ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Глава 17 Капиллярные явления. Двигатель капиллярный


Вечный двигатель на капиллярном эффекте : Свободный полёт

1. Дерево как и любое другое растение не имеет мышц, мускулов и т.п.2. Жидкость поднимается по стволу дерева к веткам и листьям на значительную высоту, и там не замирает в неподвижном равновесии, а используется по назначению, в т.ч. в некоторых случаях может и капать вниз.3. Это происходит не только весной, но и в течение всего года (по крайней мере при плюсовой температуре) - иначе бы дерево просто засохло.

Скорее всего при подъёме воды деревом используется не капиллярный эффект (или не только капиллярный эффект), очевидно живые клетки дерева могут поднимать воду и передавать её дальше по цепочке. Мёртвая древесина воды не поднимает, деревья засыхают.

Следовательно - построить вечный двигатель на капиллярном эффекте не получится.

Но можно попытаться создать генномодифицированное дерево (или растение, скажем бамбук), главной задачей которого будет не рост и размножение, а подъём и последующее выделение воды. Это конечно будет ни что иное, как утилизация растением солнечной энергии, но возможно КПД такого "биотоплива" будет выше, чем традиционного - масла или спирта.

Кстати о спирте. Способ его получения знают все: брожение и последующее кипячение, перегонка. При этом брожение длится до момента, когда спирта в жидкости накопится столько, что микроорганизмы погибают (12-15%), что уже не есть хорошо. Еще хуже последующее кипячение, отнимающее много энергии и снижающее КПД процесса а то и вовсе делающее его неэффективным. Предлагаю продувать активно бродящую субстанцию например инертным газом или азотом (воздухом нельзя, в присутствии кислорода драгоценный нежнейший спирт :shock: окислится до уксуса :-( ), удаляя таким образом излишки спирта, при этом микроорганизмы не гибнут, пока не иссякнет питательная среда (а пищи им можно и подкинуть), затем извлекать из газа пары спирта и использовать газ повторно.

dxdy.ru

Гидравлический вечный двигатель - Мастерок.жж.рф

В 1685 г. в одном из выпусков лондонского научного журнала «Философские труды» был опубликован предложенный французом Дени Папеном проект гидравлического перпетуум мобиле, принцип действия которого должен был опровергнуть известный парадокс гидростатики. Как видно из изображенного на рисунке, это устройство состояло из сосуда, сужавшегося в трубку в форме буквы C, которая загибалась кверху и своим открытым концом нависала над краем сосуда.

Автор проекта предполагал, что вес воды в более широкой части сосуда обязательно будет превосходить вес жидкости, находящейся в трубке, т.е. в более узкой его части. Это означало, что жидкость своей тяжестью должна была бы выдавливать саму себя из сосуда в трубку, по которой ей вновь приходилось бы возвращаться в сосуд, — тем самым достигалась требуемая непрерывная циркуляция воды в сосуде.

Как вы предположите, почему на видео "вечный двигатель" работает?

К сожалению, Папен не осознавал того, что решающим фактором в данном случае является не разное количество (а с ним и различный вес жидкости в широкой и узкой частях сосуда), а прежде всего свойство, присущее всем без исключения сообщающимся сосудам: давление жидкости в самом сосуде и изогнутой трубке всегда будет одинаковым. Гидростатический парадокс как раз и объясняется особенностями этого по существу своему именно гидростатического давления.

Называемый иначе парадоксом Паскаля, он утверждает, что суммарное давление, т.е. сила, с которой жидкость давит на горизонтальное дно сосуда, определяется только весом столба жидкости, находящейся над ним, и совершенно не зависит от формы сосуда (например, от того, сужаются или расширяются его стенки) и, следовательно, от количества жидкости.

Жертвами подобных заблуждений были иногда даже люди, работавшие на самом переднем крае современной им науки и техники. Примером может служить сам Дени Папин (1647-1714 гг.) — изобретатель не только «папинова котла» и предохранительного клапана, но и центробежного насоса, а главное — первых паровых машин с цилиндром и поршнем. Папин даже установил зависимость давления пара от температуры и показал, как получать на ее основе и вакуум, и повышенное давление. Он был учеником Гюйгенса, переписывался с Лейбницем [9] и другими крупными учеными своего времени, состоял членом английского Королевского общества и Академии наук в Неаполе. И вот такой человек, который по праву считается крупным физиком и одним из основоположников современной теплоэнергетики (как создатель парового двигателя), работает и над вечным двигателем! Мало этого, он предлагает такой вечный двигатель, ошибочность принципа которого была совершенно очевидна и современной ему науке. Он публикует этот проект в журнале «Философские труды» (Лондон, 1685 г.).

Рис. 1.. Модель гидравлического вечного двигателя Д. Папина

Идея вечного двигателя Папина очень проста — это по существу перевернутая «вверх ногами» труба Зонки (рис. 1). Поскольку в широкой части сосуда вес воды больше, его сила должна превосходить силу веса узкого столба воды в тонкой трубе С. Поэтому вода будет постоянно сливаться из конца тонкой трубки в широкий сосуд. Остается только подставить под струю водяное колесо и вечный двигатель готов!

Очевидно, что на самом деле так не получится; поверхность жидкости в тонкой трубке установится на том же уровне, что и в толстой, как в любых сообщающихся сосудах (как в правой части рис. 1.).

Судьба этой идеи Папина была той же, что и других вариантов гидравлических вечных двигателей. Автор к ней больше никогда не возвращался, занявшись более полезным делом — паровой машиной.

История с изобретением Д. Папином наталкивает на вопрос, постоянно возникающий при изучении истории вечных двигателей: чем объяснить поразительную слепоту и странный образ действий многих весьма образованных и, главное, талантливых людей, возникающие каждый раз, как только дело касается изобретения вечного двигателя?

Мы вернемся к этому вопросу в дальнейшем. Если же продолжить разговор о Папине, то непонятно и другое. Мало того, что он не учитывает уже известные законы гидравлики. Ведь в это время он был на должности «временного куратора опытов» при Лондонском королевском обществе. Папин мог при своих экспериментальных навыках легко проверить предложенную им идею вечного двигателя (так же, как он проверял другие свои предложения). Такой эксперимент легко поставить за полчаса, даже не располагая возможностями «куратора опытов». Он этого не сделал и почему-то отправил статью в журнал, ничего не проверив. Парадокс: выдающийся ученый-экспериментатор и теоретик публикует проект, противоречащий уже утвердившейся теории и не проверенный экспериментально!

В дальнейшем было предложено еще много гидравлических вечных двигателей и с другими способами подъема воды, в частности капиллярных и фитильных (что, собственно, одно и то же) [. В них предлагалось жидкость (воду или масло) поднимать из нижнего сосуда в верхний по смачиваемому капилляру или фитилю. Действительно, поднять жидкость на определенную высоту таким путем можно, но те же силы поверхностного натяжения, которые обусловили подъем, не дадут жидкости стекать с фитиля (или капилляра) в верхний сосуд.

А что же происходит на видео?

Когда в воронку наливается жидкость, то по закону сообщающихся сосудов, уровни должны быть одинаковые, а она в трубку вытекает с большим запаздыванием, стало быть под деревянным штативом находится ещё сосуд из которого вода перекачивается, так как она остановится на середине и не потечёт.Это гидравлический перпетуум мобиле средних веков, в который заложена ошибка, как якобы больший вес воронки вытеснит воду из трубки, но это не так. Любой диаметр трубки и любая форма не имеют значения, уровни просто уровняются

Вот тут мы обсуждали, не ужели Так ехать нельзя! и даже говорили, что Вице-президент РЖД был барабанщиком Цоя?. Вот тут Главные ляпы в книге «Архипелаг ГУЛАГ» и Распространённые заблуждения и вопросы по средневековому оружию и броне

masterok.livejournal.com

Глава 17 Капиллярные явления. Новые источники энергии

Глава 17 Капиллярные явления

Отдельный класс устройств преобразования тепловой энергии среды образуют многочисленные капиллярные машины, производящие работу без затрат топлива. Подобных проектов в истории техники известно великое множество. Сложность в том, что те же силы молекулярного сцепления (смачивание), которые двигают жидкость вверх, наверху «не выпустят ее из своих объятий», поэтому капиллярный двигатель работать не будет без специальных «конструктивных хитростей».

Один из известных авторов в данной области, И.И. Эльшанский писал: «Ломоносов посвятил немало времени изучению явлений молекулярного сцепления и капиллярности. Растения без них не могли бы существовать. Как бы иначе поднималась влага по стволам и стеблям растений? Но, с другой стороны, по данным М. В. Ломоносова, вода по самому тончайшему капилляру поднимается максимум на десятки миллиметров. А деревья достигают высоты десятков метров! Если, как принято считать, влага самопроизвольно «перетекает» из одного капилляра древесных волокон в другой, почему не допустить, что капиллярный вечный двигатель возможен? Пояснения, что влага в растениях поднимается за счет корневого давления, вряд ли можно считать убедительными. Так где же истина?» (журнал «Новая энергетика», № 14, 2003 год.

На рис. 224 показан пример такого преобразователя энергии, изобретение Александра Родионова (г. Малоярославец, Россия).

Рис. 224. Капиллярная машина

Суть его изобретения в том, что «согласно законам Ньютона и Жюрена жидкость по капиллярам поднимается вверх и, истекая вниз, при этом, она вращает колесо».

Эльшанский обращает внимание на важные детали конструирования таких машин: «Однажды при сборке очередного прибора у меня не оказалось двух одинаковых стеклянных трубок. Пришлось вставить одну трубку из прозрачного полиэтилена. Но, сколько ни старался, вода в сообщающихся сосудах не устанавливалась на одинаковом уровне. В стеклянной трубке он постоянно был более высоким. Вообще-то иначе и быть не может, но все же не следует ли в закон о сообщающихся сосудах ввести слова: «изготовленных из одинаково смачиваемого материала»?

Вывод: при изготовлении капиллярных трубок, материал трубки может быть составной, с разным коэффициентом смачивания. В таком случае, создаются разные условия для «входа» жидкости в трубку, и для ее выхода. Фактически, как мы и рассматривали в начале книги условия работоспособности таких машин, необходимо сконструировать две различные физические системы, и организовать между ними связь.

Другой важный аспект, который предлагает Эльшанский для изучения, состоит в создании эффекта испарения. Именно испарение на верхнем конце капилляра создает в нем разряжение, и заставляет воду подниматься на десятки метров в стволе дерева. Он пишет: «Вероятно, ошибка Родионова и других авторов капиллярных двигателей в том, что они пытались добиться излияния воды из капилляра. А если ее не изливать, а испарять, как это происходит в почве и в растениях, тогда, вероятно, вечный двигатель заработает». В растениях, влага испаряется через поверхность листа.

Устройство Эльшанского признали изобретением, правда, назвали его не «вечный двигатель», как он предлагал, а «тепловой двигатель» (авторское свидетельство СССР № 1455040), рис. 225. Справа на рис. 225, показано устройство, в котором автор предложил применить натуральные капиллярные волокна растений для подъема жидкости и вращения ротора электрогенератора.

Рис. 225. «Испарительные» капиллярные двигатели Эльшанского

Интересный пример простого устройства предложил в 1970 году Лазарев из Новосибирска. Устройство назвали «кольцар Лазарева», поскольку в нем «закольцован» процесс испарения и циркуляции жидкости. При этом, в верхней части можно поставить небольшую турбинку или колесо с лопастями, для демонстрации того, что падающие капли воды могут производить полезную работу. Схема показана на рис. 226.

Рис. 226. Кольцар Лазарева – фонтан Кулибина

Отметим, что аналогичный «вечный фонтан» работает в часах Кулибина, уже более 200 лет (читайте журнал «Изобретатель и Рационализатор», № 11, 2001 год).

Рассмотрим современную схему конструкции, рис. 226. В качестве пористой перегородки, Лазарев использовал пористую керамику, но также вполне подходит древесина (волокна надо использовать вертикально) из лиственных пород. Хвойная древесина смолистая, поэтому хуже смачивается. Толщина пористой перегородки может быть минимальной, достаточной для прочности конструкции. Перегородка должна быть герметично приклеена к корпусу. Корпус – обычная пластиковая бутылка.

Трубка может быть пластиковая, диаметр 3–5 мм. Рабочая жидкость – бензин, или другая легко-испаряемая при комнатной температуре жидкость. Корпус должен быть герметично закрыт.

Принцип работы основан на том, что испаряемая перегородкой жидкость (в нижней части устройства) постепенно конденсируется под действием гравитации. Молекулы сами собой опускаются вниз, и переходят в жидкое состояние вещества. Поперек перегородки должен образоваться температурный градиент. Один из исследователей данного направления, И.А.Прохоров, предложил усилить эффект, поставив поперек перегородки несколько металлических болтов (их крепление тоже надо сделать на герметик), так как теплопроводность металла намного выше, чем у дерева. Перенос тепла усилит эффект испарения.

В общем, «игрушка» интересная, хотя до практически полезных мощностей ее трудно развить. Польза от нее может быть «психологическая», для убеждения «аудитории» в реальности работоспособности монотермического двигателя, поглощающего тепловую энергию среды, без использования двух источников температур. Данная машина способна работать годами, при условии качественного исполнения ее деталей. Масштабный проект может быть интересен, хотя вырабатывать значительную мощность в роторе электрогенератора сможет машина очень больших размеров. Поделитесь на страничке

Следующая глава >

tech.wikireading.ru

Капиллярный ионный двигатель для спутников класса CubSat

Новый ионный двигатель обладает миниатюрными размерами и в качестве топлива использует жидкий электролит. Он будет применяться для сверхкомпактных спутников в позаземном пространстве космоса.

Устройство и принцип работы ионного двигателя

Свое название данный тип псевдореактивных движителей получил за то, что в качестве реактивной толкающей струи в нем используется поток заряженных частиц – ионов. Тяга такого двигателя крайне мала, однако он может стабильно работать в течение десятилетий на одной заправке. Основная область применения таких устройств – ходовые системы искусственных космических объектов.

Конструктивно ионный двигатель состоит из камеры с газообразным или твердым веществом, обладающим большим количеством свободных ионов. Как правило, это небольшой кусочек радиоактивного материала. Камера экранирована и имеет только один узкий выход для ионов, возле которого установлены электромагнитные ускорители. Они придают потоку ионов конусообразную форму, что и приводит к формированию псевдореактивной струи.

Отличительные черты системы MicroThrust

Разработанная европейскими учеными система MicroThrust отличается крайне компактными размерами и наличием стандартизированных модулей. Она предназначена для массового использования в спутниках класса CubSat – мини-устройствах в виде куба со сторонами 10×10×10 см. Вес двигателя составляет 200 гр., причем 100 гр. приходиться на жидкое топливо.

В его роли выступает электролитический состав EMI-BF4, который помещен в особую емкость. Выходное отверстие этой камеры представляет собой комплекс микрочипов с капиллярной системой. На 1 кв. см. поверхности содержится примерно 5-7 тыс. отверстий, оснащенных кремниевыми соплами – за счет капиллярного эффекта мельчайшие капли электролита постоянно и упорядоченно просачиваются через них вместе с ионами.

Они попадают в двойную систему электродов – первая формирует конусообразную струю, вторая ее ускоряет. Расчетная мощность двигателя составляет 100 микроН, что позволяет системе перемещаться в безвоздушном пространстве со скоростью порядка 11 км/с. А 100-грамового запаса топлива хватит для того, чтобы мини-спутник преодолел расстояние от Земли до Луны. В настоящее время создан прототип двигателя MicroThrust, который проходит испытания, а первый рабочий образец отправиться в космос в течение 3-4 лет.

zaryad.com

Перемещаем воду с помощью капиллярного эффекта – Развитие ребенка

Перемещаем воду с помощью капиллярного эффекта

Рейтинг5

Переместите воду из одного стакана в другой с помощью бумажного полотенца

Вода — основной источник жизни на Земле. Ею питаются все растения, без неё не выживет ни животное, ни человек. Но как же она попадает из земли в самые труднодоступные места? Ответ можно проиллюстрировать простым экспериментом. С его помощью ваш ребёнок сможет наглядно увидеть такое явление, как капиллярный процесс и усвоить основной закон передвижения жидкостей.

Вам потребуются

1. Два/три прозрачных стакана или бокала.

2. Чистая вода.

3. Несколько бумажных полотенец (салфетки или туалетная бумага).

4. Марганцовка, зелёнка или другой краситель (по желанию, для лучшей наглядности эксперимента).

Порядок действий

1. Поставьте рядом пустой стакан и стакан с водой. В стакане с водой разбавьте щепотку марганцовки или немножко зелёнки. Эксперимент можно проводить и без подкрашивания воды, но так ребёнок лучше увидит ее перемещение.

2. Скрутите бумажное полотенце (или несколько) в форме каната. У вас должно получиться, что-то похожее на фитиль свечи.

3. Опустите один конец бумажного полотенца в ёмкость с водой, другой — в пустой стакан.

4. Посмотрите, что происходит. Для того чтобы увидеть результаты вам необходимо будет немного подождать. В это время можете заняться другими экспериментами или объяснить ребёнку основные сферы применения капиллярного эффекта в природе и технике.

5. Проведите експеримент с тремя стаканами и с жидкостями разного цвета, попробуйте поставить стаканы на разную высоту.

Что происходит?

Жидкость начинает подниматься по вашему импровизированному фитилю и планомерно перемещаться в пустой стакан. Это будет очень хорошо видно, если вы разбавите воду марганцовкой или зелёнкой. Бумажное полотенце будет постепенно окрашиваться в зелёный или красный цвет и ребёнок увидит своими глазами путь перемещения воды. Процесс будет проходить до тех пор, пока в обоих стаканах не соберётся одинаковое количество жидкости.

Происходящее называют «капиллярным эффектом». Благодаря невысокой вязкости жидкости и большой силе сцепления воды с зазорами между волокнами бумажного полотенца она постепенно перемещается с одного стакана в другой.

Факты

С помощью капиллярного эффекта получают влагу растения. Они впитывают жидкость корнями из земли и благодаря небольшим зазорам внутри ствола доставляют её наверх к листьям и плодам.

Капиллярность помогает циркулированию крови в организме животных и людей. Благодаря ей кровь и другие жидкости могут свободно попадать в любую часть тела. Так, в организме человека один из типов сосудов даже называется капилляры.

Капиллярный эффект часто можно наблюдать в быту. Этот процесс происходит, к примеру, во время подачи керосина на фитиль в лампе или простого вытирания тела полотенцем.

Сила капиллярного эффекта пропорционально зависит от площади окружности жидкости. То есть, чем уже будет трубка — тем быстрее поднимется вода.

Существует теория, которая утверждает, что на основе капиллярного эффекта можно создать вечный двигатель. Вода будет постоянно подниматься и, попадая на лопасти, приводить механизм в движение.

Оцените публикацию

Рейтинг статьи: 5 из 5 на основе 1 оценок.

Facebook

Twitter

Вконтакт

Google+

Развитие ребенка21.10.2015

childdevelop.ru

Как это работает: вечный двигатель

КЛАССИФИКАЦИЯ

Никак нет

Вечных двигателей не существует. Тем не менее они делятся на несколько типов.

Вечные двигатели первого родапретендуют на создание энергии из ничего в нарушение первого начала термодинамики (закон сохранения энергии). Не работают.

Вечные двигатели второго родапытаются многократно использовать однажды уже потраченную энергию, нарушая второе начало термодинамики (принцип неубывания энтропии, или беспорядка). Не работают.

Мнимые вечные двигателинезаметно подпитываются энергией из внешней среды. Работают, но ложно выдаются за вечные двигатели.

Жульнические вечные двигатели создают впечатление работающего perpetuum mobile за счет спрятанного источника энергии. Работают, но вечными двигателями не являются.

МЕХАНИЧЕСКИЙ ВЕЧНЫЙ ДВИГАТЕЛЬ

Perpetuum mobile первого рода

Одна из ранних моделей вечного двигателя. Слева от оси грузов больше, чем справа. С первого взгляда кажется, что левая часть всегда перевешивает, заставляя колесо крутиться. Наверху грузы переваливаются справа налево, и движение продолжается вечно. Но при более внимательном рассмотрении видно, что, хотя грузов справа и меньше, у них больше рычаг, и именно правая сторона может перевешивать.

На самом деле. Истина, как водится, посередине: грузы с двух сторон уравновешивают друг друга, и колесо, немного покачавшись, попросту остановится.

ПОПЛАВКОВЫЙ ВЕЧНЫЙ ДВИГАТЕЛЬ

Perpetuum mobile первого рода

Боги заставили Сизифа тащить в гору камень, который срывался и катился вниз. Изобретатели этого двигателя решили, что закон Архимеда может работать не хуже наказанного царя Коринфа. Связанные в цепочку запаянные поплавки всплывают в воде, а на воздухе опускаются под действием силы тяжести, вращая соединенные с ними колеса.

На самом деле. Проблема в том, что при входе в воду поплавки должны преодолеть ее сопротивление и приподнять всю цепочку, чтобы высвободить для себя место. На это уходит ровно столько же энергии, сколько «вырабатывает» двигатель. Без участия богов лишней энергии не получится.

КАПИЛЛЯРНЫЙ ВЕЧНЫЙ ДВИГАТЕЛЬ

Perpetuum mobile первого рода

Сила тяжести не дает покоя многим изобретателям вечных двигателей: если хитрым образом преодолеть ее без затрат энергии, а потом сбросить поднятый груз, то на выходе получится «бесплатная» работа. Например, можно заставить воду подниматься из бассейна в стоящий на возвышении сосуд за счет капиллярного эффекта. Из емкости вода будет выливаться обратно в бассейн и крутить колесо.

На самом деле. До определенной высоты вода действительно сама движется вверх, но вот капать в верхнюю емкость она не станет — жидкость удержит тот же капиллярный эффект, который поднял ее из бассейна.

ДЕМОН МАКСВЕЛЛА

Perpetuum mobile второго рода

Крошечное разумное существо, которое сидит в стакане, разделенном перегородкой, и поднимает ее, чтобы пропустить быстрые молекулы в одну сторону, а медленные в другую, придумал человек, максимально далекий от вечных двигателей. Великий физик Джеймс Максвелл вряд ли предполагал, что изобретатели perpetuum mobile по-своему оценят потенциал созданного им демона. Конечно, они выдумывали вместо этого мифического существа всевозможные механизмы, в том числе и с наномоторами, но суть оставалась неизменной: сделать так, чтобы в одной части сосуда молекулы двигались быстрее, чем в другой, а из возникшего перепада температуры и давления получить энергию.

На самом деле. Эта заманчивая схема вполне может работать, но только при наличии настоящего демона. Без него на сор тировку молекул придется тратить энергию, что лишает всю затею смысла.

ВЕЧНЫЕ ЧАСЫ

Мнимый perpetuum mobile

В 1864 году новозеландский часовщик, математик и астроном Артур Беверли построил часы, идущие без подзавода по сей день. Правда, их несколько раз останавливали для чистки, а однажды они встали сами, но потом вновь начали отсчитывать время. Конструкция хронометра очень проста. В резервуаре с маслом и воздухом плавает грузик, который поднимается и опускается при изменении уровня масла. Движения грузика взводят пружину часов.

На самом деле. Все законы физики строго соблюдаются, но часы Беверли не вечный двигатель. Они незаметно подпитываются энергией из окружающей среды — уровень масла изменяется в зависимости от атмосферного давления и температуры.

ТЕПЛОВОЙ НАСОС

Мнимый perpetuum mobile

Фактически это холодильник, поставленный камерой в окно, а радиатором в комнату. На обогрев помещения поступает тепло — не только выработанное за счет электричества, но и «высосанное» из холодной окружающей среды. Комната получает в 3–5 раз больше энергии, чем тратится электричества!

На самом деле. Из обогревателя с КПД выше 100% вышел бы отличный вечный двигатель, если бы не одно «но». Переход электричества в тепло необратим, и извлечь из лишних градусов прежнее количество электроэнергии нельзя. Так что отапливать дом холодильником задаром не получится, хотя сэкономить можно прилично.

ГЕНЕРАТОР БЕДИНИ

Жульнический perpetuum mobile (первого рода)

В 1984 году американский электрик Джон Бедини закрепил на колесе магниты, поставил рядом индукционную катушку и пару аккумуляторов. Когда магнит приближался к катушке, он возбуждал в ней ток, заряжающий аккумулятор. А когда удалялся, электроника подключала другой аккумулятор, который питал катушку, отталкивал магнит и раскручивал колесо. Через некоторое время батареи менялись местами. Бедини утверждал, что заряд батарей полностью восстанавливается, а колесо может совершать дополнительную работу за счет «свободной энергии» неизвестной науке природы.

На самом деле. На практике колесо, разумеется, останавливалось, но с хорошими аккумуляторами крутилось достаточно долго, чтобы впечатлить дилетантов и убедить их заплатить за набор для сборки вечного двигателя в домашних условиях.

А ЧТО СЕЙЧАС?

Таинственная энергия

Сегодня упоминать о вечных двигателях — моветон даже в кругу их изобретателей. В моде эвфемизм «свободная энергия», которая поступает из неведомого источника.

Характерный пример — генератор Сёрла, с виду похожий на большой подшипник. Он якобы создает магнитное поле, за счет которого система самораскручивается. При этом возникает антигравитация, и вся конструкция взлетает. Изобретатель, которому уже за 80, любит рассказывать, что идея генератора пришла к нему во сне, когда он был подростком. Источник загадочной энергии Джон Сёрл описывает смутно: то ли это эфир, то ли субатомные частицы.

У Сёрла много последователей, в том числе и в России. Они переводят ему пожертвования и приобретают дополнительную техническую информацию через сайт. Однако доход изобретателя скромен, и Сёрл уверен, что против него работает заговор энергетических компаний. По иску одной из них он был обвинен в том, что воровал электроэнергию по спрятанному в стене кабелю.

maxpark.com

Вечный двигатель на капиллярном эффекте : Свободный полёт

Опишу принцип работы кольцара Лазарева, как я его понимаю.Кольцар представляет собой замкнутый цилиндрический сосуд с пористой перегородкой 6 посередине, см. рис. Через перегородку проходит изогнутая трубка 4. Перегородка 6 разделяет кольцар на две части верхнюю 3 и нижнюю 2. В верхней части перегородки имеется трубка 5, которая сообщает верхнюю часть с атмосферой. Через трубку 5 кольцар заполняется летучей жидкостью, например, бензином. Бензин, стекая через пористую перегородку, попадает в нижнюю полость 2, в результате чего уровень бензина в нижней части цилиндра повышается. При этом воздух, находящийся под пористой перегородкой сжимается, и давление его увеличивается. Поскольку давление в полости 2 становится выше атмосферного, это давление выталкивает жидкость по изогнутой трубке 4 вверх. Когда уровни жидкости внутри трубки 4 и в полости 3 сравняются, как в сообщающихся сосудах, подъём жидкости по трубке 4 прекратится.ИзображениеЕсли теперь начать нагревать бензин (а он и так нагревается от температуры окружающей среды), то он начнёт испаряться и давление паров бензина в полости 2 начнёт возрастать. Бензин, в принципе, вообще можно нагреть до температуры кипения. Каждой температуре соответствует давление насыщенных паров бензина. Это давление, в соответствии с законом Дальтона, складывается с давлением чисто воздуха. Теперь, давление жидкости в изогнутой трубке 4 должно уравновесить давление в полости 2, с учётом добавки давления насыщенных паров бензина при данной температуре. Это значит, что уровень бензина в трубке 4 станет выше уровня бензина в верхней полости 3 настолько, чтобы давление этого добавочного столба бензина уравновесило добавочное же давление насыщенных паров. Если колено изогнутой трубки ниже высоты этого добавочного столба, то бензин начнёт капать с конца трубки.Существенно заметить, что кольцар работает за счёт разности давлений в полости 2 и атмосферного давления в полости 3. Кольцар Лазарева не является вечным двигателем второго рода потому, что не представляет собой замкнутую термодинамическую систему. Если заткнуть трубку 5, которая соединяет полость 3 с атмосферой, то бензин капать перестанет, т.к. давление в полости 3 тоже возрастет на величину давления насыщенных паров бензина. Если же трубку 5 не затыкать, то пары бензина будут выходить наружу, а сам бензин улетучиваться.Если я ошибаюсь, то надеюсь, что меня поправят.

dxdy.ru


Смотрите также