\cdot I\cdot L\cdot r\cdot (\int\limits_0^{\pi} sin(w\cdot t) d(w\cdot t))/\pi.

При s витков в обмотке

Mkrsr=s\cdot B\cdot I\cdot L\cdot r\cdot (\int\limits_0^{\pi} sin(w\cdot t) d(w\cdot t))/\pi.

Две рамки с током в однородном магнитном поле полюсов статора

Если на роторе машины установить вторую рамку, сдвинутую относительно первой на угол π / 2, то получится четырёхполюсный ротор. Момент второй рамки:

M_c = 2 \cdot B \cdot I \cdot L \cdot r \cdot sin(\omega t + \pi/2) = 2 \cdot B \cdot I \cdot L \cdot r \cdot cos(\omega t)

Суммарный момент обеих рамок:

M_k = M_s + M_c = 2 \cdot B \cdot I \cdot L \cdot r \cdot (sin(\omega t) + cos(\omega t))

Таким образом получается, что крутящий момент зависит от угла поворота ротора, но неравномерность меньше, чем при одной рамке. Кроме этого добавляется самозапуск из любого положения ротора. При этом для второй рамки потребуется второй коллектор (щёточно-коллекторный узел). Оба узла соединяются параллельно, при этом переключение тока в рамках происходит в интервалах с наименьшим током в рамках, при последовательном соединении переключение тока в одной из рамок (разрыв цепи) происходит во время максимального тока в другой рамке. Практически, из-за того, что угловая ширина щётки α [рад] немного меньше угловой ширины зазора β [рад] между пластинами коллектора (ламелями) восемь небольших частей под кривой крутящего момента, равных

2 \cdot B \cdot I \cdot L \cdot r \int \limits_0^{\Delta/2} sin(\omega t) \cdot d(\omega t), где Δ = β − α, не участвуют в создании общего крутящего момента.

Рамка с током в неоднородном магнитном поле полюсов статора

Если магнитное поле полюсов статора неоднородное и изменяется по отношению к стержням рамки по закону

B=B_m\cdot sin(\omega\cdot t)\,\!, то крутящий момент для одного стержня будет равен

M=B_m\cdot sin(\omega\cdot t)\cdot I\cdot L\cdot r\cdot sin(\omega\cdot t)=B_m\cdot I\cdot L\cdot r\cdot (sin(\omega\cdot t))^2\,\!,

для двух стержней

M_s=2\cdot B_m\cdot I\cdot L\cdot r\cdot (sin(\omega\cdot t))^2\,\!,

для рамки из s\,\! витков

M_ss=s\cdot 2\cdot B_m\cdot I\cdot L\cdot r\cdot (sin(\omega\cdot t))^2\,\!.

В создании крутящего момента не участвуют четыре части под кривой крутящего момента равные

s\cdot 2\cdot B_m\cdot I\cdot L\cdot r\cdot \int\limits_0^{delta/2} (sin(\omega\cdot t))^2 d(\omega\cdot t).

Без учёта короткозамкнутых щётками частей крутящего момента средний крутящий момент за один оборот (период) равен площади под интегральной кривой делённой на длину периода (2\cdot \pi):

Mkrsr=2\cdot \int\limits_0^{\pi} B_m\cdot I\cdot L\cdot r\cdot (sin(\omega\cdot t))^2 d(\omega\cdot t)/(2\cdot \pi)=B_m\cdot I\cdot L\cdot r\cdot \int\limits_0^{\pi} (sin(\omega\cdot t))^2 d(\omega\cdot t)/\pi

При s витках в обмотке

Mkrsr=(s\cdot B_m\cdot I\cdot L\cdot r\cdot \int\limits_0^{\pi} (sin(\omega\cdot t))^2 d(\omega\cdot t))/\pi.

Две рамки с током в неоднородном магнитном поле полюсов статора

Для второй (косинусной) рамки sin(w\cdot t+\pi/2)=cos(w\cdot t)\,\!,

крутящий момент от второй (косинусной) рамки будет равен

M_c=2\cdot B_m\cdot I\cdot L\cdot r\cdot (cos(w\cdot t))^2\,\!,

суммарный крутящий момент от обеих рамок равен

M_k=M_s+M_c=2\cdot B_m\cdot I\cdot L\cdot r\cdot ((sin(w\cdot t))^2+(cos(w\cdot t))^2)=2\cdot B_m\cdot I\cdot L\cdot r\,\!, т.е. постоянен и от угла поворота ротора не зависит.

Практически, из-за наличия зазора, восемь небольших частей под кривой крутящего момента равные

2\cdot B_m\cdot I\cdot L\cdot r\cdot \int\limits_0^{delta/2} (sin(w\cdot t))^2 d(w\cdot t) каждая,

в создании крутящего момента не участвуют.

Для вычисления момента инерции ротора его можно считать в первом приближении сплошным однородным цилиндром с моментом инерции

J_a=(1/2)\cdot m\cdot R^2\,\!, где m\,\! - масса цилиндра (ротора), R\,\! - радиус цилиндра (ротора).

Взаимодействие магнитных полей

Магнитные поля статора и ротора (рамки с током), взаимоотталкиваются, чем ротор (рамка) приводится во вращение на 180°. Для дальнейшего вращения необходимо переключение направления тока в рамке.

Разновидности

Коллекторные, с щёточноколлекторным переключателем тока

С одним коллектором (щёточноколлекторным узлом) и 2\cdot n обмотками, где n\,\! - число пар полюсов ротора, с соединением обмоток ротора в кольцо (по этой классификации двигатель на рис. 2 является полуторным, имеет полторы пары полюсов и 2*1,5=3 обмотки ротора). Имеют большую короткозамкнутую щётками часть обмотки ротора, равную

k\cdot alfa/(2\cdot \pi)\,\!, где k\,\! - число щёток, alfa\,\! - угловая ширина одной щётки (рад), \pi\,\! - число пи (3,14...).

С двумя коллекторами (щёточноколлекторными узлами, в бесколлекторных с инвертором на двух параллельных мостах) и двумя обмотками синусной и косинусной (синусно-косинусный, двухфазный) с неоднородным (синусообразным) магнитным полем полюсов статора. Имеют малую нерабочую часть под кривой крутящего момента, равную

8\cdot 2\cdot B_m\cdot I\cdot L\cdot r\cdot \int\limits_0^{delta/2} (sin(w\cdot t))^2 d(w\cdot t), где delta=betta-alfa, betta\,\! - угловая ширина зазора между пластинами коллектора (ламелями), подобен двухфазному бесколлекторному.

С тремя коллекторами и тремя обмотками (в бесколлекторных с инвертором на трёх параллельных мостах, трёхфазный).

С четырьмя коллекторами (щёточноколлекторными узлами) и двумя обмотками синусной и косинусной (синусно-косинусные), специальные. Специальная конструкция коллектора с четырьмя коллекторами (один коллектор на одну щётку) позволяет почти до нуля уменьшить нерабочую часть крутящего момента (нерабочая часть крутящего момента в этом двигателе зависит от точности изготовления деталей) и сделать используемую часть крутящего момента независимой от угловой ширины щётки. При этом угловая ширина одной пластины коллектора равна gamma=\pi-alfa\,\!, где alfa\,\! - угловая ширина одной щётки.

С четырьмя коллекторами и четырьмя обмотками (в бесколлекторных - с инвертором на четырёх параллельных мостах, четырёхфазный).

С восемью коллекторами (щёточноколлекторными узлами). В этом двигателе уже нет рамок, а ток подаётся через коллекторы в отдельные стержни ротора.

И др.

Другие виды электродвигателей постоянного тока

Применение

Бесколлекторные, с электронным переключателем тока

Электронным аналогом щёточно-коллекторного узла является инвертор с датчиком положения ротора (ДПР) (Вентильный электродвигатель).

Ротор является постоянным магнитом, а обмотки статора переключаются электронными схемами — инверторами. Бесколлекторные электродвигатели могут быть однофазными (две «мёртвые точки»), двухфазными (синусно-косинусными), трёх- и более фазными.

Бесколлекторный двигатель постоянного тока с выпрямителем (мостом) может заменить универсальный коллекторный двигатель (УКД).

Управление ДПТ

Механическая характеристика ДПТ

Зависимость частоты от момента на валу ДПТ. Отображается в виде графика. Горизонтальная ось (абсцисс) — момент на валу ротора, вертикальная ось (ординат) — частота вращения ротора. Механическая характеристика ДПТ есть прямая, идущая с отрицательным наклоном.

Механическая характеристика ДПТ строится при определённом напряжении питания обмоток ротора. В случае построения характеристик для нескольких значений напряжения питания говорят о семействе механических характеристик ДПТ.

Регулировочная характеристика ДПТ

Зависимость частоты вращения ротора от напряжения питания обмоток ротора ДПТ. Отображается в виде графика. Горизонтальная ось (абцисс) — напряжение питания обмоток ротора, вертикальная ось (ординат) — частота вращения ротора. Регулировочная характеристика ДПТ есть прямая, идущая с положительным наклоном.

Регулировочная характеристика ДПТ строится при определённом моменте, развиваемом двигателем. В случае построения регулировочных характеристик для нескольких значений момента на валу ротора говорят о семействе регулировочных характеристик ДПТ.

Управление ДПТ

Основные формулы, используемые при управлении ДПТ:

Крутящий момент, развиваемый двигателем, пропорционален току в обмотке якоря (ротора):

M = k_m \cdot I\,, где I\, - ток в обмотке якоря, k_m\, — коэффициент крутящего момента двигателя (зависит от конструкции двигателя и тока в обмотке возбуждения).

Ток в обмотке ротора по закону Ома прямо пропорционален приложенному напряжению и обратно пропорционален сопротивлению обмотки ротора:

I = U/R\,, где U\, - напряжение, приложенное к обмотке ротора, R\, — сопротивление обмотки ротора.

ПротивоЭДС в обмотках якоря пропорциональна угловой частоте вращения ротора:

E = k_e \cdot \omega\,, где k_e\, — коэффициент ЭДС двигателя, \omega\, - угловая скорость вращения ротора.

Следовательно, величиной крутящего момента можно управлять меняя напряжение на ДПТ. Такой способ применяют для относительно маломощных двигателей.

Для управления более сильными (мощными) двигателями используют: а) принцип ШИМ, когда изменяется не величина напряжения, а длительность его приложения к двигателю, б) регулирование крутящего момента изменением напряжения на обмотке возбуждения, требует меньшую мощность элементов схемы управления, чем регулирование изменением напряжения на всём двигателе, но при этом способе регулирования ток через обмотку якоря не управляется, из-за этого даже при малом крутящем моменте большой ток через обмотку якоря будет нагревать обмотку якоря, что может привести к перегреву и выходу из строя двигателя. Возможно применение для регулирования крутящего момента в небольших пределах от номинального крутящего момента.

Управление двигателем осуществляется по току в обмотке двигателя, который пропорционален напряжению, приложенному к этой обмотке. Реакцию двигателя на данное напряжение при определённом внешнем моменте можно увидеть на соответствующей регулировочной характеристике. Регулировочная характеристика показывает скорость, которую двигатель достигнет в установившемся режиме.

Достоинства и недостатки ДПТ

Достоинства:

Недостатки:

См. также

Ссылки

Wikimedia Foundation. 2010.

biograf.academic.ru

Двигатель постоянного тока - это... Что такое Двигатель постоянного тока?

Рис. 1 Устройство простейшего коллекторного двигателя постоянного тока с двухполюсным статором и с двухполюсным ротором

Двигатель постоянного тока — электрическая машина, машина постоянного тока, преобразующая электрическую энергию постоянного тока в механическую энергию.

История

Краткое описание коллекторного двигателя постоянного тока

Простейший двигатель на рис. 1 является машиной постоянного тока, состоит из одного постоянного магнита на статоре, из одного электромагнита с явно выраженными полюсами на роторе (двухполюсного ротора с явно выраженными полюсами и с одной обмоткой из двух частей), щёточноколлекторного узла с двумя пластинами (ламелями) и двумя щётками. Имеет два положения ротора (две «мёртвые точки»), из которых невозможен самозапуск, и неравномерный крутящий момент, в первом приближении (магнитное поле полюсов статора B — равномерное (однородное) и др.) равный

M_s=s\cdot 2\cdot B\cdot I\cdot L\cdot r\cdot sin(w\cdot t) \,\!, где s\,\! - число витков обмотки ротора, B\,\! - индукция магнитного поля полюсов статора, I\,\! - ток в обмотке ротора [А], L\,\! - длина рабочей части витка обмотки [м], r\,\! - расстояние от оси ротора до рабочей части витка обмотки ротора (радиус) [м], sin \,\! - синус угла между направлением северный-южный полюс статора и аналогичным направлением в роторе [рад], w\,\! - угловая скорость [рад/сек], t\,\! - время [сек].

Из-за наличия угловой ширины щёток и углового зазора между пластинами (ламелями) коллектора в двигателе этой конструкции имеются динамически постоянно короткозамкнутые щётками части обмотки ротора. Число короткозамкнутых частей обмотки ротора равно числу щёток. Эти короткозамкнутые части обмотки ротора не участвует в создании общего крутящего момента.

Суммарная короткозамкнутая часть ротора в двигателях с одним коллектором равна:

n\cdot alfa/(2\cdot \pi) \!, где n - число щёток, alfa - угловая ширина одной щётки [радиан].

Без учёта короткозамкнутых щётками частей крутящего момента средний крутящий момент s рамок (витков) с током за один оборот равен площади под интегральной кривой крутящего момента, делённой на длину периода (1оборот = 2\cdot \pi):

Mkrsr=(2\cdot \int\limits_0^{\pi} s\cdot 2\cdot B\cdot I\cdot L\cdot r\cdot sin(w\cdot t) d(w\cdot t))/(2\cdot \pi)=s\cdot 2\cdot B\cdot I\cdot L\cdot r\cdot (\int\limits_0^{\pi} sin(w\cdot t) d(w\cdot t))/\pi.

Рис. 2 Коллекторный двигатель постоянного тока с двухполюсным статором и с трёхполюсным ротором

Двигатель на рис. 2 состоит из одного электромагнита на статоре (двухполюсного статора) с явно выраженными полюсами и с одной обмоткой, трёхполюсного ротора с явно выраженными полюсами и с тремя обмотками (обмотки ротора могут быть включены звездой или треугольником), щёточноколлекторного узла с тремя пластинами (ламелями) и с двумя щётками. Самозапуск возможен из любого положения ротора. Имеет меньшую неравномерность крутящего момента, чем двигатель с двухполюсным ротором (рис. 1).

ДПТ являются обратимыми электрическими машинами, то есть в определённых условиях способны работать как генераторы.

Сокращение ДПТ (двигатель постоянного тока) является неудачным, так как название "двигатель переменного тока" имеет то же сокращение - ДПТ. Но так как двигатели переменного тока разделяются на ассинхронные (АД) и синхронные (СД), сокращение ДПТ относят к двигателям постоянного тока.

Статор

На статоре ДПТ располагаются в зависимости от конструкции:

В простейшем случае имеет два полюса, т.е. один магнит с одной парой полюсов.

Ротор

Состоит из электромагнитов с переключаемой полярностью и датчика положения ротора и переключателя (коллектора). В простейшем случае ротор состоит из одного электромагнита с двумя полюсами, т.е. имеет одну пару полюсов, при этом есть две "мёртвые точки" из которых невозможен самозапуск двигателя.

Рис. 3 Ротор

Ротор с тремя полюсами (полторы пары) имеет наименьшее число полюсов ротора при которых самозапуск возможен из любого положения ротора. На самом деле один полюс всё время делится на две части, т.е. ротор имеет неявные две пары полюсов. Ротор любого ДПТ состоит из многих катушек, на часть которых подаётся питание в зависимости от угла поворота ротора относительно статора. Применение большого числа (несколько десятков) катушек необходимо для уменьшения неравномерности крутящего момента, для уменьшения коммутируемого (переключаемого) тока, для обеспечения оптимального взаимодействия между магнитными полями ротора и статора (то есть для создания максимального момента на роторе).

При вычислении момента инерции ротора его в первом приближении можно считать сплошным однородным цилиндром с моментом инерции равным J_a=(1/2)\cdot m\cdot R^2, где m\,\! - масса цилиндра (ротора), а R\,\! - радиус цилиндра (ротора).

Коллектор (коллекторный узел, щёточный узел, коллекторно-щёточный узел, щёточно-коллекторный узел)

Коллектор (щёточно-коллекторный узел) выполняет одновременно две функции - является датчиком углового положения ротора и переключателем тока со скользящими контактами.

Конструкции коллекторов имеют множество разновидностей.

Выводы всех катушек объединяются в коллекторный узел. Коллекторный узел обычно представляет собой кольцо из изолированных друг от друга пластин-контактов (ламелей), расположенных по оси (вдоль оси) ротора. Существуют и другие конструкции коллекторного узла.

Рис. 4 Графитовые щётки

Щёточный узел необходим для подвода электроэнергии к катушкам на вращающемся роторе и переключения тока в обмотках ротора. Щётка — неподвижный контакт (обычно графитовый или медно-графитовый).

Щётки часто размыкают и замыкают пластины-контакты коллектора ротора, как следствие при работе ДПТ происходят переходные процессы в обмотках ротора. Эти процессы приводят к искрению на коллекторе, что значительно снижает ресурс ДПТ. Искрение уменьшают выбором положения щёток относительно статора (снижая ток коммутации), а также подключением внешних реактивных элементов (конденсаторов).

При больших токах в роторе ДПТ возникают мощные переходные процессы, в результате чего искрение может постоянно охватывать все пластины коллектора, независимо от положения щёток. Данное явление называется кольцевым искрением коллектора или «круговой огонь». Кольцевое искрение опасно тем, что одновременно выгорают все пластины коллектора и срок его службы значительно сокращается. Визуально кольцевое искрение проявляется в виде светящегося кольца около коллектора. Эффект кольцевого искрения коллектора не допустим, при проектировании приводов устанавливаются соответствующие ограничения на максимальные моменты (а следовательно и токи в роторе), развиваемые двигателем.

Классификация

Двигатели постоянного тока различаются по способу коммутации обмоток возбуждения. Вид подключения обмоток возбуждения существенно влияет на тяговые и электрические характеристики электродвигателя. Существуют схемы независимого, параллельного, последовательного и смешанного включения обмоток возбуждения.

Принцип работы

В принципе работы электродвигателя постоянного тока есть два подхода: 1. рамка (2 стержня) с током в магнитном поле статора, 2. взаимодействие магнитных полей статора и ротора.

Рамка с током в однородном магнитном поле полюсов статора

В однородном магнитном поле полюсов статора с индукцией B\,\! на два стержня рамки длиной L\,\! с током I\,\! действуют силы Ампера F\,\! постоянной величины, равные

F=B\cdot I\cdot L\,\! и направленные в противоположные стороны.

Эти силы прикладываются к плечам p\,\!, равным

p=r\cdot sin(w\cdot t)\,\!, где r\,\! - радиус рамки, и создают крутящий момент M_k\,\!, равный

M_k=F\cdot p=B\cdot I\cdot L\cdot r\cdot sin(w\cdot t)\,\!.

Для двух стержней рамки суммарный крутящий момент равен

M_ks=2\cdot M_k=2\cdot B\cdot I\cdot L\cdot r\cdot sin(w\cdot t)\,\!. Практически из-за того, что угловая ширина щётки alfa\,\! [радиан] немного меньше угловой ширины зазора betta\,\! между пластинами (ламелями) коллектора, чтобы источник питания не замыкался накоротко, четыре небольших части под кривой крутящего момента, равные 2\cdot B\cdot I\cdot L\cdot r\cdot \int\limits_0^{delta/2} sin(w\cdot t) d(w\cdot t), где delta=betta-alfa\,\!, не участвуют в создании общего крутящего момента.

При числе витков в обмотке равном s крутящий момент будет равен M_s=s\cdot 2\cdot B\cdot I\cdot L\cdot r\cdot sin(w\cdot t)\,\!.

Наибольший крутящий момент будет при угле поворота рамки равном \pi/2\,\!, т.е. 90°, при этом угле поворота рамки с током вектора магнитных полей статора и ротора (рамки) будут перпендикулярны друг к другу, т.е. под углом 90°. При угле поворота ротора (рамки) 180° крутящий момент равен нулю из-за нулевого плеча, но силы не равны нулю и это положение ротора (рамки), при отсутствии переключения тока, весьма устойчиво и подобно одному шагу в шаговом двигателе.

Без учёта короткозамкнутых щётками частей крутящего момента средний крутящий момент за один оборот (период) равен площади под интегральной кривой крутящего момента делённой на длину периода (2\cdot \pi):

Mkrsr=(2\cdot \int\limits_0^{\pi} B\cdot I\cdot L\cdot r\cdot sin(w\cdot t) d(w\cdot t))/(2\cdot \pi)=B\cdot I\cdot L\cdot r\cdot (\int\limits_0^{\pi} sin(w\cdot t) d(w\cdot t))/\pi.

При s витков в обмотке

Mkrsr=s\cdot B\cdot I\cdot L\cdot r\cdot (\int\limits_0^{\pi} sin(w\cdot t) d(w\cdot t))/\pi.

Две рамки с током в однородном магнитном поле полюсов статора

Если на роторе машины установить вторую рамку, сдвинутую относительно первой на угол π / 2, то получится четырёхполюсный ротор. Момент второй рамки:

M_c = 2 \cdot B \cdot I \cdot L \cdot r \cdot sin(\omega t + \pi/2) = 2 \cdot B \cdot I \cdot L \cdot r \cdot cos(\omega t)

Суммарный момент обеих рамок:

M_k = M_s + M_c = 2 \cdot B \cdot I \cdot L \cdot r \cdot (sin(\omega t) + cos(\omega t))

Таким образом получается, что крутящий момент зависит от угла поворота ротора, но неравномерность меньше, чем при одной рамке. Кроме этого добавляется самозапуск из любого положения ротора. При этом для второй рамки потребуется второй коллектор (щёточно-коллекторный узел). Оба узла соединяются параллельно, при этом переключение тока в рамках происходит в интервалах с наименьшим током в рамках, при последовательном соединении переключение тока в одной из рамок (разрыв цепи) происходит во время максимального тока в другой рамке. Практически, из-за того, что угловая ширина щётки α [рад] немного меньше угловой ширины зазора β [рад] между пластинами коллектора (ламелями) восемь небольших частей под кривой крутящего момента, равных

2 \cdot B \cdot I \cdot L \cdot r \int \limits_0^{\Delta/2} sin(\omega t) \cdot d(\omega t), где Δ = β − α, не участвуют в создании общего крутящего момента.

Рамка с током в неоднородном магнитном поле полюсов статора

Если магнитное поле полюсов статора неоднородное и изменяется по отношению к стержням рамки по закону

B=B_m\cdot sin(\omega\cdot t)\,\!, то крутящий момент для одного стержня будет равен

M=B_m\cdot sin(\omega\cdot t)\cdot I\cdot L\cdot r\cdot sin(\omega\cdot t)=B_m\cdot I\cdot L\cdot r\cdot (sin(\omega\cdot t))^2\,\!,

для двух стержней

M_s=2\cdot B_m\cdot I\cdot L\cdot r\cdot (sin(\omega\cdot t))^2\,\!,

для рамки из s\,\! витков

M_ss=s\cdot 2\cdot B_m\cdot I\cdot L\cdot r\cdot (sin(\omega\cdot t))^2\,\!.

В создании крутящего момента не участвуют четыре части под кривой крутящего момента равные

s\cdot 2\cdot B_m\cdot I\cdot L\cdot r\cdot \int\limits_0^{delta/2} (sin(\omega\cdot t))^2 d(\omega\cdot t).

Без учёта короткозамкнутых щётками частей крутящего момента средний крутящий момент за один оборот (период) равен площади под интегральной кривой делённой на длину периода (2\cdot \pi):

Mkrsr=2\cdot \int\limits_0^{\pi} B_m\cdot I\cdot L\cdot r\cdot (sin(\omega\cdot t))^2 d(\omega\cdot t)/(2\cdot \pi)=B_m\cdot I\cdot L\cdot r\cdot \int\limits_0^{\pi} (sin(\omega\cdot t))^2 d(\omega\cdot t)/\pi

При s витках в обмотке

Mkrsr=(s\cdot B_m\cdot I\cdot L\cdot r\cdot \int\limits_0^{\pi} (sin(\omega\cdot t))^2 d(\omega\cdot t))/\pi.

Две рамки с током в неоднородном магнитном поле полюсов статора

Для второй (косинусной) рамки sin(w\cdot t+\pi/2)=cos(w\cdot t)\,\!,

крутящий момент от второй (косинусной) рамки будет равен

M_c=2\cdot B_m\cdot I\cdot L\cdot r\cdot (cos(w\cdot t))^2\,\!,

суммарный крутящий момент от обеих рамок равен

M_k=M_s+M_c=2\cdot B_m\cdot I\cdot L\cdot r\cdot ((sin(w\cdot t))^2+(cos(w\cdot t))^2)=2\cdot B_m\cdot I\cdot L\cdot r\,\!, т.е. постоянен и от угла поворота ротора не зависит.

Практически, из-за наличия зазора, восемь небольших частей под кривой крутящего момента равные

2\cdot B_m\cdot I\cdot L\cdot r\cdot \int\limits_0^{delta/2} (sin(w\cdot t))^2 d(w\cdot t) каждая,

в создании крутящего момента не участвуют.

Для вычисления момента инерции ротора его можно считать в первом приближении сплошным однородным цилиндром с моментом инерции

J_a=(1/2)\cdot m\cdot R^2\,\!, где m\,\! - масса цилиндра (ротора), R\,\! - радиус цилиндра (ротора).

Взаимодействие магнитных полей

Магнитные поля статора и ротора (рамки с током), взаимоотталкиваются, чем ротор (рамка) приводится во вращение на 180°. Для дальнейшего вращения необходимо переключение направления тока в рамке.

Разновидности

Коллекторные, с щёточноколлекторным переключателем тока

С одним коллектором (щёточноколлекторным узлом) и 2\cdot n обмотками, где n\,\! - число пар полюсов ротора, с соединением обмоток ротора в кольцо (по этой классификации двигатель на рис. 2 является полуторным, имеет полторы пары полюсов и 2*1,5=3 обмотки ротора). Имеют большую короткозамкнутую щётками часть обмотки ротора, равную

k\cdot alfa/(2\cdot \pi)\,\!, где k\,\! - число щёток, alfa\,\! - угловая ширина одной щётки (рад), \pi\,\! - число пи (3,14...).

С двумя коллекторами (щёточноколлекторными узлами, в бесколлекторных с инвертором на двух параллельных мостах) и двумя обмотками синусной и косинусной (синусно-косинусный, двухфазный) с неоднородным (синусообразным) магнитным полем полюсов статора. Имеют малую нерабочую часть под кривой крутящего момента, равную

8\cdot 2\cdot B_m\cdot I\cdot L\cdot r\cdot \int\limits_0^{delta/2} (sin(w\cdot t))^2 d(w\cdot t), где delta=betta-alfa, betta\,\! - угловая ширина зазора между пластинами коллектора (ламелями), подобен двухфазному бесколлекторному.

С тремя коллекторами и тремя обмотками (в бесколлекторных с инвертором на трёх параллельных мостах, трёхфазный).

С четырьмя коллекторами (щёточноколлекторными узлами) и двумя обмотками синусной и косинусной (синусно-косинусные), специальные. Специальная конструкция коллектора с четырьмя коллекторами (один коллектор на одну щётку) позволяет почти до нуля уменьшить нерабочую часть крутящего момента (нерабочая часть крутящего момента в этом двигателе зависит от точности изготовления деталей) и сделать используемую часть крутящего момента независимой от угловой ширины щётки. При этом угловая ширина одной пластины коллектора равна gamma=\pi-alfa\,\!, где alfa\,\! - угловая ширина одной щётки.

С четырьмя коллекторами и четырьмя обмотками (в бесколлекторных - с инвертором на четырёх параллельных мостах, четырёхфазный).

С восемью коллекторами (щёточноколлекторными узлами). В этом двигателе уже нет рамок, а ток подаётся через коллекторы в отдельные стержни ротора.

И др.

Другие виды электродвигателей постоянного тока

Применение

Бесколлекторные, с электронным переключателем тока

Электронным аналогом щёточно-коллекторного узла является инвертор с датчиком положения ротора (ДПР) (Вентильный электродвигатель).

Ротор является постоянным магнитом, а обмотки статора переключаются электронными схемами — инверторами. Бесколлекторные электродвигатели могут быть однофазными (две «мёртвые точки»), двухфазными (синусно-косинусными), трёх- и более фазными.

Бесколлекторный двигатель постоянного тока с выпрямителем (мостом) может заменить универсальный коллекторный двигатель (УКД).

Управление ДПТ

Механическая характеристика ДПТ

Зависимость частоты от момента на валу ДПТ. Отображается в виде графика. Горизонтальная ось (абсцисс) — момент на валу ротора, вертикальная ось (ординат) — частота вращения ротора. Механическая характеристика ДПТ есть прямая, идущая с отрицательным наклоном.

Механическая характеристика ДПТ строится при определённом напряжении питания обмоток ротора. В случае построения характеристик для нескольких значений напряжения питания говорят о семействе механических характеристик ДПТ.

Регулировочная характеристика ДПТ

Зависимость частоты вращения ротора от напряжения питания обмоток ротора ДПТ. Отображается в виде графика. Горизонтальная ось (абцисс) — напряжение питания обмоток ротора, вертикальная ось (ординат) — частота вращения ротора. Регулировочная характеристика ДПТ есть прямая, идущая с положительным наклоном.

Регулировочная характеристика ДПТ строится при определённом моменте, развиваемом двигателем. В случае построения регулировочных характеристик для нескольких значений момента на валу ротора говорят о семействе регулировочных характеристик ДПТ.

Управление ДПТ

Основные формулы, используемые при управлении ДПТ:

Крутящий момент, развиваемый двигателем, пропорционален току в обмотке якоря (ротора):

M = k_m \cdot I\,, где I\, - ток в обмотке якоря, k_m\, — коэффициент крутящего момента двигателя (зависит от конструкции двигателя и тока в обмотке возбуждения).

Ток в обмотке ротора по закону Ома прямо пропорционален приложенному напряжению и обратно пропорционален сопротивлению обмотки ротора:

I = U/R\,, где U\, - напряжение, приложенное к обмотке ротора, R\, — сопротивление обмотки ротора.

ПротивоЭДС в обмотках якоря пропорциональна угловой частоте вращения ротора:

E = k_e \cdot \omega\,, где k_e\, — коэффициент ЭДС двигателя, \omega\, - угловая скорость вращения ротора.

Следовательно, величиной крутящего момента можно управлять меняя напряжение на ДПТ. Такой способ применяют для относительно маломощных двигателей.

Для управления более сильными (мощными) двигателями используют: а) принцип ШИМ, когда изменяется не величина напряжения, а длительность его приложения к двигателю, б) регулирование крутящего момента изменением напряжения на обмотке возбуждения, требует меньшую мощность элементов схемы управления, чем регулирование изменением напряжения на всём двигателе, но при этом способе регулирования ток через обмотку якоря не управляется, из-за этого даже при малом крутящем моменте большой ток через обмотку якоря будет нагревать обмотку якоря, что может привести к перегреву и выходу из строя двигателя. Возможно применение для регулирования крутящего момента в небольших пределах от номинального крутящего момента.

Управление двигателем осуществляется по току в обмотке двигателя, который пропорционален напряжению, приложенному к этой обмотке. Реакцию двигателя на данное напряжение при определённом внешнем моменте можно увидеть на соответствующей регулировочной характеристике. Регулировочная характеристика показывает скорость, которую двигатель достигнет в установившемся режиме.

Достоинства и недостатки ДПТ

Достоинства:

Недостатки:

См. также

Ссылки

Wikimedia Foundation. 2010.

dikc.academic.ru


Смотрите также