К режимам работы асинхронного двигателя относятся (см. рисунок 1):
- двигательный режим; | ||
- генераторный режим; | ||
– режим противовключения; | ||
– режим динамического торможения; | ||
Рисунок 1 – Механическая характеристика асинхронного двигателя
Двигательный режим
Основным режимом работы асинхронного двигателя является двигательный режим, рассмотрим работу асинхронной электрической машины на примере рисунка ниже:
В этой статье мы не станем рассматривать, как происходит возбуждение обмоток и начало движения, почитать про то, как создается магнитное моле в асинхронном 3-х фазном двигателе Вы можете тут.
Начало движения происходит из точки 1 с определённым пусковым моментом Мп, который зависит от параметров самого асинхронного двигателя, обычно отношение к номинальному будет равно:
Далее происходит постепенный разгон до точки 2, которая имеет критический (максимальный) момент двигателя Мкр, после чего двигатель будет переходить в точку 3, которая является точкой номинальной работы электрической машины, в ней момент и скорость вращения вала равны номинальному моменту Мн и скорости n2 соответственно. Так же необходимо подметить, что действительный номинальный момент может не соответствовать тому, который указан на шилдике двигателя, это различие будет мало, оно зависит от характера и величины нагрузки на валу, износа внутренних деталей двигателя и т.д.
В номинальном режиме работы скорость вращения вала меньше скорости вращения магнитного поля, создаваемого статорной обмоткой, поэтому справедливо неравенство:
где n1 – скорость вращения магнитного поля статора; | ||
Относительная разность этих скоростей является таким понятием как – скольжение асинхронного двигателя, которое рассчитывается по формуле:
Скольжение во время работы в двигательном режиме будет меньше единицы, и чем оно ближе к номинальной точке работы, тем становится меньше, и для этого справедливо неравенство:
Режим холостого хода
Холостой ход асинхронного двигателя имеет место в том случае, если на валу отсутствует нагрузка в виде рабочего органа или редуктора. При сборке нового двигателя всегда проводится испытания холостого хода, для того что бы определить потери в подшипниках, вентиляторе и магнитопроводе, а так же узнать значения намагничивающего тока. Во время холостого хода скольжение составляет: S=0,01÷0,08.
Следует заметить, что так же существует режим идеального холостого хода, при котором n2=n1, что практически реализовать невозможно, даже если учесть, что нет силы трения в подшипниках. На самом деле, суть заключается в том, что асинхронному двигателю необходимо, чтобы ротор отставал от магнитного вращающегося поля статора. При отставании поле статора индуцирует магнитное поле в ротор, что заставляет его вращаться за полем статора.
Генераторный режим
Для того чтобы перейти в данный режим, нужно двигатель разогнать с помощью некоторого внешнего воздействия, к примеру, другим двигателем, до скорости, которая превышала бы скорость вращения магнитного поля статора. В результате изменилось бы направление тока и ЭДС в роторной обмотке и асинхронный двигатель перешел бы в генераторный режим. При этом условии также изменит направление и электромагнитный момент, который в данном режиме работы будет тормозным.Следует заметить, что в генераторном режиме скольжение S
Для работы асинхронного двигателя в генераторном режиме необходим источник реактивной мощности, который создает магнитное поле. При отсутствии поле создают с помощью постоянных магнитов, или же за счет остаточной индукции машины и параллельно подключенных к фазам обмотки статора конденсаторам при активной нагрузке. В генераторном режиме двигатель потребляет большое количество реактивного тока, из-за чего необходимо наличие в сети генераторов реактивной мощности: синхронных компенсаторов, синхронных машин. Данный режим используется довольно часто, к примеру, в эскалаторах и пассажирских лифтах (в зависимости веса в кабине и противовеса), которые едут вниз.
h4e.ru
Асинхронный двигатель преобразовывает электрическую энергию в механическую. Механическая характеристика асинхронного двигателя, электромеханическая и другие содержат информацию, без которой невозможна его правильная эксплуатация.
Эта конструкция достаточно широко применяется в различных сферах человеческой жизнедеятельности. Без них немыслима работа станков, транспортеров, подъемно-транспортных машин. Двигатели, обладающие небольшой мощностью, широко используются в автоматике.
ОГЛАВЛЕНИЕ
Схематичное устройство асинхронной машины
Классическая асинхронная машина состоит из 2 основных частей: ротора (подвижной) и статора (неподвижной). Три отдельные фазы составляют обмотку статора. С1, С2 и С3 — обозначения начала фаз. С3, С4 и С5 — соответственно концы фаз. Все они подсоединены к клеммному разъему по схеме звезда или треугольник, что показано на рисунках а, б, в. Схему выбирают учитывая паспортные данные двигателя и сетевое напряжение.
Статор создает внутри электродвигателя магнитное поле, которое постоянно вращается.
Ротор различают короткозамкнутый и фазный.
В короткозамкнутом скорость вращения не регулируется. Конструкция с ним проще и дешевле. Однако пусковой момент у него слишком мал по сравнению с машинами, у которых фазный ротор. Здесь скорость вращения регулируется за счет возможности ввода дополнительного сопротивления.
Подавая напряжение на обмотку статора, по каждой фазе можно наблюдать изменяющиеся магнитные потоки, которые по отношению друг к другу смещены на 120 градусов. Общий результирующий поток получается вращающимся и создает ЭДС внутри проводников ротора.
Там появляется ток, который во взаимодействии с результирующим потоком создает пусковой момент. Это приводит к вращению ротора.
Возникает скольжение S, т. е. разность между частотой вращения самого ротора n2 и частотой магнитного поля статора n1. Первоначально оно равно 1. Впоследствии частота возрастает, разность n1 – n2 уменьшается. Это ведет к уменьшению вращающего момента.
На холостом ходу скольжение минимально. Оно достигает критического значения Sкр, когда увеличивается статический момент. Превышение Sкр ведет к нестабильной работе машины.
Как основная, помогает проводить детальный анализ работы электродвигателя. Она выражает непосредственную зависимость частоты вращения самого ротора от электромагнитного момента n=f (M).
Из графика видно, что на участке 1-3 машина работает устойчиво. 3-4 — непосредственный отрезок неустойчивой работы. Идеальный холостой ход соответствует точке 1.
Точка 2 — номинальный режим работы. Точка 3 — частота вращения достигла критического значения. Пусковой момент Мпуск — точка 4.
Наши читатели рекомендуют! Для экономии на платежах за электроэнергию наши читатели советуют "Экономитель энергии Electricity Saving Box". Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.Существуют технические способы расчетов и построения механической характеристики с учетом данных паспорта.
В первоначальной точке 1 n0=60f/p (p – количество пар полюсов). Поскольку nн и Mн непосредственно координаты точки 2, расчет номинального момента производится по формуле Mн=9,55*Рн/ nн, где Рн — номинальная мощность. Значение nн указано в паспорте двигателя. В точке 3 Mкр=Mнλ. Пусковой момент в точке 4 Mпуск=Mн*λпуск (значения λ, λпуск — из паспорта).
Механическая характеристика, построенная таким образом, называется естественной. Изменяя другие параметры можно получить искусственную механическую характеристику.
Полученные результаты дают возможность проанализировать и согласовать механические свойства самого двигателя и рабочего механизма.
Она являет собой зависимость угловой скорости вращения от тока статора. Используя несколько опорных точек можно построить электромеханическую характеристику. Номинальный ток рассчитывается по формуле:
Ток холостого хода составляет 30—40% от номинального.
Формула расчета при критическом скольжении:
Ток в начальный момент пуска:
Все значения отражают электромеханическую характеристику.
Причем частота электрического тока и напряжение неизменны, в отличие от нагрузки.
Как правило, рабочие характеристики асинхронного двигателя строятся в диапазоне значений скольжения от 0 до значения, превышающего номинальное на 10%. Это зона, где машина работает устойчиво.
Частота вращения ротора n2 уменьшается при возрастании нагрузки на валу. Но эти изменения не превышают 5%. Ток I1 растет, поскольку при последующем увеличении нагрузки его активная составляющая превышает реактивную.
СОSφ при холостом ходе мал. Но затем он возрастает. При повышенных нагрузках СОSφ уменьшается из-за возрастающего внутри обмотки ротора реактивного сопротивления.
КПД холостого хода равен 0. С увеличением нагрузки наблюдается его резкий рост, а впоследствии, снижение.
electricvdele.ru
Принцип действия асинхронного двигателя. Трехфазные асинхронные двигатели являются самыми распространенными электрическими двигателями и применяются для привода различных станков, насосов, вентиляторов, компрессоров, грузоподъемных механизмов, а также на э. п. с. переменного тока в качестве двигателей вспомогательных машин..
Асинхронный двигатель состоит из неподвижной части статора 1 (рис. 248, а), на котором расположены обмотка 2 статора, и вращающейся части — ротора 3 с обмоткой 4. Между ротором и статором имеется воздушный зазор, который для улучшения магнитной связи между обмотками делают по возможности малым. Обмотка 2 статора представляет собой трехфазную или в общем случае многофазную обмотку, катушки которой размещают равномерно вдоль окружности статора. Фазы этой обмотки А-Х, B-Y и C-Z размещены равномерно по окружности статора; они соединяются «звездой» (рис. 248,б) или «треугольником» и подключаются к сети трехфазного тока. Обмотку 4 размещают равно-
Рис. 248. Электромагнитная схема асинхронного двигателя (а), схема включения его обмоток (б) и пространственное распределение вращающего магнитного поля (в) в двухполюсной машине
мерно вдоль окружности ротора. При работе двигателя она замкнута накоротко.
При подключении обмотки статора к сети создается синусоидально распределенное вращающееся магнитное поле 5 (рис. 248, в). Оно индуцирует в обмотках статора и ротора э. д. с. e1 и е2. Под действием э. д.с. е2 по проводникам ротора будет проходить электрический ток i2. На рис. 248, а показано согласно правилу правой руки направление э. д. с. е2, индуцированной в проводниках ротора при вращении магнитного потока Ф, по часовой стрелке (при этом проводники ротора перемещаются относительно потока Ф против часовой стрелки). Если ротор неподвижен или частота его вращения п меньше синхронной частоты n1, активная составляющая тока ротора совпадает по фазе с индуцированной э. д. с. е2, при этом условные обозначения (крестики и точки) показывают одновременно и направление активной составляющей тока i2.
На проводники с током, расположенные в магнитном поле, действуют электромагнитные силы, направление которых определяется правилом левой руки. Суммарная сила Fрез, приложенная ко всем проводникам ротора, образует электромагнитный момент М, увлекающий ротор за вращающимся магнитным полем. Если этот момент достаточно велик, то ротор приходит во вращение и его установившаяся частота вращения соответствует равенству электромагнитного момента М тормозному, приложенному к валу от приводимого во вращение механизма и внутренних сил трения.
Э.д.с, индуцированная в проводниках обмотки ротора, зависит от частоты их пересечения вращающимся полем, т. е. от разности частот вращения магнитного поля n1 и ротора n. Чем больше разность n1— n, тем больше э. д. с. е2. Следовательно, необходимым условием для возникновения в асинхронной машине электромагнитного вращающего момента является неравенство частот вращения n1 и n. Только при этом условии в обмотке ротора индуцируется э. д. с. и возникает ток i и электромагнитный момент М. По этой причине машина называется асинхронной (ротор ее вращается несинхронно с полем). Иногда ее называют индукционной ввиду того, что ток в роторе возникает индуктивным путем, а не подается от какого-либо внешнего источника.
Для характеристики отставания частоты вращения ротора двигателя от частоты вращения магнитного поля служит скольжение, его выражают в относительных единицах или процентах:
s = (n1— n) /n1 или s = [(n1— n) /n1] 100% (81)
Если, например, четырехполюсный двигатель имеет s = 4%, то частота вращения его ротора равна 1440 об/мин (частота вращения поля при частоте 50 Гц составляет 1500 об/мин, а отставание ротора от частоты поля равно 4 % от 1500 об/мин, т. е. 60 об/мин). В двухполюсном двигателе при s = 4% частота вращения ротора составляет 2880 об/мин (3000—0,04*3000 = 2880).
Частота вращения ротора, выраженная через скольжение,
n = n1(1 – s) (82)
По своей конструкции различают двигатели с фазным ротором (с контактными кольцами) и с короткозамкнутым ротором. Они имеют одинаковую конструкцию статора и отличаются выполнением ротора. Пусковые свойства этих двигателей различны.
electrono.ru
baza-referat.ru