Скорее всего при подъёме воды деревом используется не капиллярный эффект (или не только капиллярный эффект), очевидно живые клетки дерева могут поднимать воду и передавать её дальше по цепочке. Мёртвая древесина воды не поднимает, деревья засыхают.
Следовательно - построить вечный двигатель на капиллярном эффекте не получится.
Но можно попытаться создать генномодифицированное дерево (или растение, скажем бамбук), главной задачей которого будет не рост и размножение, а подъём и последующее выделение воды. Это конечно будет ни что иное, как утилизация растением солнечной энергии, но возможно КПД такого "биотоплива" будет выше, чем традиционного - масла или спирта.
Кстати о спирте. Способ его получения знают все: брожение и последующее кипячение, перегонка. При этом брожение длится до момента, когда спирта в жидкости накопится столько, что микроорганизмы погибают (12-15%), что уже не есть хорошо. Еще хуже последующее кипячение, отнимающее много энергии и снижающее КПД процесса а то и вовсе делающее его неэффективным. Предлагаю продувать активно бродящую субстанцию например инертным газом или азотом (воздухом нельзя, в присутствии кислорода драгоценный нежнейший спирт окислится до уксуса
), удаляя таким образом излишки спирта, при этом микроорганизмы не гибнут, пока не иссякнет питательная среда (а пищи им можно и подкинуть), затем извлекать из газа пары спирта и использовать газ повторно.
dxdy.ru
В 1685 г. в одном из выпусков лондонского научного журнала «Философские труды» был опубликован предложенный французом Дени Папеном проект гидравлического перпетуум мобиле, принцип действия которого должен был опровергнуть известный парадокс гидростатики. Как видно из изображенного на рисунке, это устройство состояло из сосуда, сужавшегося в трубку в форме буквы C, которая загибалась кверху и своим открытым концом нависала над краем сосуда.
Автор проекта предполагал, что вес воды в более широкой части сосуда обязательно будет превосходить вес жидкости, находящейся в трубке, т.е. в более узкой его части. Это означало, что жидкость своей тяжестью должна была бы выдавливать саму себя из сосуда в трубку, по которой ей вновь приходилось бы возвращаться в сосуд, — тем самым достигалась требуемая непрерывная циркуляция воды в сосуде.
Как вы предположите, почему на видео "вечный двигатель" работает?
К сожалению, Папен не осознавал того, что решающим фактором в данном случае является не разное количество (а с ним и различный вес жидкости в широкой и узкой частях сосуда), а прежде всего свойство, присущее всем без исключения сообщающимся сосудам: давление жидкости в самом сосуде и изогнутой трубке всегда будет одинаковым. Гидростатический парадокс как раз и объясняется особенностями этого по существу своему именно гидростатического давления.
Называемый иначе парадоксом Паскаля, он утверждает, что суммарное давление, т.е. сила, с которой жидкость давит на горизонтальное дно сосуда, определяется только весом столба жидкости, находящейся над ним, и совершенно не зависит от формы сосуда (например, от того, сужаются или расширяются его стенки) и, следовательно, от количества жидкости.
Жертвами подобных заблуждений были иногда даже люди, работавшие на самом переднем крае современной им науки и техники. Примером может служить сам Дени Папин (1647-1714 гг.) — изобретатель не только «папинова котла» и предохранительного клапана, но и центробежного насоса, а главное — первых паровых машин с цилиндром и поршнем. Папин даже установил зависимость давления пара от температуры и показал, как получать на ее основе и вакуум, и повышенное давление. Он был учеником Гюйгенса, переписывался с Лейбницем [9] и другими крупными учеными своего времени, состоял членом английского Королевского общества и Академии наук в Неаполе. И вот такой человек, который по праву считается крупным физиком и одним из основоположников современной теплоэнергетики (как создатель парового двигателя), работает и над вечным двигателем! Мало этого, он предлагает такой вечный двигатель, ошибочность принципа которого была совершенно очевидна и современной ему науке. Он публикует этот проект в журнале «Философские труды» (Лондон, 1685 г.).
Рис. 1.. Модель гидравлического вечного двигателя Д. Папина
Идея вечного двигателя Папина очень проста — это по существу перевернутая «вверх ногами» труба Зонки (рис. 1). Поскольку в широкой части сосуда вес воды больше, его сила должна превосходить силу веса узкого столба воды в тонкой трубе С. Поэтому вода будет постоянно сливаться из конца тонкой трубки в широкий сосуд. Остается только подставить под струю водяное колесо и вечный двигатель готов!
Очевидно, что на самом деле так не получится; поверхность жидкости в тонкой трубке установится на том же уровне, что и в толстой, как в любых сообщающихся сосудах (как в правой части рис. 1.).
Судьба этой идеи Папина была той же, что и других вариантов гидравлических вечных двигателей. Автор к ней больше никогда не возвращался, занявшись более полезным делом — паровой машиной.
История с изобретением Д. Папином наталкивает на вопрос, постоянно возникающий при изучении истории вечных двигателей: чем объяснить поразительную слепоту и странный образ действий многих весьма образованных и, главное, талантливых людей, возникающие каждый раз, как только дело касается изобретения вечного двигателя?
Мы вернемся к этому вопросу в дальнейшем. Если же продолжить разговор о Папине, то непонятно и другое. Мало того, что он не учитывает уже известные законы гидравлики. Ведь в это время он был на должности «временного куратора опытов» при Лондонском королевском обществе. Папин мог при своих экспериментальных навыках легко проверить предложенную им идею вечного двигателя (так же, как он проверял другие свои предложения). Такой эксперимент легко поставить за полчаса, даже не располагая возможностями «куратора опытов». Он этого не сделал и почему-то отправил статью в журнал, ничего не проверив. Парадокс: выдающийся ученый-экспериментатор и теоретик публикует проект, противоречащий уже утвердившейся теории и не проверенный экспериментально!
В дальнейшем было предложено еще много гидравлических вечных двигателей и с другими способами подъема воды, в частности капиллярных и фитильных (что, собственно, одно и то же) [. В них предлагалось жидкость (воду или масло) поднимать из нижнего сосуда в верхний по смачиваемому капилляру или фитилю. Действительно, поднять жидкость на определенную высоту таким путем можно, но те же силы поверхностного натяжения, которые обусловили подъем, не дадут жидкости стекать с фитиля (или капилляра) в верхний сосуд.
А что же происходит на видео?
Когда в воронку наливается жидкость, то по закону сообщающихся сосудов, уровни должны быть одинаковые, а она в трубку вытекает с большим запаздыванием, стало быть под деревянным штативом находится ещё сосуд из которого вода перекачивается, так как она остановится на середине и не потечёт.Это гидравлический перпетуум мобиле средних веков, в который заложена ошибка, как якобы больший вес воронки вытеснит воду из трубки, но это не так. Любой диаметр трубки и любая форма не имеют значения, уровни просто уровняются
Вот тут мы обсуждали, не ужели Так ехать нельзя! и даже говорили, что Вице-президент РЖД был барабанщиком Цоя?. Вот тут Главные ляпы в книге «Архипелаг ГУЛАГ» и Распространённые заблуждения и вопросы по средневековому оружию и броне
masterok.livejournal.com
Глава 17 Капиллярные явления
Отдельный класс устройств преобразования тепловой энергии среды образуют многочисленные капиллярные машины, производящие работу без затрат топлива. Подобных проектов в истории техники известно великое множество. Сложность в том, что те же силы молекулярного сцепления (смачивание), которые двигают жидкость вверх, наверху «не выпустят ее из своих объятий», поэтому капиллярный двигатель работать не будет без специальных «конструктивных хитростей».
Один из известных авторов в данной области, И.И. Эльшанский писал: «Ломоносов посвятил немало времени изучению явлений молекулярного сцепления и капиллярности. Растения без них не могли бы существовать. Как бы иначе поднималась влага по стволам и стеблям растений? Но, с другой стороны, по данным М. В. Ломоносова, вода по самому тончайшему капилляру поднимается максимум на десятки миллиметров. А деревья достигают высоты десятков метров! Если, как принято считать, влага самопроизвольно «перетекает» из одного капилляра древесных волокон в другой, почему не допустить, что капиллярный вечный двигатель возможен? Пояснения, что влага в растениях поднимается за счет корневого давления, вряд ли можно считать убедительными. Так где же истина?» (журнал «Новая энергетика», № 14, 2003 год.
На рис. 224 показан пример такого преобразователя энергии, изобретение Александра Родионова (г. Малоярославец, Россия).
Рис. 224. Капиллярная машина
Суть его изобретения в том, что «согласно законам Ньютона и Жюрена жидкость по капиллярам поднимается вверх и, истекая вниз, при этом, она вращает колесо».
Эльшанский обращает внимание на важные детали конструирования таких машин: «Однажды при сборке очередного прибора у меня не оказалось двух одинаковых стеклянных трубок. Пришлось вставить одну трубку из прозрачного полиэтилена. Но, сколько ни старался, вода в сообщающихся сосудах не устанавливалась на одинаковом уровне. В стеклянной трубке он постоянно был более высоким. Вообще-то иначе и быть не может, но все же не следует ли в закон о сообщающихся сосудах ввести слова: «изготовленных из одинаково смачиваемого материала»?
Вывод: при изготовлении капиллярных трубок, материал трубки может быть составной, с разным коэффициентом смачивания. В таком случае, создаются разные условия для «входа» жидкости в трубку, и для ее выхода. Фактически, как мы и рассматривали в начале книги условия работоспособности таких машин, необходимо сконструировать две различные физические системы, и организовать между ними связь.
Другой важный аспект, который предлагает Эльшанский для изучения, состоит в создании эффекта испарения. Именно испарение на верхнем конце капилляра создает в нем разряжение, и заставляет воду подниматься на десятки метров в стволе дерева. Он пишет: «Вероятно, ошибка Родионова и других авторов капиллярных двигателей в том, что они пытались добиться излияния воды из капилляра. А если ее не изливать, а испарять, как это происходит в почве и в растениях, тогда, вероятно, вечный двигатель заработает». В растениях, влага испаряется через поверхность листа.
Устройство Эльшанского признали изобретением, правда, назвали его не «вечный двигатель», как он предлагал, а «тепловой двигатель» (авторское свидетельство СССР № 1455040), рис. 225. Справа на рис. 225, показано устройство, в котором автор предложил применить натуральные капиллярные волокна растений для подъема жидкости и вращения ротора электрогенератора.
Интересный пример простого устройства предложил в 1970 году Лазарев из Новосибирска. Устройство назвали «кольцар Лазарева», поскольку в нем «закольцован» процесс испарения и циркуляции жидкости. При этом, в верхней части можно поставить небольшую турбинку или колесо с лопастями, для демонстрации того, что падающие капли воды могут производить полезную работу. Схема показана на рис. 226.
Отметим, что аналогичный «вечный фонтан» работает в часах Кулибина, уже более 200 лет (читайте журнал «Изобретатель и Рационализатор», № 11, 2001 год).
Рассмотрим современную схему конструкции, рис. 226. В качестве пористой перегородки, Лазарев использовал пористую керамику, но также вполне подходит древесина (волокна надо использовать вертикально) из лиственных пород. Хвойная древесина смолистая, поэтому хуже смачивается. Толщина пористой перегородки может быть минимальной, достаточной для прочности конструкции. Перегородка должна быть герметично приклеена к корпусу. Корпус – обычная пластиковая бутылка.
Трубка может быть пластиковая, диаметр 3–5 мм. Рабочая жидкость – бензин, или другая легко-испаряемая при комнатной температуре жидкость. Корпус должен быть герметично закрыт.
Принцип работы основан на том, что испаряемая перегородкой жидкость (в нижней части устройства) постепенно конденсируется под действием гравитации. Молекулы сами собой опускаются вниз, и переходят в жидкое состояние вещества. Поперек перегородки должен образоваться температурный градиент. Один из исследователей данного направления, И.А.Прохоров, предложил усилить эффект, поставив поперек перегородки несколько металлических болтов (их крепление тоже надо сделать на герметик), так как теплопроводность металла намного выше, чем у дерева. Перенос тепла усилит эффект испарения.
В общем, «игрушка» интересная, хотя до практически полезных мощностей ее трудно развить. Польза от нее может быть «психологическая», для убеждения «аудитории» в реальности работоспособности монотермического двигателя, поглощающего тепловую энергию среды, без использования двух источников температур. Данная машина способна работать годами, при условии качественного исполнения ее деталей. Масштабный проект может быть интересен, хотя вырабатывать значительную мощность в роторе электрогенератора сможет машина очень больших размеров. Поделитесь на страничкеСледующая глава >
tech.wikireading.ru
Новый ионный двигатель обладает миниатюрными размерами и в качестве топлива использует жидкий электролит. Он будет применяться для сверхкомпактных спутников в позаземном пространстве космоса.
Устройство и принцип работы ионного двигателя
Свое название данный тип псевдореактивных движителей получил за то, что в качестве реактивной толкающей струи в нем используется поток заряженных частиц – ионов. Тяга такого двигателя крайне мала, однако он может стабильно работать в течение десятилетий на одной заправке. Основная область применения таких устройств – ходовые системы искусственных космических объектов.
Конструктивно ионный двигатель состоит из камеры с газообразным или твердым веществом, обладающим большим количеством свободных ионов. Как правило, это небольшой кусочек радиоактивного материала. Камера экранирована и имеет только один узкий выход для ионов, возле которого установлены электромагнитные ускорители. Они придают потоку ионов конусообразную форму, что и приводит к формированию псевдореактивной струи.
Отличительные черты системы MicroThrust
Разработанная европейскими учеными система MicroThrust отличается крайне компактными размерами и наличием стандартизированных модулей. Она предназначена для массового использования в спутниках класса CubSat – мини-устройствах в виде куба со сторонами 10×10×10 см. Вес двигателя составляет 200 гр., причем 100 гр. приходиться на жидкое топливо.
В его роли выступает электролитический состав EMI-BF4, который помещен в особую емкость. Выходное отверстие этой камеры представляет собой комплекс микрочипов с капиллярной системой. На 1 кв. см. поверхности содержится примерно 5-7 тыс. отверстий, оснащенных кремниевыми соплами – за счет капиллярного эффекта мельчайшие капли электролита постоянно и упорядоченно просачиваются через них вместе с ионами.
Они попадают в двойную систему электродов – первая формирует конусообразную струю, вторая ее ускоряет. Расчетная мощность двигателя составляет 100 микроН, что позволяет системе перемещаться в безвоздушном пространстве со скоростью порядка 11 км/с. А 100-грамового запаса топлива хватит для того, чтобы мини-спутник преодолел расстояние от Земли до Луны. В настоящее время создан прототип двигателя MicroThrust, который проходит испытания, а первый рабочий образец отправиться в космос в течение 3-4 лет.
zaryad.com
![]() | Рейтинг5 Переместите воду из одного стакана в другой с помощью бумажного полотенца |
Вода — основной источник жизни на Земле. Ею питаются все растения, без неё не выживет ни животное, ни человек. Но как же она попадает из земли в самые труднодоступные места? Ответ можно проиллюстрировать простым экспериментом. С его помощью ваш ребёнок сможет наглядно увидеть такое явление, как капиллярный процесс и усвоить основной закон передвижения жидкостей.
Вам потребуются
1. Два/три прозрачных стакана или бокала.
2. Чистая вода.
3. Несколько бумажных полотенец (салфетки или туалетная бумага).
4. Марганцовка, зелёнка или другой краситель (по желанию, для лучшей наглядности эксперимента).
Порядок действий
1. Поставьте рядом пустой стакан и стакан с водой. В стакане с водой разбавьте щепотку марганцовки или немножко зелёнки. Эксперимент можно проводить и без подкрашивания воды, но так ребёнок лучше увидит ее перемещение.
2. Скрутите бумажное полотенце (или несколько) в форме каната. У вас должно получиться, что-то похожее на фитиль свечи.
3. Опустите один конец бумажного полотенца в ёмкость с водой, другой — в пустой стакан.
4. Посмотрите, что происходит. Для того чтобы увидеть результаты вам необходимо будет немного подождать. В это время можете заняться другими экспериментами или объяснить ребёнку основные сферы применения капиллярного эффекта в природе и технике.
5. Проведите експеримент с тремя стаканами и с жидкостями разного цвета, попробуйте поставить стаканы на разную высоту.
Что происходит?
Жидкость начинает подниматься по вашему импровизированному фитилю и планомерно перемещаться в пустой стакан. Это будет очень хорошо видно, если вы разбавите воду марганцовкой или зелёнкой. Бумажное полотенце будет постепенно окрашиваться в зелёный или красный цвет и ребёнок увидит своими глазами путь перемещения воды. Процесс будет проходить до тех пор, пока в обоих стаканах не соберётся одинаковое количество жидкости.
Происходящее называют «капиллярным эффектом». Благодаря невысокой вязкости жидкости и большой силе сцепления воды с зазорами между волокнами бумажного полотенца она постепенно перемещается с одного стакана в другой.
Факты
С помощью капиллярного эффекта получают влагу растения. Они впитывают жидкость корнями из земли и благодаря небольшим зазорам внутри ствола доставляют её наверх к листьям и плодам.
Капиллярность помогает циркулированию крови в организме животных и людей. Благодаря ей кровь и другие жидкости могут свободно попадать в любую часть тела. Так, в организме человека один из типов сосудов даже называется капилляры.
Капиллярный эффект часто можно наблюдать в быту. Этот процесс происходит, к примеру, во время подачи керосина на фитиль в лампе или простого вытирания тела полотенцем.
Сила капиллярного эффекта пропорционально зависит от площади окружности жидкости. То есть, чем уже будет трубка — тем быстрее поднимется вода.
Существует теория, которая утверждает, что на основе капиллярного эффекта можно создать вечный двигатель. Вода будет постоянно подниматься и, попадая на лопасти, приводить механизм в движение.
Оцените публикациюРейтинг статьи: 5 из 5 на основе 1 оценок.
Вконтакт
Google+
Развитие ребенка21.10.2015
childdevelop.ru
|
|
|
|
|
|
|
|
А ЧТО СЕЙЧАС?Таинственная энергия Сегодня упоминать о вечных двигателях — моветон даже в кругу их изобретателей. В моде эвфемизм «свободная энергия», которая поступает из неведомого источника.Характерный пример — генератор Сёрла, с виду похожий на большой подшипник. Он якобы создает магнитное поле, за счет которого система самораскручивается. При этом возникает антигравитация, и вся конструкция взлетает. Изобретатель, которому уже за 80, любит рассказывать, что идея генератора пришла к нему во сне, когда он был подростком. Источник загадочной энергии Джон Сёрл описывает смутно: то ли это эфир, то ли субатомные частицы. У Сёрла много последователей, в том числе и в России. Они переводят ему пожертвования и приобретают дополнительную техническую информацию через сайт. Однако доход изобретателя скромен, и Сёрл уверен, что против него работает заговор энергетических компаний. По иску одной из них он был обвинен в том, что воровал электроэнергию по спрятанному в стене кабелю. |
maxpark.com
dxdy.ru