ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Синхронные тяговые двигатели с возбуждением от постоянных магнитов. Тяговый асинхронный двигатель


Тяговый асинхронный двигатель.

Основные технические данные двигателя.

Мощность часового режима – 170кВт, частота вращения часового режима – 1290 об/мин, номинальное напряжения питания – 530 В, номинальная частота – 43 Гц, масса – 805 кг.

 

 

3-х фазный двигатель, самовентилируемый с короткозамкнутым ротором. Тяговые двигатели, установлены на вагонах 81-740/741, с опорой только на раму тележки, что снижает ударные нагрузки на двигатель при прохождении неровностей и стыков ходовых.

Двигатели могут работать как электродвигателями так и генераторами. В первом случае электрическая энергия, потребляемая от контактной сети (3-ий рельс), преобразуется в механическую, развивая при этом вращающий момент на валу двигателя.

Во втором случае двигатель преобразует, приведенную к валу механическую энергию от вращения колесных пар в электрическую, которая может быть вновь возвращена в контактную сеть (рекуперативное торможение) или гасится на тормозном реостате (сопротивление), при реостатном электрическом торможении.

Асинхронная электрическая машина характеризуется тем, что при ее работе возбуждается вращающее магнитное поле, которое вращается асинхронно относительно скорости вращения ротора.

Устройство тягового двигателя.

Тяговый двигатель состоит из: статора, ротора, двух подшипниковых щитов, вентилятора.

Статор(неподвижная часть) – предназначен для укладки в него обмотки. Имеет форму полого цилиндра, собранного из пластин электротехнической стали, толщиной 0,5мм, изолированных друг от друга слоем лака, что обеспечивает уменьшение потерь от вихревых токов.

Фазные обмотки, которые возбуждают вращающее магнитное поле, размещаются в пазах на внутренней стороне сердечника статора. Обмотка статора подсоединяется к 3-х фазному источнику переменного тока – инвертору.

1,2 отверстия крепления подшипникового щита

3. вылет обмотки

4. отверстие центровки подшипникового щита; 5. обмотка

Ротор (вращающаяся часть) – короткозамкнутый.

Собирается также из штампованных пластин электротехнической стали, определенной конфигурации, в результате чего на внутренней стороне сердечника ротора образуются пазы. В пазы ротора вставляют обмотку, которая изготовляется в виде цилиндрической(беличьей) клетки из медных или алюминиевых стержней. Стержни вставляются без изоляции. Концы стержней замыкают накоротко кольцами, которые изготавливают из того же материала. Обмотка ротора не соединяется с сетью и с обмоткой статора. Ротор насажен на вал тягового двигателя. Вентилятор устанавливается на конце вала ротора со стороны привода. Вал т/д изготавливается из высоколегированной стали. Имеет несколько шеек различной длинны и диаметра для посадки на них подшипниковых щитов, ротора, вентилятора.

1- вентилятор; 2 и 5 – вал; 3 - беличья клетка; корпус статора.

 

Подшипниковые щиты

 

Подшипниковые щиты устанавливаются в статор с двух сторон. Подшипники щитов опираются на вал тягового двигателя.

 

Конструкция асинхронного тягового двигателя

В пазы статора укладывают обмотку, которая в простейшем случае состоит из трех катушек - фаз, сдвинутых в пространстве на 120 эл. градусов. Ротор асинхронного двигателя представляет собой цилиндр, набранный из штампованных листов электротехнической стали. На поверхности ротора имеются продольные пазы для обмотки. Листы сердечника ротора специально не изолируют, т.к. в большинстве случаев достаточно изоляции от окалины. В зависимости от типа обмотки роторы двигателей обычного исполнения делятся на короткозамкнутые и фазные.

Обмотка короткозамкнутого ротора представляет собой медные стержни, забитые в пазы. С двух сторон эти стержни замыкаются кольцами. Соединения стержней с кольцами осуществляется пайкой или сваркой. Чаще всего короткозамкнутую обмотку выполняют расплавленным, алюминием и литьем под давлением. При этом вместе со стержнями и кольцами отливаются и лопатки вентилятора.

 

 

Короткозамкнутый ротор

 

ПРИНЦИП ОБРАЗОВАНИЯ ВРАЩАЮЩЕГОСЯ МАГНИТНОГО ПОЛЯ МАШИНЫ.

На статоре трехфазного двигателя расположены 3 обмотки (фазы), которые смещены в пространстве по отношению друг к другу на 120 эл. градусов. Токи, подаваемые в фазные обмотки, отодвинуты друг от друга во времени на 1/3 периода.

 

Токи в трехфазной обмотке

 

Образование вращающегося магнитного поля.

Асинхронные двигатели широко применяются в промышленности. Эти двигатели состоят из двух основных частей: неподвижной – статора и вращающейся – ротора. В асинхронном двигателе переменный трехфазный ток включается в обмотку статора, состоящую из трех самостоятельных частей. Как видно из графика изменений трехфазного тока напряжение достигает максимального значения не одновременно во всех трех фазах, а попеременно, через равные промежутки времени, то в одной, то в другой, то в третьей фазе. Следователь но, если включить такой ток в три обмотки, расположенные так, как это показано на

рисунке:

 

Максимальное значение магнитного потока будет создаваться то в первой, то во второй, то в третьей обмотке, соответственно максимальным значениям тока в фазах, подключенных к этим обмоткам. Магнитное поле, перемещающееся таким образом по замкнутому кругу, называется вращающимся магнитным полем.

Описанное создание вращающегося магнитного поля поясняется рис. Если подключить фазу к первой катушке обмотки двигателя, фазу 2 ко второй катушке, а фазу 3 к третьей катушке обмотки, то в момент времени t1 максимальный поток будет в первой катушке, так как в это время сила тока в фазе 1, подключенной к первой катушке, будет иметь максимальное значение. Затем сила тока в фазе 1 постепенно ослабевает и, переходя через нуль, меняет направление, в это время увеличивается значение силы тока в фазе 2 и к моменту времени t2 сила тока в фазе 2 достигает максимального значения, поэтому максимальный поток уже создастся не первой катушкой, а второй. Это в свою очередь означает, что магнитное поле повернулось на 120°. К моменту времени t3 максимум тока будет в фазе 3, а максимум потока будет создаваться третьей катушкой — магнитное поле повернулось еще на 120º.

К моменту времени t4создается такая же картина поля, как и в момент времени t1,т. е. снова максимума ток достигает в фазе 1, а максимальный магнитный поток создается первой катушкой Это значит, что за время t1 - t2магнитное поле повернулось на 360° (совершило полный оборот).

Обмотка ротора асинхронного двигателя замкнута на себя, или на сопротивление. При неподвижном роторе и наличии тока в обмотке статора силовые линии вращающегося магнитного ноля пересекают неподвижные витки обмотки ротора, в результате чего в обмотке ротора появляется ЭДС и ток. Этот ток, взаимодействуя с полем статора, создает вращающий момент, стремящийся повернуть ротор в сторону вращения поля. Ротор двигателя начнет вращаться. По мере увеличения скорости ротора уменьшаются число пересекаемых силовых линий и ЭДС и, следовательно, ток ротора асинхронного двигателя. Однако ротор никогда не достигает скорости поля, а всегда вращается. Это отставание ротора от ноля статора называют скольжением. Чем больше нагрузка на валу двигателя, тем больше скольжение. Выражается скольжение в процентах или в относительных единицах.

Обычно асинхронные двигатели имеют при полной нагрузке скольжение 2—4%.

Скорость вращения ротора асинхронного двигателя определяется по формуле:

 

где n—скорость вращения ротора, об/мин;

f — частота питающей сети;

p— число пар полюсов;

s — скольжение.

ПРИНЦИП ДЕЙСТВИЯ АСИНХРОННОГО ДВИГАТЕЛЯ.

Вращающееся магнитное поле статора пересекает проводники обмотки ротора и наводит в них ЭДС. Так как роторная обмотка замкнута, то в проводниках ее возникают токи. Ток каждого проводника, взаимодействуя с полем статора, создает электромагнитную силу – Fэм. Совокупность сил всех проводников обмотки создает электромагнитный момент М, который приводит ротор во вращение в направлении вращающего поля.

Частота вращения ротора n2 будет всегда меньше синхронной частоты n1 т.е. ротор всегда отстает от поля статора. Поясним это следующим образом. Пусть ротор вращается с частотой п2 равной частоте вращающегося поля статора n1. В этом случае поле не будет пересекать проводники роторной обмотки. Следовательно, в них не будет наводиться ЭДС и не будет токов, а это значит, что вращающий момент М = 0. Таким образом, ротор асинхронного двигателя принципиально не может вращаться синхронно с полем статора. Разность между частотами поля статора n2 и ротора n1 называется частотой скольжения Δn:

Δn=n1-n2

Отношение частоты скольжения к частоте поля называется скольжением:

 

В общем случае скольжение в асинхронном двигателе может изменяться от нуля до единицы. Однако номинальное скольжение SH обычно составляет от 0,01 до 0,1 %. Преобразуя выражение *), получим выражение частоты вращения ротора:

 

 

Обмотка ротора асинхронного двигателя электрически не связана с обмоткой статора. В этом отношении двигатель подобен трансформатору, в котором обмотка статора является первичной обмоткой, а обмотка ротора - вторичной. Разница состоит в том, что ЭДС в обмотках трансформатора наводится не изменяющимся во времени магнитным потоком, а ЭДС в обмотках двигателя - потоком постоянным по величине, но вращающимся в пространстве. Эффект в том и в другом случаях будет одинаковым. В отличие от вторичной обмотки трансформатора, неподвижной, обмотка ротора двигателя вместе с ним вращается. ЭДС роторной обмотки, в свою очередь, зависит от частоты вращения ротора. В этом нетрудно убедиться, анализируя процессы, протекающие в асинхронном двигателе. Синхронная частота вращения магнитного поля статора перемещается относительно ротора с частотой скольжения Δn. Она же наводит в обмотке ротора ЭДС Е2, частота которой f2 связана со скольжением S:

Учитывая, что fi=pn1/60, f2=pn1S/60.

Приняв величину номинального скольжения порядка 0,01-0,1, можно подсчитать частоту изменения ЭДС в роторной обмотке, которая составляет 0,5-5 Гц (при ^=50 Гц).



infopedia.su

Тяговый электродвигатель — Энциклопедия нашего транспорта

Материал из Энциклопедия нашего транспорта

Тяговый электродвигатель — электрическая машина, преобразующая электрическую энергию в механическую для привода в движение колёсных пар вагонов. Тяговые двигатели используют также для торможения поезда, переводя их в генераторный режим. При этом механическая энергия движущегося поезда преобразуется в электрическую.

Тяговый двигатель ДПМ-150 вагонов А

Развитие конструкции тяговых двигателей тесно связано с совершенствованием конструкции систем управления ими. Исторически подвижной состав всех видов электрического транспорта строился с коллекторными тяговыми двигателями. Это объясняется, в первую очередь, простотой простотой передачи энергии и управления режимами его работы. Такие двигатели обладают удобными для использования на транспорте механическими характеристиками. Однако, коллекторные двигатели имеют и ряд недостатков, связанных, в основном, с наличием коллектора. Коллектор, имеющий подвижные контакты (щетки), требует регулярного обслуживания. Для обеспечения надежной коммутации, снижения искрения усложняется конструкция электродвигателя. Кроме того, это ограничивает максимальную скорость вращения, что приводит к увеличению габаритов двигателя.

Развитие силовой полупроводниковой техники, обладающей высоким быстродействием, позволило в 1960-х — 80-х годах сначала отказаться от реостатной системы управления коллекторными тяговыми двигателями, заменив её более надежной и экономичной импульсной, а затем и перейти к выпуску вагонов с асинхронным тяговым приводом. На отечественных метрополитенах первым серийно выпускавшимся типом вагонов с импульсным регулированием стал тип 81-718/719 в 1991 году, а первым серийно выпускаемым типом вагонов с асинхронными двигателями — «Яуза» 81-720.1/721.1 в 1998 году.

Основными недостатками асинхронных двигателей являются сложность регулирования и сложность осуществления электрического торможения при использовании двигателей с короткозамкнутым ротором. Поэтому в настоящее время разрабатываются конструкции тяговых приводов, использующих синхронные двигатели с ротором на постоянных магнитах, вентильно-индукторные двигатели.

Коллекторные тяговые двигатели

Тяговый двигатель ДПТ-114 (аналог ДК-117)

В России существует единая унифицированная серия коллекторных тяговых двигателей постоянного тока, в которую вошли и двигатели электропоездов метрополитена. Все они имеют общий принцип компоновки и много унифицированных узлов и деталей. При изготовлении унифицированных тяговых двигателей можно использовать однотипное станочное оборудование, что снижает их стоимость. На вагонах метрополитена широко используют тяговые двигатели постоянного тока. Такие двигатели обладают хорошими тяговыми характеристиками, сравнительно просты по конструкции и надежны в эксплуатации. По конструкции тяговые двигатели электроподвижного состава существенно отличаются от стационарных двигателей постоянного тока, что объясняется особенностями их расположения и условиями работы. Размеры тягового двигателя, подвешенного под кузовом вагона, ограничены подвагонными габаритами. Диаметр его определяется диаметром колеса, так как должно быть выдержано определенное расстояние от нижней точки двигателя до уровня головки рельсов. Длина тягового двигателя ограничена габаритными размерами тележки. На вагонах установлены четыре тяговых двигателя: по одному на каждую колесную пару. Нумерация их идет по осям, считая от кабины управления. Тяговый двигатель работает в тяжелых условиях, так как на него попадают грязь с железнодорожного полотна, пыль от тормозных колодок, дождь и снег на открытых участках трассы. Поэтому все детали, расположенные в его корпусе, должны быть защищены. Для лучшего отвода тепла, выделяющегося при работе тягового двигателя, на валу якоря установлен вентилятор, засасывающий воздух со стороны коллектора и прогоняющий его через двигатель. В паспорте стационарных электрических машин обычно указывает их номинальную мощность продолжительного режима, то есть такую мощность, которую машина должна отдавать неограниченно долгое время, причем температура его узлов и деталей не должна превышать значений, допускаемых нормами для изоляционных материалов. Режим работы тяговых двигателей резко меняется в зависимости от профиля пути и веса поезда. Это не позволяет характеризовать работоспособность тягового двигателя только значением номинальной мощности продолжительного режима. Поэтому характеристики тяговых двигателей даны для часового и максимального режимов.

Асинхронные тяговые двигатели

Тяговый асинхронный двигатель ДАТЭ-170

Тяговые двигатели ДАТЭ-170 входят в комплект тягового привода КАТП-1, устанавливаемого на вагонах 81-720.1/721.1 и 81-740/741. Их основные параметры:

Кроме того, в эксплуатации на метрополитенах Казани, Киева, Праги находятся вагоны отечественного производства с асинхронным приводом производства фирмы «Шкода».

Устройство тягового двигателя постоянного тока

Все тяговые двигатели постоянного тока вагонов метрополитена имеют в основном одинаковое устройство. Двигатель состоит из остова, четырех главных и четырех добавочных полюсов, якоря, подшипниковых щитов, щеточного аппарата, вентилятора.

Остов двигателя

Он выполнен из электромагнитной стали имеет цилиндрическую форму и служит магнитопроводом. Для жесткого крепления к поперечной балке рамы тележки на остов предусмотрены три прилива-кронштейна и два предохранительных ребра. В остове имеются отверстия для крепления главных и добавочных полюсов, вентиляционные и коллекторные люки. Из остова двигателя выходят шесть кабелей. Торцовые части остова закрыты подшипниковыми щитами. В остове укреплена паспортная табличка с указанием завода-изготовителя, заводского номера, массы, тока, частоты вращения, мощности и напряжения.

Главные полюсы

Тяговый двигатель ДК-117 в разрезе

Они предназначены для создания основного магнитного потока. Главный полюс состоит из сердечника и катушки. Катушки всех главных полюсов соединены последовательно и составляют обмотку возбуждения. Сердечник набран из листов электротехнической стали толщиной 1,5 мм для Уменьшения вихревых токов. Перед сборкой листы прокрашивают изоляционным лаком, сжимают прессом и скрепляют заклепками. Часть сердечника, обращенная к якорю, выполнена более широкой и называется полюсным наконечником. Эта часть служит для поддержания катушки, а также для лучшего распределения магнитного потока в воздушном зазоре. В тяговых двигателях ДК-108А, установленных на вагонах Е (по сравнению с ДК-104 на вагонах Д), увеличен зазор между якорем и главными полюсами, что, с одной стороны, дало возможность увеличить скорость в ходовых режимах на 26 %, а с другой стороны, уменьшилась эффективность электрического торможения (медленное возбуждение двигателей в генераторном режиме из-за недостаточного магнитного потока). Для увеличения эффективности электрического торможения в катушках главных полюсов кроме двух основных обмоток, создающих основной магнитный поток в тяговом и тормозном режимах, имеется третья — подмагничивающая, которая создает дополнительный магнитный поток при работе двигателя только в генераторном режиме. Подмагничивающая обмотка включена параллельно двум основным и получает питание от высоковольтной цепи через автоматический выключатель, предохранитель и контактор. Изоляция катушек главных полюсов кремнийорганическая. Главный полюс крепится к остову двумя болтами, которые ввертывают в квадратный стержень, расположенный в теле сердечника.

Добавочные полюсы

Они предназначены для создания дополнительного магнитного потока, который улучшает коммутацию и уменьшает реакцию якоря в зоне между главными полюсами. По размерам они меньше главных полюсов и расположены между ними. Добавочный полюс состоит из сердечника и катушки. Сердечник выполнен монолитным, так как вихревые токи в его наконечнике не возникают из-за небольшой индукции под добавочным полюсом. Крепится сердечник к остову двумя болтами. Между остовом и сердечником для меньшего рассеяния магнитного потока установлена диамагнитная латунная прокладка. Катушки добавочных полюсов соединены последовательно одна с другой и с обмоткой якоря.

Якорь

Тяговый двигатель ДК-108 в разрезе

Машина постоянного тока имеет якорь, состоящий из сердечника, обмотки, коллектора и вала. Сердечник якоря представляет собой цилиндр, набранный из штампованных листов электротехнической стали толщиной 0,5 мм. Для уменьшения потерь от вихревых токов, возникающих при пересечении якорем магнитного поля, листы изолируют один от другого лаком. В каждом листе имеется отверстие со шпоночной канавкой для насадки на вал, вентиляционные отверстия и пазы для укладки обмотки якоря. В верхней части пазы имеют форму ласточкиного хвоста. Листы насаживают на вал и фиксируют шпонкой. Собранные листы прессуются между двумя нажимными шайбами. Обмотка якоря состоит из секций, которые укладывают в пазы сердечника и пропитывают асфальтовым и бакелитовым лаками. Чтобы обмотка не выпадала из пазов, в пазовую часть забивают текстолитовые клинья, а переднюю и заднюю части обмотки укрепляют проволочными бандажами, которые после намотки пропаивают оловом. Назначение коллектора машины постоянного тока в различных режимах работы неодинаково. Так, в генераторном режиме коллектор служит для преобразования переменной электродвижущей силы (э.д.с), индуцируемой в обмотке якоря, в постоянную э.д.с. на щетках генератора, в двигательном — для изменения направления тока в проводниках обмотки якоря, чтобы якорь двигателя вращался в какую-либо определенную сторону. Коллектор состоит из втулки, коллекторных медных пластин, нажимного конуса. Коллекторные пластины изолированы друг от друга миканитовыми пластинами, от втулки и нажимного конуса — изоляционными манжетами. Рабочую часть коллектора, имеющую контакт со щетками, протачивают на станке и шлифуют. Чтобы при работе щетки не касались миканитовых пластин, коллектор подвергают «продорожке». При этом миканитовые пластины становятся ниже коллекторных примерно на 1 мм. Со стороны сердечника в коллекторных пластинах предусмотрены выступы с прорезью для впаивания проводников обмотки якоря. Коллекторные пластины имеют клинообразное сечение, а для удобства крепления — форму «ласточкин хвост». Коллектор насаживают на вал якоря прессовой посадкой и фиксируют шпонкой. Вал якоря имеет разные посадочные диаметры. Кроме якоря и коллектора, на вал напрессована стальная втулка вентилятора. Внутренние кольца подшипников и подшипниковые втулки насажены на вал в горячем состоянии.

Подшипниковые щиты

В щитах установлены шариковые или роликовые подшипники — надежные и не требующие большого ухода. Со стороны коллектора стоит упорный подшипник; его наружное кольцо упирается в прилив подшипникового щита. Со стороны тяговой передачи установлен свободный подшипник, который позволяет валу якоря удлиняться при нагреве. Для подшипников применяют густую консистентную смазку. Чтобы смазка при работе двигателей не выбрасывалась из смазочных камер, предусмотрено гидравлическое (лабиринтное) уплотнение. Вязкая смазка, попав в небольшой зазор между канавками-лабич рингами, проточенными в щите, и втулкой, насаженной на вал, под действием центробежной силы отбрасывается к стенкам лабиринта, где самой смазкой создаются гидравлические перегородки. Подшипниковые щиты крепят к обеим сторонам остова.

Щеточный аппарат

Для соединения коллектора двигателя с силовой цепью вагона используют электрографитные щетки марки ЭГ-2А, которые обладают хорошими коммутирующими свойствами, высокой механической прочностью и способны выдерживать большие перегрузки. Щетки представляют собой прямоугольные призмы размером 16 х 32 х 40 мм. Рабочую поверхность щеток пришлифовывают к коллектору для обеспечения надежного контакта. Щетки устанавливают в обоймы, называемые щеткодержателями, и соединяют с ними гибкими медными шунтами: в каждом щеткодержателе по две щетки, число щеткодержателей — четыре. Нажим на щетку осуществляется пружиной, упирающейся одним концом через палец в щетку, другим — в щеткодержатель. Нажатие на щетку должно быть отрегулировано в строго определенных пределах, так как чрезмерный нажим вызывает быстрый износ щетки и нагрев коллектора, а недостаточный не обеспечивает надежного контакта между щеткой и коллектором, вследствие чего возникает искрение под щеткой. Нажатие не должно превышать 25Н (2,5 кгс) и быть менее 15Н (1,5 кгс). Щеткодержатель укрепляют на кронштейне и с помощью двух шпилек, запрессованных в кронштейн, крепят непосредственно к подшипниковому щиту. Кронштейн от щеткодержателя и подшипникового шита изолируют фарфоровыми изоляторами. Для осмотра коллектора и щеткодержателей в остове двигателя имеются люки с крышками, обеспечивающими достаточную защиту от проникновения воды и грязи.

Вентилятор

В процессе работы необходимо охлаждать двигатель, так как с повышением температуры его обмоток снижается мощность двигателя. Вентилятор состоит из стальной втулки и силуминовой крыльчатки, скрепленных восемью заклепками. Лопатки крыльчатки расположены радиально для выброса воздуха в одном направлении. Вентилятор вращается вместе с якорем двигателя, создавая в нем разрежение. Потоки воздуха засасываются внутрь двигателя через отверстия со стороны коллектора. Часть воздушного потока омывает якорь, главные и добавочные полюса, другая проходит внутри коллектора и якоря по вентиляционным каналам. Воздух выталкивается наружу со стороны вентилятора через люк остова.

Устройство асинхронного двигателя с короткозамкнутым ротором

Промышленный асинхронный двигатель в разрезе

Асинхронный двигатель состоит из двух основных узлов: статора и ротора. На статоре размещают трехфазную обмотку, создающую вращающееся магнитное поле. Скорость вращения магнитного поля определяется частотой питающего двигатель тока и числом пар полюсов.

Обмотку ротора выполняют в виде так называемой «беличьей клетки». Она является короткозамкнутой и не имеет выводов. Беличья клетка состоит из медных или алюминиевых стержней, замкнутых накоротко с торцов двумя кольцами. Стержни этой обмотки вставляют в пазы сердечника ротора, набранного из листов электротехнической стали, без какой-либо изоляции. По торцам ротора устанавливают лопасти, образующие центробежный вентилятор. Ток в роторе наводится движущимся относительно него полем статора. Таким образом, для работы двигателя необходима разность скоростей вращения ротора и поля статора, что и отражено в его названии.

В таблице приведены технические характеристики коллекторных тяговых двигателей вагонов метрополитена:

Тип двигателя ДПМ-151 ДК-102А…Г SL-104n USL-421 ДК-104А ДК-104Г, Д ДК-108А ДК-108А1 ДК-108Г ДК-108Д ДК-112А ДК-115Г ДК-116А ДК-117А ДК-117ДМ ДК-120АМ
Тип вагонов А Г В2 В3 В1 Д Е Е Еж И Еж3 81-717/714 81-717.5/714.5 81-720/721
Год начала производства 1935 1940 1930 1930 1948 1949 1959 1959 1970 1973 1973 1975 1987 1991
Часовая мощность, кВт 153 83 100 70 80 73 64 68 66 66 68 90 72 110 112-114 115
Номинальное напряжение, В 750 375 750 375 375 375 375 375 375 375 375 375 375 375
Рабочее ослабление поля, % 65 44,5 40 40 35 28
Часовой ток, А 225 248 220 220 195 210 202 205 210 270 218 330 330-340 345
Часовая частота вращения, об/мин 950 / 968 1160 1300 1355 1530 1450 1510 1600 1600 1600 1360 1480 1480 1500
Длительный ток, А 173 205 185 175 182 178 178 185 230 185 295 290 295
Длительная частота вращения, об/мин 1075 1320 1455 1580 1600 1740 1220
Наибольший ток, А 450 500 440 420 420 440
Масса, кг 2340 1490 700 615 630 630 625 625 765 760 770
Число пар полюсов 2 2 2 2 2 2 2 2 2 2 2 2 2
Число коллекторных пластин 185 238 141 175 175 175 175 175 175 210 210
Возбуждение Посл. Посл. Посл. Посл. с подм. Посл. с подм. Посл. Посл. с подм. Посл. Посл. Посл.
Число витков обмотки ГП 38 16+16 33 30С+530Ш 30С 30 40 40 32 26 26
Сопротвиление обмотки якоря, Ом 0,066 0,041 0,068 0,086 0,078 0,092 0,092 0,092 0,066 0,034 0,0285
Сопротивление обмотки возбуждения, Ом 0,0615 0,0269 0,064 0,062+165 0,067+? 0,067 0,108 0,098 0,044 0,048 0,0312
Сопротивление добавочных полюсов, Ом 0,0338 0,0215 0,028 0,035 0,034 0,037 0,049 0,049 0,022 0,015 0,0103
Воздушный зазр под центром/краем полюса, мм 5 / 9 2,2 / 5 1,5 / 5,7 3,25 / 9 2,9 2,5 4 / 9

Конструкция используемых в настоящее время коллекторных тяговых двигателей ДК-117 и ДК-120 регламентируется техническими условиями ТУ 3355-029-05758196-02.

Характеристики коллекторных электродвигателей, применяемых на наземном городском транспорте:

http://ciu.nstu.ru/kaf/persons/62303/a/file_get/195328?nomenu=1

Источник:

wiki.nashtransport.ru

Асинхронный тяговый электропривод на вагонах метрополитена. Учебное пособие.

35

От автора.

Пособие содержит общие сведения о конструкции асинхронных электрических машин, о назначении их составных частей, рассмотрено устройство конкретной модели тягового электродвигателя. Рассматривается состав комплекта силового электрооборудования, назначение составных частей, их работа и взаимодействие.

Для правильного восприятия изложенного материала необходимо иметь представление об общих принципах управления силовым оборудованием и управления поездом с помощью САУ «Витязь» и по резервному каналу управления (в данном учебном пособии не рассматриваются). Изучению материала будут способствовать знания основ электротехники, в т.ч. и переменного тока, а так же принципов построения электрических цепей в системе трехфазного переменного тока. Для этого автор рекомендует изучить соответствующие разделы электротехники, используя учебную литературу или материал, изложенный в приложениях.

При подготовке была использована литература и техническая документация, перечень которой приведен в конце пособия.

Автор выражает благодарность всем специалистам, так или иначе принявшим участие в подготовке материала. Особую благодарность выражаю Данилову Н.Н.- заместителю начальника технического отдела ЗАО ЗРЭПС, оказавшему неоценимую помощь при подготовке третьей главы.

Настоящее учебное пособие предназначено, прежде всего, для работников, обучающихся профессии машиниста в Учебно-производственном центре метрополитена, но может быть полезно для работников электродепо, желающих повысить уровень знаний в области тягового электропривода.

Автор будет благодарен за отзывы, выявленные неточности и замечания, которые можно направить на е-mail автора: [email protected]

Автор готов ответить на вопросы, которые, по мнению читателя, могут быть изложены недостаточно подробно.

Преподаватель УПЦ

московского метрополитена

Данилов Е.Б.

Оглавление

1.

Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4

2.

Общие сведения о работе асинхронной трехфазной

электрической машины и ее конструкции . . . . . . . . . . . . .

4

2.1.

Конструкция и принцип действия асинхронных

электрических машин. . . . . . . . . . . . . . . … . . . . . . . . . . . .

5

2.2.

Образование вращающего электромагнитного

момента в асинхронной электрической машине . . . . . . .

8

3.

Устройство асинхронного тягового двигателя.

Технические данные. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

3.1.

Основные параметры двигателя . . . . . . . . . . . . . . . . . . .

10

3.2.

Статор . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

3.3.

Ротор. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

3.4.

Подшипниковые щиты. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14

3.5.

Вентиляция. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14

3.6.

Датчик частоты вращения ротора. . . . . . . . . . . . . . . . . . . .

15

4.

Тяговый привод . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

4.1.

Контейнер тягового инвертора КТИ. . . . . . . . . . . . . . . . .

15

4.2.

Работа тягового привода. . . . . . . . . . . . . . . . . . . . . . . . . . .

24

5.

Приложения

5.1.

Что такое переменный ток и чем он отличается от тока постоянного . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

5.2.

Трехфазный переменный ток. . . . . . . . . . .

31

5.3.

Вращающееся магнитное поле.. . . . . . . . . . . . . . . . . . . . . .

33

6.

Использованная литература . . . . . . . . . . . . . . . . . . . . . . . . . .

34

1. Введение

Использование электрических машин переменного тока в качестве тяговых электродвигателей на железнодорожном транспорте длительное время задерживалось из-за сложностей снабжения электроподвижного состава трехфазным переменным током. Однако, развитие электротехнической промышленности, в частности совершенствования силовой полупроводниковой электроники и микропроцессорной схемотехники привело к созданию преобразователей тока и напряжения мощностью достаточной, чтобы обеспечить питанием тяговые электродвигатели. Особую роль в этом сыграла разработка транзисторов большой мощности.

В сравнении с коллекторными двигателями постоянного тока асинхронные двигатели обладают рядом преимуществ.

Впервые в отечественном массовом производстве применение асинхронных двигателей в качестве тяговых было применено на вагонах метрополитена моделей 81-740/741 и на части вагонов модели 81-720/721, а в дальнейшем на вагонах модели 81-760/761. Отечественной промышленностью налажен выпуск асинхронных электродвигателей для вагонов метрополитена. В настоящее время вагоны могут комплектоваться двигателями:

- ТАД 280М 4У2 производства АЭК «Динамо»;

- ДАТЭ–170 4У2 производства «ООО Электротяжмаш-Привод» г. Лысьва;

- ТАДВМ-280 4У2 производства ОАО «НИПТИЭМ» г. Владимир;

- ДАТМ-2У2 производства «ОАО Псковский электромашинострои-

тельный завод»;

- ДТА 170 У2 АО «Рижский электромашиностроительный завод»;

- ТА 280 4МУ2 производства «ОАО ELDIN» (Ярославский электро-

машиностроительный завод).

Питание электродвигатели получают от преобразователей в составе КАТП-1 или КАТП-2 производства «ОАО Метровагонмаш».

Первые комплекты асинхронного привода на вагонах метрополитена были иностранного производства «HITACHI» и «ALSTOM».

studfiles.net

Тяговый электродвигатель ДАТ-510 | Base-Road.Ru

Рис. 1.37. Разрез асинхронного тягового электродвигателя ДАТ-510

1 — шапка моторно-осевого подшипника; 2 — вкладыш моторно-осевого подшипника; 3 — кожух; 4 — ротор; 5, 20 — крышка подшипника; 6, 23 —лабиринтное уплотнение; 7 — упорная шайба; 8, 19 — подшипник; 9 — большой подшипниковый щит; 10 — обмотка ротора; 11 — обмотка статора; 12, 16 — нажимная шайба; 13 — корпус; 14 — сердечник статора; 15 — оправка; 17 — вентиляционный люк; 18 — малый подшипниковый щит; 21 —лабиринтное кольцо; 22 — вал; 24 — втулка ротора.

Пакет статора набирают из листов электротехнической стали толщиной 0,5 мм на специальные призмы и закрепляют нажимными шайбами 12 и 16. Двухслойную петлевую обмотку статора 11 укладывают в пазы сердечника и закрепляют в них изоляционными клиньями, затем выполняют пропитку и сушку. Лобовые части катушки обмотки якоря закрепляют конусными кольцами. Статор с уложенными в него обмотками обтачивают по призмам и запрессовывают в корпус 13.

Изоляция обмотки статора от корпуса выполнена из полиамидной пленки и стеклянной ленты, пропитанной электроизоляционным лаком КО-916К.

Обмотка статора имеет три выводных провода (рис. 1.38) для подсоединения к внешнему источнику электропитания, на которые нанесена маркировка: U — начало первой фазы, V — начало второй фазы, W — начало третьей фазы. Для изменения направления вращения ротора необходимо поменять местами начала любых двух фаз обмотки статора.

Коробка соединений ДАТ-510 Рис. 1.38. Коробка соединений ДАТ-510

1 — кабель внутреннего соединения; 2, 5 — изоляционная втулка; 3 — корпус; 4 — силовой кабель; 6 — болт; 7 — вспомогательные провода.

Ротор двигателя расположен на валу электродвигателя, на котором закреплена втулка 24 в виде трубы (см. рис. 1.37). Сердечник ротора 14, набранный из листов электротехнической стали толщиной 0,5 мм, напрессован на трубу. Короткозамкнутая обмотка 10 выполнена в виде «беличьей клетки» путем заливки пазов и торцов сердечника алюминиевым сплавом. Пазы ротора имеют полуовальную полузакрытую форму.

Втулка ротора запрессована на валу с расположенными на нем кольцами 6 и 22 с лабиринтными проточками.

Вал ротора изготовлен из проката стали марки ЗОХМА с термообработкой. Ротор тягового электродвигателя динамически отбалансирован.

Подшипниковые щиты 9 и 18 имеют сварную конструкцию, оборудованы камерами, которые закрыты крышками 5 и 20, и служат для сброса отработанной смазки ЖРО или ЖРО-М.

Сборка подшипникового щита с корпусом статора 13 осуществляется по принципу центрирующего посадочного замка, т.е. с помощью посадки центрирующего выступа внешнего кольца подшипникового щита на посадочную поверхность корпуса статора. Соединение фиксируется болтами.

В подшипниковом щите со стороны, противоположной приводу, устанавливается датчик частоты вращения ротора, взаимодействующий с зубчатым венцом упорной шайбы 7 подшипника 8. На выходе воздуха из тягового электродвигателя (вентиляционный люк) 17 предусмотрено установочное место для монтажа датчика температуры.

В подшипниковом щите со стороны, противоположной приводу, устанавливается роликовый подшипник типа НО-92417 К2М, а со стороны привода — роликовый подшипник 7 типа НО-32332 К2М.

Осевые подшипники 7 с бронзовыми вкладышами 2 используются для электродвигателей с опорно-осевой подвеской. Кроме того, исполнение тяговых электродвигателей предполагает применение моторно-осевых Подшипников качения (рис. 1.39, а) и опорно-рамного подвешивания тяговых электродвигателей (рис. 1.39, б).

Вентиляция электродвигателя осуществляется потоком внешнего воздуха, который подается внутрь через окно сварного круглого корпуса 13. ДАТ-510 имеет внутренние осевые ребра жесткости, образующие каналы для прохода воздуха, охлаждающего лобовые части обмотки статора 77 со стороны соединений. Воздух проходит через аксиальные каналы шихтованного сердечника ротора 4, охлаждает лобовые части обмотки статора со стороны привода и, нагреваясь, выбрасывается наружу через жалюзи на вентиляционных люках 17 подшипникового щита 18 со стороны привода.

Варианты исполнения корпуса тягового электродвигателя ДАТ-510 Рис. 1.39. Варианты исполнения корпуса тягового электродвигателя ДАТ-510

а — опорно-осевое подвешивание с подшипниками качения; 6 — опорно-рамное подвешивание.

Потоком воздуха также охлаждаются роторные подшипниковые узлы. Статическое давление охлаждающего воздуха замеряется в контрольной точке. Величина давления должна соответствовать нормативным значениям.

Моторно-осевые подшипники (см. рис. 1.37) имеют вкладыши 2, размещенные в шапках 1, которые соединены с остовом специальным замком и закреплены четырьмя болтами с резьбой М36 из стали 45. Постоянный уровень смазки в шапках контролируется по указателю. Для облегчения завинчивания болты имеют четырехгранные гайки, упирающиеся в специальные упоры на остове. Растачивание горловин под моторно-осевые подшипники производят одновременно с растачиванием горловин под подшипниковые щиты, поэтому шапки моторно-осевых подшипников не являются взаимозаменяемыми деталями. Шапки отлиты из стали 25Л1 и имеют сложную конфигурацию, обеспечивающую размещение смазочных устройств. Для предохранения моторно-осевых подшипников от попадания в них пыли и влаги ось между шапками закрыта кожухом. Каждый вкладыш состоит из двух половин, в одной из которых, обращенной к шапке, сделано окно для подачи смазки. Для фиксирования положения в осевом направлении вкладыши имеют бурты; от проворачивания вкладыши предохраняют шпонки. Вкладыши отлиты из латуни ЛКС80-3-3. Внутренняя их поверхность залита баббитом Б16 толщиной 3 мм и расточена по диаметру 205 мм. После расточки вкладыши подгоняют по шейкам оси колесной пары. Для обеспечения возможности регулировки натяга посадки вкладышей в моторно-осевых подшипниках между шапками и корпусом 13 установлены на болты крепления шапок стальные прокладки толщиной 0,35 мм, которые по мере износа наружного диаметра вкладышей снимаются.

Устройство, применяемое для смазки моторно-осевых подшипников, поддерживает в них постоянный уровень смазки. В шапке имеются две сообщающиеся камеры, заполняемые смазкой, в которую погружена пряжа. Камера со смазкой в нормальном режиме не имеет сообщения с атмосферой.

Кожух зубчатой передачи предназначен для защиты зубчатой передачи от внешней среды и создания масляной ванны для смазки зубчатой передачи. Кожуха зубчатой передачи могут быть выполнены стальными, сваренными из листовой стали, или стеклопластовыми, изготовленными из стеклоткани, пропитанной полиэфирной смолой. Кожуха состоят из верхней и нижней половин, которые обрабатываются совместно и раскомплектованию не подлежат. По горловинам и по разъемам кожухов установлены уплотнительные прокладки. К корпусу тягового электородвигателя стальные кожуха крепятся тремя болтами М30 из стали 45, а стеклопластовые — тремя болтами МЗО из стали 10.

Половины стеклопластовых кожухов стянуты между собой шестью болтами М12 и шестью болтами М16, стальных — двумя болтами МЗО по торцам и тремя болтами М16 по сторонам больших горловин. На верхних половинах кожухов имеется сапун, служащий для выравнивания давления внутри кожуха с атмосферным, а на нижних половинах — сливная пробка.

base-road.ru

Асинхронный тяговый двигатель - Большая Энциклопедия Нефти и Газа, статья, страница 1

Асинхронный тяговый двигатель

Cтраница 1

Асинхронные тяговые двигатели с короткозамкнутым ротором в 1 2 - 1 4 раза легче двигателей постоянного тока, в 2 - 3 раза дешевле их, практически не имеют ограничений по силе тяги и току, обладают повышенной надежностью из-за отсутствия скользящих контактов ( коллектора) и реализуют максимальную мощность во всем заданном диапазоне скоростей.  [1]

Асинхронные тяговые двигатели АТД 1 - 4 соединены попарно последовательно и питаются от статического преобразователя частоты.  [3]

По ряду причин в настоящее время фазовые асинхронные тяговые двигатели не применяются.  [4]

Поэтому распределение нагрузок между параллельно работающими асинхронными тяговыми двигателями нельзя рассматривать без учета явлений, связанных с реализацией силы тяги.  [5]

Успехи в области полупроводниковых вентилей создают перспективы внедрения бесколлекторных асинхронных тяговых двигателей, а также двигателей с электромагнитной системой синхронных машин - вентильных.  [6]

Сейчас построен ряд опытных электровозов и тепловозов с асинхронными тяговыми двигателями, частота вращения которых регулируется путем изменения частоты питающего тока.  [8]

В 1917 разработал синхронный преобразователь фаз, к-рый в 1923 применил в электровозе с трехфазными асинхронными тяговыми двигателями, питающимися от однофазной контактной сети.  [9]

Для равномерного распределения тягового усилия между всеми осемо-торными блоками при существующих допусках на параметры тяговых двигателей и диаметры движущих колес предусматривается индивидуальное питание асинхронных тяговых двигателей АТД от отдельных автономных инверторов АИ.  [11]

Определенные технические преимущества имеются в так называемой системе однофазно-трехфазного тока, при которой однофазный ток контактной сети преобразуется расщепителем фаз в трехфазный и затем через преобразователь частоты подается на короткозамкнутые асинхронные тяговые двигатели. Однако такая система имеет смысл только при применении для целей частотного регулирования кремниевых вентилей, что является делом будущего. Возможность непрерывного регулирования частоты при такой схеме позволяет получить любую скорость вращения тяговых двигателей и, кроме того, придать их характеристикам желательную форму. Элементарно простые, не требующие практически никакого обслуживания тяговые двигатели получаются при этом очень легкими.  [12]

В условиях эксплуатации в момент трогания от локомотива требуется реализация значительных усилий. Асинхронный тяговый двигатель допускает кратковременно трех-шестикратные перегрузки по току. Однако таких перегрузок не допускает статический преобразователь, рассчитанный на номинальную мощность двигателя. Поэтому выбор начальной частоты должен проводиться из условия получения заданного момента на валу двигателя при максимальном токе инвертора или из условия получения максимального момента при заданном токе.  [14]

В 1917 разработал синхронный преобразователь фаз, к-рый в 1923 применил в электровозе с трехфазными асинхронными тяговыми двигателями, питающимися от однофазной контактной сети.  [15]

Страницы:      1    2

www.ngpedia.ru

АСИНХРОННЫЙ ТЯГОВЫЙ ЭЛЕКТРОПРИВОД НА ВАГОНАХ МЕТРОПОЛИТЕНА. — КиберПедия

АСИНХРОННЫЙ ТЯГОВЫЙ ЭЛЕКТРОПРИВОД НА ВАГОНАХ МЕТРОПОЛИТЕНА.

Учебное пособие.

Оглавление

1. Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. Общие сведения о работе асинхронной трехфазной электрической машины и ее конструкции . . . . . . . . . . . . .  
2.1. Конструкция и принцип действия асинхронных электрических машин. . . . . . . . . . . . . . . … . . . . . . . . . . . .  
2.2. Образование вращающего электромагнитного момента в асинхронной электрической машине . . . . . . .  
3. Устройство асинхронного тягового двигателя. Технические данные. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.1. Основные параметры двигателя . . . . . . . . . . . . . . . . . . .
3.2. Статор . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3. Ротор. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4. Подшипниковые щиты. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5. Вентиляция. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6. Датчик частоты вращения ротора. . . . . . . . . . . . . . . . . . . .
4. Тяговый привод . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1. Контейнер тягового инвертора КТИ. . . . . . . . . . . . . . . . .
4.2. Работа тягового привода. . . . . . . . . . . . . . . . . . . . . . . . . . .
5. Приложения  
5.1. Что такое переменный ток и чем он отличается от тока постоянного . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5.2. Трехфазный переменный ток. . . . . . . . . . .
5.3. Вращающееся магнитное поле.. . . . . . . . . . . . . . . . . . . . . .
6. Использованная литература . . . . . . . . . . . . . . . . . . . . . . . . . .
       

Введение

Использование электрических машин переменного тока в качестве тяговых электродвигателей на железнодорожном транспорте длительное время задерживалось из-за сложностей снабжения электроподвижного состава трехфазным переменным током. Однако, развитие электротехнической промышленности, в частности совершенствования силовой полупроводниковой электроники привело к созданию преобразователей тока и напряжения мощностью достаточной, чтобы обеспечить питанием тяговые электродвигатели. Особую роль в этом сыграла разработка транзисторов большой мощности.

В сравнении с коллекторными двигателями постоянного тока асинхронные двигатели обладают рядом преимуществ.

Впервые в отечественном массовом производстве применение асинхронных двигателей в качестве тяговых было применено на вагонах метрополитена моделей 81-740/741 и на части вагонов модели 81-720/721, а в дальнейшем на вагонах модели 81-760/761. Отечественной промышленностью налажен выпуск асинхронных электродвигателей для вагонов метрополитена. В настоящее время вагоны могут комплектоваться двигателями:

- ТАД 280М 4У2 производства АЭК «Динамо»;

- ДАТЭ–170 4У2 производства «ООО Электротяжмаш-Привод»г. Лысьва;

- ТАДВМ-280 4У2 производства ОАО «НИПТИЭМ» г. Владимир;

- ДАТМ-2У2 производства «ОАО Псковский электромашинострои-

тельный завод»;

- ДТА 170 У2 АО «Рижский электромашиностроительный завод»;

- ТА 280 4МУ2 производства «ОАО ELDIN» (Ярославский электро-

машиностроительный завод).

Питание электродвигатели получают от преобразователей в составе КАТП-1 или КАТП-2 производства «ОАО Метровагонмаш».

Первые комплекты асинхронного привода на вагонах метрополитена были иностранного производства «HITACHI» и «ALSTOM».

Общие сведения о работе трехфазной асинхронной электрической машины и ее конструкции.

Любая электрическая машина является обратимой, т.е. работает как в режиме двигателя, так и в режиме генератора.

В первом случае двигатель потребляет электроэнергию и преобразует ее в механическую работу, развивая при этом вращающий момент. Во втором случае генератор преобразует механическую энергию в электрическую. В этом режиме возникает тормозной момент.

На железнодорожном транспорте вращающий момент электродвигателя преобразуется в поступательное движение поезда за счет сцепления колеса с рельсом. При электрическом торможении кинетическая энергия движущегося электропоезда за счет сцепления колеса с рельсом преобразуется во вращение ротора генератора.

Электрическое торможение может быть рекуперативным, когда электроэнергия возвращается в контактную сеть или реостатным, когда выработанная электроэнергия гасится на реостате или тормозном резисторе.

Образование вращающего электромагнитного момента в асинхронной электрической машине.

Трехфазный переменный ток, питающий обмотки статора в режиме электродвигателя, создает вращающееся магнитное поле (подробнее см. приложение), магнитные силовые линии которого пересекают проводники обмотки неподвижного ротора. На рис. 5 принято вращение магнитного поля по часовой стрелке. По закону электромагнитной индукции в проводниках ротора возникает электродвижущая сила, направление

Рис. 5. Образование вращающего момента.

которой определяется правилом правой

руки. В короткозамкнутой обмотке

начинает протекать электрический ток. На рис. 5 в левом проводнике направление тока обозначено «х», что означает протекание тока «от наблюдателя» (за плоскость рисунка), в правом проводнике ток протекает в противоположную сторону (обозначено «точкой»). По правилу левой руки

определяется направление действия сил на проводники (обозначены F на рис. 5). Под действием пары сил F возникает вращающий момент, направленный в сторону вращения поля статора и ротор начинает вращение. Таким образом, статорный ток вызывает или индуктирует ток ротора, поэтому очень часто асинхронные машины называют индукционными.

Скорость вращения магнитного потока, называется синхронной скоростью двигателя и определяется как

n1=60f/p об/мин,

где: f – частота сети переменного трехфазного тока;

р – число пар полюсов.

Скорость вращения ротора n2 всегда будет отставать от синхронной скорости двигателя. Разность скоростей называется скольжением S и выражается в относительных единицах или в процентах:

 

S = (n1 - n2)/ n1

 

Скольжение – одна из важных величин, характеризующих работу асинхронного двигателя.

Во время пуска при неподвижном роторе скольжение максимальное, вращающееся магнитное поле пересекает обмотку ротора с большой скоростью и индуктирует в ней значительную ЭДС, которая вызывает значительный пусковой ток ротора. Соответственно, и в обмотке статора также возникает значительный пусковой ток. Вращающий момент, развиваемый двигателем, покрывает собственные механические потери и момент внешней нагрузки. С ростом скорости ротора скольжение и токи уменьшаются. С ростом внешней нагрузки скольжение растет, что вызывает увеличение токов и вращающего момента.

Для регулирования мощности с целью получения необходимой тяговой характеристики на вагонах метрополитена применяется регулятор частоты и питающего напряжения.

Для изменения направления вращения ротора необходимо изменить направление вращения магнитного поля, создаваемого обмотками. Для этого достаточно изменить чередование фаз трехфазного тока.

Статор.

Статор - неподвижная часть двигателя - состоит из станины 1, сердечника 2 и обмотки 3.

3.2.1 Станина.

Станина 1 статора имеет цилиндрическую форму и отлита из конструкционной стали. Крепление двигателя к тележке вагона осуществляется с помощью кронштейнов, отлитых заодно со станиной. Станина так же имеет приливы, предохраняющие двигатель от падения в случае нарушения целостности крепления. Перемещение двигателя при монтаже осуществляется за транспортировочные отверстия в кронштейнах. Со стороны выходного вала станина имеет вентиляционные отверстия, закрытые сетками 12. Торцевые части станины имеют расточку и резьбовые отверстия для установки переднего 8 и заднего 9 подшипниковых щитов.

К боковой поверхности станины приваривается коробка выводов 17 с тремя отверстиями для подвода кабелей от преобразователя. Для заземления двигателя предусмотрен заземляющий болт 19, который расположен на боковой грани станины со стороны коробки выводов и обозначен табличкой с указа­нием знака заземления. На внутренней поверхности станины имеются

Рис. 8. Установка сердечника в станине.

продольные ребра, образующие аксиальные вентиляционные каналы (рис. 8). Для спуска влаги, появляющейся в процессе

эксплуатации двигателя, в

станине имеются два сливных

отверстия, заглушенные болтами 18. Каждый двигатель, выпускаемый изготовителем, имеет на корпусе табличку с основными техническими данными: тип, заводской номер, масса и дата изготов­ления двигателя.

 

3.2.2 Сердечник статора.

Рис. 9. Фрагмент листа сердечника статора

Сердечник статора 2 (рис. 7) набран из штампованных изоли-рованных листов электротехни-ческой стали толщиной 0,5 мм и установлен через усиливающие листы в станину между буртом и сегментными шпонками 6, предохраняющими сердечник от осевого смещения. Фрагмент листа сердечника представлен на рис. 9. На внутренней поверхности собранного сердечника образуются углубления (пазы), в которые укладываются секции обмотки 3 (рис. 7).

3.2.3 Обмотка статора.

Обмотка статора двухслойная петлевая, выполнена из 60-ти ромбовидных жестких секций (рис.10). Каждая секция состоит из восьми витков прямоугольного медного эмалированного провода сечением 1,8 х 6,3 мм. Витки изолированы лентой, пропитанной лаком.

Рис.10. Секция обмотки статора.

Общая изоляция секции выполнена слюдянитовой лентой. Секции уложены шагом 1-12.

Активные части обмотки закреплены в пазах стекло-текстолитовыми изоляцион-ными клиньями. Расположение секций в пазу представлено на рис.11.

Схема обмотки статора представлена на рис. 12. Пунктирной линией показана пазовая часть секции в нижнем слое паза.

Обмотка статора состоит из трех фазных обмоток, которые образованы из четырех катушечных групп (по пять секций в каждой), включенных параллельно.

Рис.11. Расположение проводников обмотки статора в пазу

Соединения секций выполнено пайкой со стороны заднего подшипникового щита. Паяные соединения изолирова-ны. Фазные обмотки глухим соединением включены по схеме «звезда». Выводные концы обмотки крепятся в коробке 17.

Обозначение выводов - U,V, W.

Рис. 12. Схема статорной обмотки.

Ротор.

Подвижная часть двигателя - ротор - состоит из вала 22, сердечника 5 с короткозамкнутой обмоткой и вентиляторного колеса 10.

3.3.1 Вал ротора.

Вал ротора изготовлен из высокопрочной стали и имеет конический рабочий выходной конец для соединения с тяговой передачей. На валу имеются участки разных диаметров для размещения на них составных частей ротора. В средней части вала имеются выступ (бурт), кольцевая выточка под стопорное кольцо, а так же осевая канавка под шпонку.

3.3.2 Сердечник ротора.

Рис. 13. Фрагмент листа сердечника ротора.

Между буртом и стопорным кольцом посредством шпонки закреплен сердечник 5, представляющий собой пакет штампованных изолированных пластин электротехнической стали толщиной 0,5 мм. В пластинах выштампованы пазы под обмотку, отверстия для установки на вал и вентиляции. Фрагмент пластины и конфигурация паза представлены на рис. 13. Жесткость пакету придают крайние пластины толщиной 5 мм. В собранном виде у поверхности сердечника образу-

ются полузакрытые пазы, а в теле сердечника вентиляционные каналы.

3.3.3 Обмотка ротора.

В пазы сердечника вставляются медные стержни 4 сечением 5,6 х 22 мм, выступающие концы которых замкнуты накоротко медными кольцами 7. При этом образуется короткозамкнутая обмотка, равномерно распределенная по окружности ротора. Электрическое соединение выполнено методом газовой

сварки с медным присадочным материалом. Более поздняя технология предусматривает метод индукционной пайки стержней к кольцам ротора с серебряной присадкой. Такое соединение обеспечивает повышенное качество электрического соединения и надежности машины.

3.3.4 Вентилятор.

Для обеспечения движения воздуха внутри двигателя на валу ротора установлено вентиляторное колесо 10.

Примечание. Обмотка ротора двигателя ТАДВМ-280 Владимирского завода выполнена методом литья из алюминия, при этом заодно с короткозамыкающими кольцами отлиты вентиляционные лопатки, обеспечивающие движение охлаждающего воздуха.

Подшипниковые щиты.

Подшипниковые щиты - передний 8 и задний 9 - являются опорой подшипников ротора и представляют собой фасонные стальные отливки. Они вставляются расточку станины и закрепляются болтами, ввернутыми в торцевую часть станины.

В подшипниковых щитах установлены однорядные подшипники качения открытого исполнения с токоизолирующим покрытием на наружной обойме. Оно обеспечивает исключение электрической связи вала ротора со статором. Со стороны приводного конца вала установлен роликовый подшипник, с противоположной стороны – упорный шариковый, фиксирующий положение ротора и поглощающий осевое давление от редуктора.

Подшипники закрыты внутренними и наружными крышками 15 и 16. Лабиринтные уплотнения, которыми снабжены крышки, удерживают смазку и защищают подшипники, что обеспечивают увеличение срока службы смазки. В подшипниках применена смазка Литол-24. Конструкция подшипниковых узлов предусматривает возможность пополнения смазки через выведенные наружу трубки.

Задний подшипниковый щит имеет вентиляционные окна 11, которые закрыты крышками с металлическими сетками.

 

Вентиляция.

По конструкции двигатель является самовентилируемым. Под действием вращающегося вентиляторного колеса наружный воздух поступает через отверстия в подшипниковом щите, обтекает лобовые части обмотки статора как со стороны соединений, так и со стороны привода, а так же сердечники статора и ротора и выбрасывается наружу через вентиляционные отверстия станины со стороны привода. Внутри машины охлаждающий воздух проходит тремя путями:

- по каналам, образованным сердечником статора и внутренними ребрами станины;

- через воздушный зазор между статором и ротором;

- по аксиальным каналам сердечника ротора.

Примечание: Движение охлаждающего воздуха в двигателе ТАДВМ-280 Владимирского завода обеспечивается лопатками на короткозамыкающих кольцах обмотки ротора.

 

Тяговый привод.

Тяговым приводом вагона являются 4 тяговых электродвигателя, а также комплект электрооборудования для питания двигателей КАТП-1 и КАПТ-2 (комплект асинхронного тягового привода).

 

Отсек контакторов.

Содержит линейный контактор ЛК, зарядный контактор конденсатора сетевого фильтра ЗК, предохранитель блока питания вентиляторов ПП-29 номиналом 31,5 А.

Линейный контакторпредназначен для подачи питания контактной сети на силовой инвертор и отключения его при возникновении неисправности, а также при электрическом реостатном торможении. Включением линейного контактора управляет блок управления тяговым приводом через промежуточное реле на панели реле.

По конструкции линейный контактор является однополюсным электромагнитным, оборудован дугогасительным устройством. Линейный контактор имеет вспомогательные низковольтные контакты, использующиеся для передачи в БУТП информации о состоянии главных (силовых) контактов.

Отключению линейного контактора предшествует снятие управляющих сигналов с транзисторов модуля силового инвертора (см. ниже), при этом контактор не разрывает цепь под нагрузкой. Однако при возникновении аварийного режима контактор способен разорвать ток перегрузки в силовой цепи.

Зарядный контакторпредназначен для подключения к контактной сети конденсатора сетевого фильтра через резистор с целью ограничения тока заряда. В качестве зарядного используется электромагнитный контактор МК1-20М, имеющим дугогасительное устройство. Он также имеет вспомогательные низковольтные контакты, использующиеся для передачи в БУТП информации о состоянии главных контактов. Включением зарядного контактора управляет блок управления тяговым приводом через промежуточное реле на панели реле.

Размещенный в отсеке предохранитель блока питания вентиляторов предназначен для защиты цепей питания вентиляторов от коротких замыканий и перегрузок.

 

Центральный отсек.

В центральном отсеке расположены шины и силовые кабели высоковольтных узлов, а также варистор защиты от перенапряжений.

 

Разрядный резистор.

Разрядный резистор подключен параллельно конденсатору сетевого фильтра и обеспечивает разряд конденсатора сетевого фильтра с 750 В до 50 В за 4 мин. Сопротивление резистора 1100 Ом, рассеиваемая мощность 600 Вт. Разрядный резистор смонтирован под защитным кожухом на наружной стенке отсека БВ контейнера.

 

Зарядный резистор.

Зарядный резистор предназначен для ограничения тока заряда конденсатора сетевого фильтра.

Резистор состоит из четырех проволочных резисторов, включенных параллельно и смонтированных на стеклотекстолитовой панели, которая смонтирована снаружи отсека контакторов и защищена кожухом.

Мощность резистора 800 Вт, номинальное сопротивление 14 Ом.

 

Тормозной резистор.

Тормозной резистор предназначен для рассеивания электрической энергии вырабатываемой генераторами в режиме электрического реостатного торможения.

Конструкция тормозного резистора представляет собой набор малоиндуктивных резистивных элементов, помещенных в стальной корпус 4 (Рис. 17), оборудованный принудительной вентиляцией.

 

 
 
Рис. 17. Тормозной резистор:а) Вид с боку; б) Разрез по А-А;в) Секция; г) Вид Б.

 

Тормозной резистор состоит из трёх секций 5, соединённых последовательно. Каждая секция состоит из трёх соединённых параллельно элементов. Три элемента, составляющие секцию 5, монтируются на двух вертикальных боковых крышках 7. Между крышками установлены три пары горизонтальных стержней 16 (по два на каждый элемент), закрепленных с помощью гаек 17 и 18 (рис.17 в и г).

Через изоляционные трубки и керамические вставки 20 между стержнями расположены отрезки резистивной ленты 19, соединенные сваркой в единую последовательную цепь. Конструкция элемента тормозного резистора представлена на рис. 17 г.

Для соединения элементов между собой и внешними цепями к концам элементов приварены соединительные клеммы 8. Внутренние электрические соединения выполнены шинами 11, соединенными с выводными клеммами 12. Посредством четырех изоляторов 10 боковые крышки элементов резистора крепятся внутри корпуса к его боковым стенкам.

Двигатель вентилятора размещен в цилиндрическом кожухе 2 и закрепляется фланцем на корпусе резистора. Входное сопло 1 защищено решеткой. Выход воздуха осуществляется через выходное сопло 9 на противоположном конце корпуса резистора. Сопло защищено решёткой и направляет нагретый воздух вниз.

Корпус тормозного резистора крепится на раме вагона и заземляется медным шунтом посредством болта 3.

Внешние провода подклю-чения тормозного резистора под-ведены через уплотнения на панели 13. Провода двигателя вентилятора 15 подключены в клеммной коробке 14.

Асинхронный двигатель вентилятора получает питание от БПВ.

Дроссель сетевого фильтра.

Совместно с конденсатором СФ дроссель (рис. 18) составляет LC-фильтр, предназначенный для снижения помех в контактной сети, создаваемых инвертором, а также защиты тягового оборудования от бросков напряжения. Катушка дросселя 1 выполнена из шинной меди, намотанной плашмя, и размещена на сердечнике 2.

Рис. 18. Дроссель сетевого фильтра.

Концы обмотки оборудованы

клемными наконечниками 3

для подсоединения двойных кабелей 4. Сердечник броневого типа набран из штампованных листов электротехнической стали и стянут в магнитопровод уголками 5 и шпильками 6. Лобовые части катушки от механических повреждений защищены кожухом 7. Внешние кабели подсоединяются в клеммной коробке 8 через герметичные кабельные вводы 9. Рядом с клеммной коробкой расположен болт заземления 10. Крепление на раме вагона выполнено с помощью П-образных скоб 11 четырьмя болтами.

Работа тягового привода.

Защита от боксования и юза.

БУТП обеспечивает защиту тягового привода от боксования и юза колесных пар. Информация об угловой скорости вращения ротора, получаемая от ДЧВ, режиме реального времени сравнивается со скоростью движения вагона, которая вычисляется расчетом. По разности скоростей каждой колесной пары и линейной скорости вагона БУТП выявляет начало процесса боксования или юза и производит снижение силы двигателей тяги или тормозной силы генераторов путем уменьшения частоты и напряжения на выходе инвертора.

После восстановления сцепления (наступает равенство скоростей) БУТП замедленным темпом восстанавливает значение тяговой или тормозной уставки.

 

 

ПРИЛОЖЕНИЯ

Трехфазный переменный ток.

Система трех сдвинутых по фазе на 1/3 периода переменных токов называют трехфазным током.

Такой ток можно получить при помощи специального генератора. Рассмотрим его конструкцию.

Рис. 23. Модель трехфазного генератора

(рис. 23). На статоре расположены три самостоятельных обмотки, смещенные на 1/3 окружности (120о). В центре электрической машины вращается индуктор, изображенный на схеме в виде постоянного магнита.

В каждой обмотке (катушке) индуцируется переменная ЭДС одной и той же частоты, но моменты прохождения этих ЭДС через нуль (или через максимум) в каждой из катушек окажутся сдвинутыми на 1/3 оборота друг относительно друга, т.к. индуктор проходит мимо каждой катушки на 1/3 периода позже, чем мимо предыдущей. По существу, такой генератор представляет собой соединение в одной электрической машине трех генераторов переменного тока, сконструированных таким образом, что индуцированные в них э.д.с. сдвинуты друг относительно друга на одну треть периода. Графическое изображение трехфазного тока представлено на рис. 24. Любая из фазных обмоток генератора

трехфазного тока является самостоятельным

источником электрической энергии и к ней

может быть подключен свой приемник. В

Рис. 24. График трехфазной ЭДС (трехфазного тока).

этом случае получается три независимые цепи (рис. 25). Такая схема носит название «несвязанная трехфазная система», она требует для передачи электрической энергии шесть проводов.

 

 

Рис. 25. Несвязанная трехфазная система.

 

Рис. 26. Соединение «звезда» четырехпроводной трехфазной системы.

 

 

На практике такие системы не применяют. Фазные обмотки трехфазных генераторов и трансформаторов и приемники электрической энергии соединяют по схеме «звезда» или «треугольник». В таком случае можно обойтись четырьмя и даже тремя проводами.

 

 

Рис.27. Соединение «звезда» трехпроводной трехфазной системы.

 

Рис.28. Соединение «треугольник» трехпроводной трехфазной системы.

 

Соединение «звездой» заключается в том, что концы фазных обмоток соединяются в одну точку генератора (рис. 26), которая называется нулевой точкой или нейтралью, и генератор соединяется с приемниками электроэнергии четырьмя проводами: тремя линейными, идущими от начала обмоток, и нулевым или нейтральным проводом, идущим от нулевой точки генератора. Такая система проводки называется четырехпроводной.

В случае равномерной нагрузки всех трех фаз генератора, т. е. при приблизительно одинаковых токах в каждой из них, ток в нулевом проводе равен нулю. Поэтому в этом случае можно нулевой провод упразднить и перейти к более экономной трехпроводной системе (рис.27). Все потребители включаются при этом между соответствующими парами линейных проводов и нулевой точкой нагрузки.

При соединении «треугольником» (рис.28) конец каждой обмотки соединен с началом следующей так, что они образуют замкнутый треугольник, а линейные провода присоединены к вершинам этого треугольника.

Вращающееся магнитное поле.

Работа асинхронного электродвигателя основана на использовании вращающегося магнитного поля. Рассмотрим, как получается вращающееся магнитное поле.

Три одинаковые неподвижные катушки (рис.29), оси которых лежат в одной плоскости под углом 120° друг к другу, соединены звездой или треугольником.

По катушкам проходят токи, образующие трехфазную симметричную систему.

Графики токов представлены на рис. 2.

 
 

 

 

Рис. 29. Катушки, питаемые трехфазным током.

 

Рис. 30. График токов.

 

Приняв направление тока от начала к концу катушки за положительное, а от конца к началу за противоположное, отметим на рис. 31 направление токов в катушках для моментов времени t1 ,t2 ,t3 ,t4 .

Рис. 31. Образование вращающегося магнитного поля.

 

Например, в начальный момент времени t1 (рис. 30) ток в катушке АХ отсутствует, в катушке BY имеет отрицательное, а в катушке CZ — положительное направление, и поэтому на рис. 31а в начале катушки В ток направлен на наблюдателя, а в начале катушки С — от наблюдателя. Каждый из токов iA, iB , iC создает магнитное поле. Магнитные поля, созданные отдельными токами, складываются, образуя результирующее магнитное поле. На рис. 31 силовыми линиями показано результирующее магнитное поле. Из рисунка видно, что результирующее поле в начальный момент времени направлено снизу вверх (показано в виде стрелки магнитного компаса).

На рис. 31б показано построенное таким же образом магнитное поле для момента времени t2 = 1/6Т. Здесь видно, что за время 1/6Т магнитное поле повернулось в направлении вращения часовой стрелки, на 1/6 часть оборота, т. е. на 60°. За следующую 1/6 часть периода магнитное поле опять повернется на угол 60° и т. д.

Из сказанного ясно, что при прохождении токов трехфазной системы по трем катушкам, смещенным друг относительно друга на 120°, создается вращающееся магнитное поле, которое в течение периода совершает один оборот (поворачивается на угол 360°).

Поменяв токи в двух катушках (рис. 29), получим изменение направления вращения магнитного поля.

 

 

АСИНХРОННЫЙ ТЯГОВЫЙ ЭЛЕКТРОПРИВОД НА ВАГОНАХ МЕТРОПОЛИТЕНА.

Учебное пособие.

Оглавление

1. Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. Общие сведения о работе асинхронной трехфазной электрической машины и ее конструкции . . . . . . . . . . . . .  
2.1. Конструкция и принцип действия асинхронных электрических машин. . . . . . . . . . . . . . . … . . . . . . . . . . . .  
2.2. Образование вращающего электромагнитного момента в асинхронной электрической машине . . . . . . .  
3. Устройство асинхронного тягового двигателя. Технические данные. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.1. Основные параметры двигателя . . . . . . . . . . . . . . . . . . .
3.2. Статор . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3. Ротор. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4. Подшипниковые щиты. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5. Вентиляция. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6. Датчик частоты вращения ротора. . . . . . . . . . . . . . . . . . . .
4. Тяговый привод . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1. Контейнер тягового инвертора КТИ. . . . . . . . . . . . . . . . .
4.2. Работа тягового привода. . . . . . . . . . . . . . . . . . . . . . . . . . .
5. Приложения  
5.1. Что такое переменный ток и чем он отличается от тока постоянного . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5.2. Трехфазный переменный ток. . . . . . . . . . .
5.3. Вращающееся магнитное поле.. . . . . . . . . . . . . . . . . . . . . .
6. Использованная литература . . . . . . . . . . . . . . . . . . . . . . . . . .
       

Введение

Использование электрических машин переменного тока в качестве тяговых электродвигателей на железнодорожном транспорте длительное время задерживалось из-за сложностей снабжения электроподвижного состава трехфазным переменным током. Однако, развитие электротехнической промышленности, в частности совершенствования силовой полупроводниковой электроники привело к созданию преобразователей тока и напряжения мощностью достаточной, чтобы обеспечить питанием тяговые электродвигатели. Особую роль в этом сыграла разработка транзисторов большой мощности.

В сравнении с коллекторными двигателями постоянного тока асинхронные двигатели обладают рядом преимуществ.

Впервые в отечественном массовом производстве применение асинхронных двигателей в качестве тяговых было применено на вагонах метрополитена моделей 81-740/741 и на части вагонов модели 81-720/721, а в дальнейшем на вагонах модели 81-760/761. Отечественной промышленностью налажен выпуск асинхронных электродвигателей для вагонов метрополитена. В настоящее время вагоны могут комплектоваться двигателями:

- ТАД 280М 4У2 производства АЭК «Динамо»;

- ДАТЭ–170 4У2 производства «ООО Электротяжмаш-Привод»г. Лысьва;

- ТАДВМ-280 4У2 производства ОАО «НИПТИЭМ» г. Владимир;

- ДАТМ-2У2 производства «ОАО Псковский электромашинострои-

тельный завод»;

- ДТА 170 У2 АО «Рижский электромашиностроительный завод»;

- ТА 280 4МУ2 производства «ОАО ELDIN» (Ярославский электро-

машиностроительный завод).

Питание электродвигатели получают от преобразователей в составе КАТП-1 или КАТП-2 производства «ОАО Метровагонмаш».

Первые комплекты асинхронного привода на вагонах метрополитена были иностранного производства «HITACHI» и «ALSTOM».

cyberpedia.su

Синхронные тяговые двигатели с возбуждением от постоянных магнитов

Синхронные двигатели с возбуждением от постоянных магнитов, обладающие преимуществами в отношении массогабаритных показателей и потребления энергии, все чаще находят применение в тяговом приводе, хотя они требуют использования сложных систем управления и пока имеют недостаточную надежность.

За последние несколько лет от ведущих мировых поставщиков подвижного состава поступило много предложений, касающихся использования синхронных тяговых двигателей с возбуждением от постоянных магнитов (СДПМ). Такие двигатели имеют меньшие габариты и массу по сравнению с преобладавшими до сих пор на рынке трехфазными асинхронными двигателями.

СДПМ использовались, в частности, на установившем 3 апреля 2007 г. мировой рекорд скорости электропоезде AGV V150 постройки компании Alstom (рис. 1). Они находят применение на подвижном составе различного назначения (таблица) — от трамвая-поезда Citadis Dualis (рис. 2) до двухэтажного междугородного электропоезда Twindexx (рис. 3) для железных дорог Швейцарии (SBB).

Рис. 1. Высокоскоростной электропоезд AGV V150 во время рекордного пробегаРис. 2. Трамвай-поезд Citadis Dualis (фото: Alstom)Рис. 3. Электропоезд Twindexx (источник: Bombardier)

Считается, что железнодорожные компании-операторы консервативны в отношении применения новых технологий. В то же время разработчики и изготовители тягового подвижного состава заинтересованы в скорейшей реализации передовых технических решений. Если использование новых разработок способствует существенному улучшению эксплуатационных показателей, эти разработки достаточно быстро находят применение, что подтверждается опытом внедрения импульсных преобразователей для питания тяговых двигателей постоянного тока последовательного возбуждения, тяговых двигателей постоянного тока независимого возбуждения, синхронных двигателей и трехфазных асинхронных двигателей с короткозамкнутым ротором. С развитием технологий повышалась эффективность тягового привода и совершенствовалось управление им, что позволило улучшить характеристики сцепления и снизить потребление энергии.

СДПМ и электронная аппаратура управления ими представляют собой наиболее современную технологию в области тягового привода. Миллионы СДПМ благодаря своей сравнительно малой массе и хорошей управляемости уже используются в приводах гибридных автомобилей. Более крупные двигатели предоставляют такие же возможности для повышения эффективности тягового привода железнодорожного подвижного состава. Данная технология внедряется на новом подвижном составе различного назначения. Однако при этом выявились несколько существенных проблем, требующих решения.

На автомобилях с двигателями внутреннего сгорания для регулирования скорости обычно используют сложное механическое устройство — коробку передач, благодаря чему двигатель может работать в оптимальном скоростном диапазоне. Тяговые двигатели подвижного состава железных дорог должны эффективно работать во всем диапазоне скорости, обеспечивая передачу крутящего момента на колеса через одноступенчатый редуктор либо непосредственно. Такое простое в плане механического оборудования решение позволяет создать надежные системы привода, не требующие сложного технического обслуживания.

Таким образом, первое требование, предъявляемое при проектировании тяговых двигателей, — их способность обеспечивать крутящий момент или тяговое усилие в широком диапазоне скорости (от 0 до 320 км/ч).

Безусловно, важно, чтобы тяговый двигатель работал надежно. В то же время, с точки зрения машиниста и железнодорожной компании-оператора, в равной степени имеет значение точное и плавное регулирование момента во всем диапазоне скорости при помощи системы управления тяговым приводом. Надлежащее регулирование крутящего момента обеспечивает оптимальное использование сцепления между колесом и рельсом, плавное ускорение, способность поддержания постоянной скорости и возможность применения электрического торможения.

При взаимодействии колес с рельсами крутящий момент тягового двигателя преобразуется в линейную силу тяги или торможения. На рис. 4 представлен график зави-симости силы тяги от скорости, а также кривая сопротивления движению поезда. Кривая силы тяги пересекает кривую сопротивления движению в точке так называемой установившейся скорости, т. е. максимальной теоретически возможной скорости. Вблизи этой точки величина изменения силы тяги, за счет которой создается ускорение поезда (на рис. 4 обозначена красной стрелкой), невелика. На рис. 5 показаны характеристики мощности тягового привода и потребной тяговой мощности (мощность равна произведению скорости и силы тяги).

Тяговые двигатели, как правило, рассчитываются на определенный режим работы. Двигатель должен развивать требуемый момент при нулевой скорости и поддерживать его до номинальной во всей зоне 1 кривой силы тяги. Выше этой скорости тяговый двигатель развивает максимальную выходную мощность. В зоне 2 сила тяги обратно пропорциональна скорости. В зоне 3 вследствие ограничений характеристик тягового двигателя сила тяги обратно пропорциональна квадрату скорости.

Рис. 4. Тяговая характеристика и сопротивление движениюРис. 5. Характеристики мощности

При низкой скорости крутящий момент двигателя теоретически может быть больше, чем передаваемый при взаимодействии колеса и рельса. Однако это привело бы к перегрузке двигателя, поэтому таких режимов следует избегать посредством соответствующих действий машиниста или электронной системы управления.

Ранее для управления тяговыми двигателями постоянного тока применялось регулирование напряжения посредством изменения схемы их соединения с последо-вательного на параллельное и регулирование тока с помощью пускотормозных резисторов. На современном подвижном составе для управления как коллекторными двигателями постоянного тока, так и синхронными и асинхронными двигателями переменного тока ис-пользуются электронные системы, обеспечивающие изменение напряжения или как напряжения, так и частоты. Применяемые ныне системы тягового электропривода позволяют достичь качественного управления во всем диапазоне скорости при относительно простых алгоритмах регулирования.

Регулирование СДПМ позволяет достаточно легко достичь требуемых характеристик в зоне постоянного крутящего момента, однако для регулирования в зоне постоянной мощности требуются более сложные алгоритмы.

Двигатели переменного и постоянного тока, как и СДПМ, по существу работают на основе одних и тех же физических законов. Поэтому принципы управления ими до неко-торой степени подобны. В электрических машинах всех видов крутящий момент возникает при взаимодействии двух магнитных полей. Для появления крутящего момента между векторами напряженности этих магнитных полей должен быть определенный угол, в идеальном случае равный 90 эл. град. Упомянутые поля могут быть созданы токами, про-текающими по обмоткам двигателя, или постоянными магнитами.

В настоящее время в тяговом приводе находят применение главным образом трехфазные асинхронные двигатели. Тем не менее весьма важно понимать природу и поведение магнитных полей статора и ротора электрических машин других типов.

В традиционном двигателе постоянного тока северные и южные полюса поля статора всегда ориентированы в одном и том же направлении, в то время как поле якоря (ротора) сдвинуто на 90 эл. град вследствие использования коллектора. В двигателе последовательно-го возбуждения один и тот же ток проходит как через обмотку статора, так и через обмотку ротора, тогда как в случае использования двигателя независимого возбуждения имеется возможность независимо управлять полями ротора и статора.

В традиционном трехфазном синхронном двигателе магнитное поле ротора создается током, протекающим по его обмотке, а ориентация поля определяется физическим положением обмотки ротора. Поле статора создается током, протекающим по его обмотке, и вращается со скоростью, определяемой частотой инвертора, от которого получает питание обмотка статора. Угол между полями статора и ротора увеличивается в зависимости от крутящего момента, а частоты вращения ротора и поля статора одинаковы. Когда угол становится отрицательным, двигатель переходит в тормозной режим.

В трехфазном асинхронном двигателе магнитное поле статора индуцирует в обмотке ротора ток (рис. 6), который, в свою очередь, генерирует магнитное поле. Последнее, взаимодействуя с полем статора, создает тяговый или тормозной момент. В режиме тяги частота вращения ротора ниже частоты вращения поля статора, заданной преобразователем, а в режиме торможения — выше. Крутящий момент не возникает, если частоты вращения равны. Соотношение частот вращения ротора и поля статора характеризуется величиной, на-зываемой скольжением.

В СДПМ поле ротора создается магнитами, которые либо распределены по поверхности ротора, либо размещены в его пазах (рис. 7). В последнем случае обеспечивается большая механическая прочность и меньшие потери на вихревые токи в роторе. В качестве материала для постоянных магнитов получил распространение сплав неодим-железобор (Nd2Fe14B) благодаря его оптимальным магнитным свойствам. Магнитное поле статора создается с помощью трехфазной многополюсной обмотки, размещенной в пазах шихтованного сердечника.

Рис. 6. Принцип работы асинхронного двигателя с короткозамкнутым роторомРис. 7. Принцип работы СДПМ

Во всех электрических машинах вращающееся магнитное поле генерирует ЭДС, противоположную по направлению питающему напряжению — так называемую противо-ЭДС. При нулевой частоте вращения она равна нулю, однако с ее ростом линейно возрастает. Для поддержания постоянной величины крутящего момента в зоне 1 (см. рис. 4 и 5) следует увеличивать напряжение питания.

Крутящий момент электрической машины представляет собой произведение магнитного потока и тока. Силовой полупроводниковый преобразователь регулирует питающее постоянное или однофазное напряжение таким образом, чтобы значения тока в обмотках двигателя находились в допустимых пределах. Наиболее современным решением является использование преобразователей на основе биполярных транзисторов с изолированным затвором (IGBT) с широтно-импульсной модуляцией.

В зоне 1, где сила тяги постоянна, напряжение (а в случае асинхронного двигателя — и частота) должно возрастать пропорционально частоте вращения двигателя, при этом значение произведения магнитного потока и тока, т. е. крутящего момента, поддерживается постоянным. При превышении номинального значения частоты вращения приложенное напряжение не может быть увеличено из-за ограничений параметров силового пре-образователя и изоляции двигателя. Однако с точки зрения механических характеристик частота вращения может быть выше.

Переход в зону 2 осуществляется посредством ослабления поля, при этом уменьшается противо-ЭДС или (для СДПМ) осуществляется противодействие ее влиянию. В двигателях постоянного тока это достигается уменьшением величины тока, протекающего через обмотку возбуждения, за счет включения параллельно ей сопротивления ослабления поля, в традиционном синхронном двигателе — путем уменьшения тока в обмотке ротора. В асинхронном двигателе ослабление поля происходит автоматически с увеличением частоты тока обмотки статора, в то время как питающее напряжение остается неизменным. В СДПМ осуществить ослабление поля сложнее, поскольку поле ротора создается постоянными магнитами.

В зоне 3 магнитный поток и ток уменьшаются быстрее, чем в зоне постоянной мощности, чтобы избежать превышения предельных электрических и механических характеристик двигателя. Например, в двигателе постоянного тока независимого возбуждения ток якоря также снижается в зависимости от скорости.

Основная причина расширения применения СДПМ в тяговом приводе — их существенные преимущества по сравнению с трехфазными асинхронными двигателями. В пределах примерно 80% рабочего диапазона КПД СДПМ больше на 1-2%, а удельная мощность — на 30-35%, вследствие чего при равной мощности габариты и масса СДПМ примерно на 25% меньше.

В асинхронном двигателе имеет место нагрев ротора вследствие наличия мощности скольжения. В СДПМ он фактически отсутствует, благодаря чему нет необходимости в охлаждении ротора. Статор СДПМ обычно полностью герметичен и имеет жидкостное охлаждение, что способствует повышению надежности двигателя. Кроме того, при использовании СДПМ возможно осуществлять электрическое торможение при низких значениях скорости, что делает принципиально возможным самоуправляемое торможение при замыкании накоротко обмоток статора. Однако достижение этих преимуществ невозможно без компромисса. Выявлены семь основных факторов, препятствующих распространению СДПМ для целей электрической тяги, хотя уже разработаны методы решения этих проблем.

Ограничения размеров и стоимости четырехквадрантного преобразователя и двигателя не позволяют использовать их во всем диапазоне скорости только путем поддержания величины питающего напряжения, настолько превышающей противо-ЭДС, чтобы величина тока была достаточна для достижения требуемого крутящего момента. Проблема может быть решена с помощью ослабления поля, благодаря чему создаются зоны постоянного момента и постоянной мощности. Поскольку регулирование поля, создаваемого постоянными магнитами, затруднительно, ослабление поля достигается подачей тока в обмотки статора. Таким образом создается поле с вектором напряженности, направленным против вектора напряженности поля, создаваемого постоянными магнитами ротора. При этом возникают потери в меди обмотки статора, что в некоторой степени снижает положительный эффект, получаемый благодаря низким потерям при использовании ротора с постоянными магнитами.

Для управления токами, создающими эффект ослабления поля, необходимо определить положение ротора с точностью до 1-2 эл. град. Для четырехполюсного двигателя требуется механическое разрешение не менее чем 1,5 эл. град. Если использовать датчики, от них требуются весьма высокие точность и надежность, чтобы обеспечить нормальную работу системы управления. Возможно управление и без применения датчиков, однако при этом может быть снижена точность регулирования.

Магнитный поток зависит от температуры, при этом напряженность поля снижается примерно на 1% при увеличении температуры ротора на 10 К. Для СДПМ, которые работают в температурном диапазоне 200 К (от -40 до +160 °С), это имеет существенное значение. Поэтому электронная система управления должна контролировать рабочую температуру и учитывать ее при формировании управляющего сигнала.

Каждый СДПМ требует индивидуального силового полупроводникового регулятора, гарантирующего подачу управляющего импульса на включение силовой цепи строго в требуемый момент времени. Впрочем, в современном тяговом при-воде все чаще используются индивидуальные системы управления каждым двигателем. Таким образом, эта проблема решается.

При значительных токах и высоких температурах может произойти необратимое размагничивание, даже если температура ротора не достигает точки Кюри между 310 и 370 °C. Однако более опасно короткое замыкание в обмотке статора, которое может привести к разрушению двигателя, поскольку создаваемое постоянными магнитами вращающееся поле продолжает индуцировать значительные токи в статоре. Здесь размагничивание может быть полезным, поскольку снижает эти токи.

Еще одна проблема связана с тем, что при работе без нагрузки (когда поезд движется в режиме выбега) вращающийся ротор двигателя с постоянными магнитами продолжает индуцировать токи в сердечнике статора. Возникающие вихревые токи наряду с эффектом гистерезиса вызывают потери в стали, что снижает КПД двигателя.

Редкоземельные металлы, используемые в СДПМ, обладают хорошими магнитными свойствами, но довольно чувствительны к механическому и тепловому воздействию. Конструкция ротора у СДПМ сложнее, чем у асинхронных двигателей. Схема управления СДПМ также сложнее в связи с наличием многократных контуров обратной связи и необходимости преобразования сигнала.

Существует достаточно много областей применения, где преимущества СДПМ безусловно преобладают над их недостатками, и это делает их привлекательными для разработчиков тягового привода. Меньшие размеры и масса имеют особое значение при ограниченности пространства — например, в случае необходимости размещения двигателя на оси колесной пары без редуктора.

Более высокий КПД и меньшие потери в роторе обеспечивают существенные преимущества СДПМ с точки зрения совершенствования эксплуатационных характеристик подвижного состава и сокращения потребления энергии (рис. 8). Это видно, в частности, на примере электропоезда V150 компании Alstom. Асинхронные двигатели устанавливаются на тележках, расположенных под кузовами моторных вагонов, тогда как СДПМ могут быть размещены на тележках под узлами сочленения, что позволяет уменьшить сложность и массу тягового привода.

Рис. 8. Электромеханическая характеристика и КПД СДПМ

СДПМ могут в перспективе получить намного более широкое применение в тяговом приводе (таблица), подобно тому, как в середине 1980-х годов завоевали популярность трех-фазные асинхронные тяговые двигатели, пришедшие на смену двигателям постоянного тока.

Примеры применения тяговых СДПМ

Оператор, страна

Подвижной состав

Изготовитель

NTV (Италия) 25 высокоскоростных поездов AGV Alstom
SBB (Швейцария) 59 двухэтажных электропоездов Twindexx Bombardier
SNCF (Франция) 31 трамвай-поезд Citadis Dualis Alstom
SNCF (Франция) Электропоезда Regiolis (рамочный контракт) Alstom
SNCF (Франция) Электропоезда Omneo (рамочный контракт) Bombardier
Прага (Чехия) Низкопольные трамвайные вагоны типа 15T Skoda
Метрополитен Токио (Япония) Электропоезда серии 16000 Kawasaki
JR East (Япония) Пригородные электропоезда серии E331 для Токио Toshiba
Опытные образцы
Метрополитен Мюн­хена (Германия) Электропоезд типа C19 с тележками Syntegra Siemens
Китай Прототип локомотива на топливных элементах CNR Yongji
Швеция Электропоезд Grona Taget Bombardier
Турция Низкопольный трамвай Citadis X04 Alstom
Япония Поезд с изменяемой шириной колеи RTRI

Железные Дороги Мира — 2011

speedtrain.ru


Смотрите также