Никола Тесла – легендарный создатель в области электро- и радиотехнике, создатель переменного тока. В его честь, в 2003 году, была открыта компания по производству автомобилей, которые ездят на электричестве.
Основателем автомобильной компании Tesla стали Илон Маск, Джей Би Штробель и Марк Тарпеннинг. Прежде всего, основателям компании необходимо было разработать мощный электродвигатель и батареи, чтобы привести в работу ведущие колёса. Для создания первого прототипа автомобиля потребовалось почти 3 года.
Первый электрокар Tesla Roadster был презентован 19 июля 2006 года. Презентация автомобиля прошла успешно, но спортивный электрический автомобиль имел ряд недостатков. 2009 года была презентована 5-дверная Model S, двигатели которой устанавливаются на транспортные средства по этот день с небольшими доработками.
Технические характеристики силового агрегата электромобиля Tesla:
Наименование | Характеристика |
Производитель | Tesla |
Тип | трёхфазный асинхронный двигатель |
Мощность | 225, 270 или 310 кВт |
Крутящий момент | 430, 440 или 600 Н·м |
Максимальная скорость | 201 (первое поколение)250 (второе поколение) км/час |
Разгон до 100 км/час | от 2,7 (модификация P100D) с |
Тип аккумулятора | литий-ионный |
Запас хода | от 370 до 632 км |
Время зарядки | 8 ч |
Обслуживание силового агрегата начинается с диагностики работоспособности электромотора, который непосредственно подключён к электронному блоку управления автомобилем. Если обнаружены ошибки, то мастера находят непосредственную причину. Сервисное и техническое обслуживание двигателей Тесла стоит проводить на сертифицированной станции, поскольку только у них имеется необходимое оборудование для всех ремонтно-диагностических и восстановительных операций.
Ремонт, как и обслуживание, стоит проводить на специальном оборудовании у специалистов. Основными и частыми неисправностями является быстрая потеря ресурса батареи. Первые модели Тесла имели слишком малый запас энергии, а поэтому была высока вероятность «застрять» на трассе.
Ещё один факт – неисправность в системе автопилота. Эта проблема стала причиной гибели американского гражданина Джошуа Браун в 2016 году. Расследование причин аварии показало, что автопилот не видит поперечно идущий транспорт. Данная неисправность на стадии усовершенствования.
Чтобы не делал человек, другой человек способен это изменить и модернизировать. Так и с засекреченными автомобильными технологиями. Джейсон Хьюз (Jason Hughes) большой поклонник Tesla и электромобилей компании. Но ему нравится не только кататься на таких электромобилях, но и знать, как они работают. Джейсон — довольно известная личность в сообществе поклонников Tesla. К примеру, именно ему удалось извлечь из обновлённой прошивки автомобиля некоторые данные о новой модели электромобиля. Если точнее, речь идёт про обнаружение записи «P100D» в прошивке Tesla 7.1.
Но сейчас ему удалось гораздо большее. Он смог достать задний привод Tesla Model S, и научился им управлять. Откуда получен привод, Хьюз не говорит, но это не так уж и важно. Гораздо более важно то, что он смог получить полный контроль над всеми функциями этого узла.
Первым шагом, в этом непростом проекте, стала подача питания на привод с одновременным сниффингом CAN-шины на предмет обнаружения отдельных команд управления. На это ушло около 12 часов, но, в конце концов, мотор удалось заставить вращаться. Мастеру пришлось повозиться — мало того, что данные работы движка пришлось расшифровывать, но и для управления его работой Джейсон написал специальное ПО. На этом этапе речь шла только о том, чтобы заставить движок работать. На то, чтобы перехватить и расшифровать команды CAN, у него ушло ещё 3 часа.
После этого дело пошло уже легче — Хьюзу удалось найти полный пакет команд управления. К примеру, он смог подключить систему водяного охлаждения, и приводил её в действие во время работы привода (в определённом режиме работы система заявляла о скорости в 188 километров в час). Двигатель удалось ввести и в режим генерации энергии. Система рекуперации энергии, введённая инженерами Tesla, позволяет во время торможения использовать двигатель машины в качестве генератора. Сейчас Джеймс может по своему усмотрению устанавливать различные параметры питания движка и генерации им энергии.
В итоге ему удалось даже создать собственную плату управления задним приводом. Интересно, что мотор был извлечён из автомобиля с прошивкой 7.1, которая включала ряд схем безопасности, предотвращающих вмешательство в нормальную работу системы. Но Джейсону удалось обойти эти препятствия.
Наиболее сложной задачей было заставить движок слушаться команд самодельного контроллера, но и это, оказалось, по силам умельцу. По его словам, он собрал свою плату буквально из мусора. Для того чтобы обезопасить движок, мастер использовал относительно низкий ампераж. Это не первый случай «хака» движка Tesla Model S. 11 месяцами ранее другому умельцу, Джеку Рикарду, также удалось заставить электромотор слушаться команд контроллера собственного изобретения. Но здесь речь идёт об использовании лишь двигателя и контроллера.
Стоит помнить, что обновлённая модель электромобиля Tesla Model S поставляется с 70 кВт·ч аккумулятором, который на самом деле имеет ёмкость в 75 кВт·ч, но часть батареи, если так можно выразиться, залочена программно. Компания продавала эти авто в течение месяца, и только сейчас об этом стало известно. Как же владелец такой машины может получить 5 дополнительных кВт·ч? Очень просто — доплатить $3250 для «разлочки».
Процесс апгрейда полностью программный, и производится «по воздуху». Работникам компании физический доступ к авто нужен только для того, чтобы сменить бейдж Tesla Model S 70 на бейдж Tesla Model S 75 (делается в сервисном центре). Идея компании проста, хотя и немного странная — позволить покупателям Tesla Model S 70 платить меньше на $3000, чем покупателям Tesla Model S 75. Причём «железо» у обеих моделей абсолютно одинаковое. В компании рассудили, что не всем нужна увеличенная ёмкость батареи, и тем, кому она не нужна, разрешили платить меньше. Разница в расстоянии, которое могут проехать обе модели в автономном режиме — около 35 км.
Кстати, не так давно для той же Tesla Model S было выпущено специальное программное обеспечение, позволяющее водителю управлять машиной при помощи «силы мысли». Мысленными командами можно заставить автомобиль проехать немного вперёд или же включить заднюю передачу. При этом считывание сигналов электрической деятельности мозга производится при помощи специального шлема. Сигналы анализируются специальной программой, после чего они передаются в бортовой компьютер для управления транспортным средством.
Двигатель Тесла – представитель электрических автомобильных двигателей, который является самым мощным электромотором в мире. Обслуживание и ремонт проводятся только в условиях автосервиса. Это поможет избежать неприятностей.
avtodvigateli.com
«Человек, который изобрёл 20 век!» — так Теслу называют современные биографы, и делают они это без каких-либо преувеличений. Свою известность он получил благодаря прогрессивным взглядам и умению доказывать их состоятельность. Тесла проводил опаснейшие эксперименты во имя науки, и в определённых кругах считается фигурой, связанной с мистикой. В последнем случае, скорее всего, мы имеем дело с домыслами, но что известно точно, так это то, что изобретения Николы Теслы способствовали прогрессу во всём мире.
Сначала рассмотрим важные с научной точки зрения изобретения, но редко встречающиеся в повседневной жизни современного человека.
Речь пойдёт об одном из самых известных и зрелищных изобретений Николы. Катушка Теслы является разновидностью резонансной трансформаторной схемы. Использовалось это приспособление для производства высокого напряжения высокой частоты.
Катушка Теслы была одним из инструментов изучения природы электрического тока и возможностей его использованияТесла задействовал катушки во время проведения инновационных экспериментов в области:
Кстати, Никола Тесла был одним из тех людей, кто предсказал появление Интернета и современных гаджетов.
Подробнее: Как был предсказан Интернет
Катушка Теслы является ранним предшественником (наряду с индукционной катушкой) более современного устройства, называемого трансформатором обратного хода. Он обеспечивает напряжение, необходимое для питания электронно-лучевой трубки телевизоров и компьютерных мониторов. Версии этой катушки широко используются сегодня в радио, телевидении и другом электронном оборудовании.
В всей красе катушку можно увидеть в научных музеях или на специальных шоу.
Катушка Теслы в действии – это всегда зрелище:
Эта конструкция, известная также как Башня Теслы, была построена с целью осуществления беспроводной телекоммуникации и демонстрации возможности передачи электроэнергии без проводов.
По задумке Теслы Башня Ворденклиф должна была стать шагом к созданию Всемирной беспроводной системы. В его планах было установить несколько десятков приемо-передающих станций по всему миру. Таким образом, отпала бы необходимость использования высоковольтных линий электропередач. То есть фактически мы получили бы одну всемирную электростанцию. К слову, Тесле удавалось передавать электричество «по воздуху» от одной катушке к другой, так что его амбиции были небезосновательны.
Сегодня Ворденклиф – закрытый объектПроект Ворденклиф требовал больших капиталовложений и на начальных этапах получил поддержку влиятельных инвесторов. Однако, когда работа над строительством башни была практически завершена, Тесла лишился финансирования и оказался на гране банкротства. А всё потому, что Ворденклиф могла быть предпосылкой к бесплатным поставкам электричества по всему миру, а это могло разорить некоторых инвесторов, чей бизнес был завязан на продаже электроэнергии.
Любители различных теорий заговоров связывают падение Тунгусского метеорита в Сибири и эксперименты Теслы с Башней.
Говоря о домыслах, стоит вспомнить, что к категории «засекреченных работ Николы Теслы» относили эксперименты с телепортацией. Никаких реальных доказательств тому нет (а если Вам что-то известно, напишите в комментариях), но зато у нас есть отдельная статья Что было бы, если в мире существовала телепортация.
Вильгельм Рентген 8 ноября 1895 года официально открыл излучение, названное в честь его. Но фактически это явление первым наблюдал Никола Тесла. Ещё в 1887 году он начал проводить исследования с использованием вакуумных трубок. В ходе экспериментов Тесла фиксировал «особые лучи», способные «просвечивать» предметы. Поначалу учёный не предавал особого значения этому явлению, учитывая, что длительное воздействие рентгеновских лучей опасно для человека.
Никола Тесла первым обратил внимание на опасность рентгеновского излученияОднако Тесла продолжал исследования в этом направлении и даже провел несколько экспериментов до открытия Вильгема Рентгена, включая фотографирование костей его руки.
К сожалению, в марте 1895 года в лаборатории Теслы произошёл пожар, и записи об этих исследованиях были утрачены. После открытия Рентгена, Никола, используя устройство с вакуумными трубками, сделал снимок своей ноги и отправил коллеге вместе с поздравлениями. Рентген похвалил Теслу за качественную фотографию.
Тот самый снимок ноги в ботинкеВопреки расхожему мнению, Вильгем Рентген не был знаком с работами Теслы и к своему открытию пришёл самостоятельно, чего не скажешь о Гульельмо Маркони…
Читайте также: Значимые изобретения 21 века
Инженеры разных стран работали над технологией радиосвязи, при этом исследования были независимыми друг от друга. Самый яркий пример: советский физик Александр Попов и итальянский инженер Гульельмо Маркони, которые в своих странах считаются изобретателями радио. Однако Маркони получил большую мировую известность, впервые установив радиосвязь между двумя материками (1901 г.) и получив патент на изобретение (1905 г.). Поэтому считается, что он в развитие радиосвязи внёс наибольший вклад. Но причём тут Тесла?
Радиоволны сегодня повсюдуКак выяснилось, первым природу радиосигналов выявил именно он и в 1897 году запатентовал передатчик и приёмник. Маркони взял за основу технологию Теслы и совершил свою знаменитую демонстрацию в 1901 году. Уже в 1904 году Патентное бюро лишает патента на радио Николу, а через год присуждает его Маркони. Судя по всему, тут не обошлось без финансового влияния Томаса Эдисона и Эндрю Карнеги, которые были в конфронтации с Теслой.
В 1943 году, уже после смерти Николы Теслы, Верховный суд США разобрался в ситуации и признал более значительный вклад этого учёного в качестве изобретателя радиотехнологий.
Отмотаем немного назад. В 1898 году на электротехнической выставке в Мэдисон-Сквер-Гарден Тесла продемонстрировал изобретение, которое он назвал «телеавтоматикой». Фактически это была модель лодки, перемещением которой можно управлять дистанционно через пульт.
Так выглядела радиоуправляемая лодка ТеслыНикола Тесла на деле показал возможности использования технологии передачи радиоволн. Сегодня дистанционное управление сплошь и рядом, начиная от телевизионного пульта и заканчивая полётами беспилотников.
В 1888 году Тесла получил патент на электрическую машину, в которой под воздействием переменного тока создаётся вращение.
Не будем вдаваться в технические особенности работы асинхронного двигателя – те, кому это интересно, могут ознакомиться с соответствующим материалом на Википедии. О чём нужно знать, так это о том, что двигатель имеет простую конструкцию, не требует высоких затрат на изготовление и надёжен в эксплуатации.
Тесла намеревался использовать своё изобретение как альтернативу двигателям внутреннего сгорания. Но так уж случилось, что в этот период никто в подобных инновациях не был заинтересован, да и финансовое положение самого учёного не позволяло ему особо разгуляться.
Интересный факт! В Силиконовой долине великому изобретателю установлен памятник. Символично, что он раздаёт бесплатный Wi-Fi.
Нельзя не упомянуть и об окутанном тайной электромобиле Теслы. Именно из-за сомнительности этой истории не будем выводить её отдельным пунктом. Тем более, что тут не обошлось без электродвигателя.
1931 год, Нью-Йорк. Никола Тесла провёл демонстрацию работы автомобиля, в котором якобы вместо двигателя внутреннего сгорания был установлен двигатель переменного тока мощностью 80 л.с. Учёный колесил на нём около недели, разгоняясь до 150 км/ч. А загвоздка в следующем: двигатель работал без видимого источника питания, да и на подзарядку машина якобы никогда не ставилась. Единственное, к чему мотор был подключён, это коробочка, собранная из лампочек и транзисторов, которые Тесла купил в ближайшем магазине радиоэлектроники.
Для демонстрации был использован автомобиль Pierce Arrow1931 годаНа все расспросы Никола отвечал, что энергия берётся из эфира. Газетные скептики начали обвинять его чуть ли не в чёрной магии, и раздосадованный гений, забрав свою коробочку, вообще отказался что-либо комментировать и объяснять.
Подобное событие в биографии Теслы действительно имеет место, но всё же эксперты ставят под сомнение, что он нашёл способ получать энергию для авто из «воздуха». Во-первых, в записях учёного нет и намёка на двигатель, работавший от эфира, а во-вторых, есть предположения, что Никола таким образом одурачил общественность, чтобы привлечь внимание к самой идее электрических автомобилей. А непосредственно для передвижения данного прототипа мог использоваться либо скрытый аккумулятор, либо ДВС с модернизированной системой выхлопа.
Как бы там ни было, сегодня существует компания, в каком-то смысле реализующая эту идею Теслы. Названа она именем изобретателя.
Подробнее: Особенности автомобилей Tesla
Так или иначе, перечисленные выше изобретения Николы Теслы связанны с переменным током – типом эклектического тока, способного изменять направление и величину в определённые промежутки времени. Подробнее об отличиях постоянного тока от переменного можете почитать в учебнике по физике.
В нашем случае нужно знать, что при передаче переменного тока от станции к потребителю энергопотери значительно ниже, да и трансформировать его гораздо проще. Таким образом, переменный ток можно назвать более практичным в плане распространения. На этом и настаивал Тесла.
Томас Эдисон как сторонник постоянного тока и как человек, зарабатывающий на этом деньги, всячески очернял идею использования переменного тока. Он говорил об опасности этого решения и даже убивал животных переменным током. Но справедливость восторжествовала, и сегодня по проводам вашего города проходит переменный ток.
Рекомендуем: Величайшие изобретения Леонардо Да Винчи
Изначально задумывалось, что в этой статье будут кратко освещены важнейшие изобретения Николы Теслы. Но в ходе её написания выяснилось, что весь гений этого человека невозможно раскрыть в двух словах. Тесла действительно имел прогрессивные взгляды и удивлял мир своими открытиями. К сожалению, у него не всегда получалось доносить до общественности значимость его идей, особенно в условиях давления со стороны недоброжелателей.
Какое изобретение Николы Теслы по-вашему важнее всего?Poll Options are limited because JavaScript is disabled in your browser.Переменный ток 39%, 88 голосов
88 голосов 39%
88 голосов - 39% из всех голосов
Башня Ворденклиф 21%, 48 голосов
48 голосов 21%
48 голосов - 21% из всех голосов
Катушка Теслы 10%, 23 голоса
23 голоса 10%
23 голоса - 10% из всех голосов
Электромобиль 10%, 22 голоса
22 голоса 10%
22 голоса - 10% из всех голосов
Рентгеновское излучение 7%, 15 голосов
15 голосов 7%
15 голосов - 7% из всех голосов
Асинхронный двигатель 6%, 14 голосов
14 голосов 6%
14 голосов - 6% из всех голосов
Передача радиосигнала 5%, 12 голосов
12 голосов 5%
12 голосов - 5% из всех голосов
Другой вариант (напишу в комментариях) 1%, 3 голоса
3 голоса 1%
3 голоса - 1% из всех голосов
Всего голосов: 225
05.08.2017
×
Вы или с вашего IP уже голосовали.topor.info
Электродвигатель автомобиля «Тесла» имеет три основные характеристики:
Двигатель работает на переменном токе и охлаждается жидкостью. Относительно двигателей внутреннего сгорания, электродвигатель, внедренный в авто Tesla, маленьких размеров. Прикреплен он к задней, как правило, оси. У полноприводных моделей – к обеим осям.
Мотор двигателя электромобиля имеет две основные части:
Изготовлены детали из трехслойного «материала», а именно:
Контактирует мотор с машиной, передавая электричество только лишь через подшипники на колесах.
Таким образом, создателям автомобиля «Тесла» удалось избежать трансмиссии и подключить двигатель напрямую к машине. Максимальная скорость, которая достигается благодаря мотору автомобилем «Тесла» составляет 208 км/ч. Также из-за особенностей электронного управления, машине не нужна коробка передач. По сути, передача в авто всего одна. На любой скорости у двигателя крутящий момент достигает 100%, и это очень эффективно, по сравнению с другими электромобилями или даже бензиновыми аналогами.
Двигатель автомобиля «Тесла» технически не уступает Мерседесу или БМВ последних выпусков. А его соотношение мощности и веса авто даже превосходит эти знаменитый машины. Мощность «Теслы» составляет 416 лошадиных сил. А разгон с места до 100 км/ч достигается им за 4,2 секунды.
Смотрите видео о двигателе и КПП авто Tesla.
В Tesla S разработчики используют батареи производства Panasonic, что в Японии. В новых моделях Tesla 3 используются уже американские аккумуляторы. Произведены они в Неваде по уникальной технологии. В общем и целом конструкция двигателя автомобиля «Тесла» новейшей модели такова, что ее стоимость может быть снижена на 25% благодаря лишь снижению количества элементов.
Несмотря на то, что количество элементов в аккумуляторе снизили, в моторе Tesla 3 добавилось лошадей. Теперь их 435. И снова компания Tesla побила достижение одного из главных бензиновых конкурентов – BMW. Таким образом, Tesla 3 имеет на 4 лошадиных силы больше, чем BMW M3 с шестицилиндровым (!) двигателем.
Вероятно, единственное, в чем Tesla 3 уступает предшественнику, это разгон с места до сотни. На «трешке» «Тесла» на разгон уйдет на 2 секунды больше (не 4, а 6 секунд).
В данный момент для Tesla 3 выпущены десятки тысяч специальных инверторов. Мощность их – 320 кВт. В 2018 году планируется выпустить 50000 обновленных и усовершенствованных электромобилей Tesla.
Компания Tesla выложила чертежи автомобиля «Тесла» в открытый доступ в интернет. Произошло это потому что первоначальная идея компании была в том, чтобы дать миру экологически чистый транспорт. А когда информация об устройстве автомобиля была закрыта, получилось так, что основатели пошли как бы против своей идеи. Таким образом, становится понятно, что компания действительно борется, в первую очередь за идею улучшения мира, а не за чистой прибылью.
Компания Tesla Mobil выложила во Всемирную паутину несколько сотен своих разработок. Этот шаг, надеется совет директоров компании, подтолкнет индустрию электромобилей к более бурному развитию. Ведь до создания электромобиля Tesla по факту не было никаких поставленных электромобилей на конвейер, ни вообще мало-мальски близкого к конкурентоспособному авто машин. Появлялись единичные экспериментальные модели, которые были малоскоростными, и если их кто-то и покупал, то были это просто фанаты экологически чистого транспорта.
Глава компании Tesla Илон Маск считает, что широкое распространение подробной информации о платформах автомобилей «Тесла» не навредит его бизнесу. По мнению господина Маска, компании, занимающиеся созданием «зеленых» автомобилей для этого малочисленны. А своими реальными конкурентами, да к тому же и загрязнителями окружающей среды, руководство компании называет тысячи машин с двигателем внутреннего сгорания, которые производятся ежедневно.
Читайте о том, как быстро зарядить автомобильный аккумулятор.А также о правильной эксплуатации автомобиля.
Самая популярная модель автомобиля «Тесла» - это Tesla Mobil S. Ее минимальная стоимость – 62,4 тыс. $. Максимальный порог стоимости этого авто – 87,4 тыс. $. Зарядки автомобиля «Тесла» самой дорогой модификации хватает на 425 км. И именно эта модификация с места до сотни набирает за 4,2 секунды.
Когда Tesla S только появился на рынке в широком доступе, эта машина побила сразу нескольких бензиновых соперников в плане продаж. Таким образом, еще в 2013 году Tesla S стала популярнее Mercedes-Benz S-класса и BMW 7. А в Норвегии Tesla опередил в том же году популярнейший, как правило, Volkswagen Golf.
Иногда начинает казаться, что жизнь в постапокалиптическом мире, который описывают некоторые писатели-фантасты, это не только фантазия творческих людей, но и неизбежное будущее. Уже давно понятно, что ресурсов Земли не хватит надолго, и в первую очередь закончатся ресурсы, благодаря которым мы получаем энергию. Но проживание в мире после энергетической катастрофы хочется мало кому, и, к счастью, есть способы оттянуть момент, когда ресурсы будут исчерпаны.
Развитые страны озадачены разработкой и внедрением такого транспорта, который будет экологичным и экономичным. К таким машинам относятся уже катающиеся по миру электромобили Tesla.
Схему двигателя автомобиля «Тесла» продумал еще сам Никола Тесла в первой половине прошлого века. Этот уникальный ученый настолько опередил свое время, что давно продумал за нас проблему исчерпания земных ресурсов, о которой в 30-х годах XX века еще очень мало задумывались.
Однако движущей силой по представлению Николы Тесла в электромобиле должен быть не электрический ток, который берется откуда-то извне, а некий эфир, о котором Тесла часто рассуждал. Именно эфир должен был по задумке электрофизика отправлять в двигатель колебания.
Делитесь своим мнением на тему пользы подобных современных автомобилей в комментариях. А также смотрите видео о том, как работают электромобили.
www.rutvet.ru
Помимо своих изобретений Никола Тесла прославился тем, что выступал за развитие современного переменного тока (АС) в системе электроснабжения.
Многие невероятные разработки по электромагнетизму Теслы были основаны на теориях, созданных Майклом Фарадеем. Патенты и теоритические работы Николы Теслы также легли в основу развития беспроводной связи и радио.
В этой статье нашего сайта мы представили фотографии и подробную информацию о самых важных изобретениях Николы Теслы.
Башня Ворденклиф (1901-1917), которая также известна как башня Теслы, стала новаторской идеей изобретателя. Эта башня должна была стать первой беспроводной телекоммуникационной вышкой, предназначенной для коммерческой трансатлантической беспроводной связи и вещания. Данное изобретение должно было доказать, что передача вещания возможна с соединительными проводами.
К сожалению, строительство башни так и не было завершено ввиду финансовых проблем: вышка так никогда полностью и не функционировала.
Башня Ворденклиф получила свое название в честь Джеймса С. Вордена, купившего землю, на которой строилась вышка. Башня располагалась в Шорхэме, Лонг-Айленд, Нью-Йорк.
Строительство башни Ворденклиф началось в 1901 году. Проект финансировал Дж. П. Морган. В 1902 году Никола Тесла перенес свою операционную лабораторию с улицы Хьюстона в Ворденклиф. Хотя строительство башни практически закончилось, она все еще не могла функционировать из-за последних изменений в конструкции. Дж. П. Морган был недоволен тем фактом, что башня не могла нормально работать.
В итоге строительство башни превысило те расходы, которые инвесторы были готовы выделить на проект, и в результате вышка так и не была достроена.
В 1905 проект был полностью свернут из-за недостатка финансовой поддержки.
В сентябре 1927 года во время Первой мировой войны, башню Ворденклифа взорвали динамитом. Ее снесли по указу правительства США, которое опасалось, что немецкие шпионы могут использовать ее в качестве ориентира для подводной лодки.
Место, на котором когда-то стояла башня, было объявлено историческим в 1967 году.
Изначально в 1892 году Никола Тесла прорабатывал идею о вращающемся магнитном поле, и в 1893 году он изобрел асинхронный двигатель.
Асинхронный двигатель является одним из видов переменного тока, где питание подается к ротору посредством электромагнитной индукции. Асинхронные двигатели широко используются в производстве промышленных приводов, в частности многофазных асинхронных двигателей.
В асинхронном двигателе статор питается от сети переменного тока. Статор предназначен для формирования магнитного поля, которое вращается в такт с колебаниями переменного тока. В асинхронном двигателе ротор вращается медленнее, чем поле статора. Магнитное поле, проходя через ротор, меняется (вращается). Ротор асинхронного двигателя имеет ободки в виде замкнутых петель проволоки. Переменный магнитный поток индуцирует токи в обмотках, как в трансформаторе, и эти токи создают собственные магнитные поля. Данные магнитные поля взаимодействуют с полем статора, что создает крутящий момент для включения ротора.
Для того чтобы индуцировать токи, скорость физического ротора должна быть меньше, чем скорость вращения магнитного поля статора, иначе магнитное поле не будет двигаться относительно проводников ротора и токи не будут индуцированы.
Синхронная скорость двигателя с переменным током – скорость вращения магнитного поля, созданного статором.
Катушка Теслы – вид резонансной цепи трансформатора, была изобретена Николой Теслой в 1891 году. Катушка Тесла используется для производства высокого напряжения, низкого тока и высокочастотного электричества с переменным током. Катушка Тесла дает больше тока, чем другие источники разрядов высокого напряжения. Никола Тесла использовал эти катушки для проведения инновационных экспериментов с электроосвещением, фосфоресценцией, генерацией рентгеновского излучения, высокой частотой переменного тока, электролечением и беспроводной передачей электрической энергии.
Цепь катушки Тесла использовалась в коммерческих целях: были произведены искровые радиопередатчики для беспроводной телеграфии: они применялись до 1920 гг. Также катушки использовались в псевдомедицинском оборудовании (электротерапия, устройства, излучающие УФ). Сегодня катушка Тесла главным образом применяется в развлекательных и образовательных дисплеях.
В переменном токе движение электрического заряда периодически меняет свое направление. В постоянном токе поток электрического заряда движется лишь в одном направлении.
Переменный ток (ток АС) – форма электроэнергии, которая доставляется в дома и офисы. Никола Тесла разработал систему электропитания с современным переменным током.
Впервые радио начало функционировать как беспроводная телеграфия. Существует множество споров относительно того, кто на самом деле может претендовать на место изобретателя радио. В то время это стало важнейшим экономическим и политическим вопросом.
В 1891 году Никола Тесла начал свои исследования в области радио и его применения. В 1892 году он выступил с лекцией в Институте инженеров-электриков в Лондоне: в своей лекции он предположил, что информация может передаваться без использования проводов. Передача и излучение радиочастотной энергии стали особенностью проводимых Теслой экспериментов: он предположил, что они могут быть использованы для телекоммуникации информации.
С Николой Теслой связаны два главных патента на радио в США.
До сих пор ведутся споры о том, кто же заслуживает звание изобретателя радио. Многие считают, что в изобретение радио внесли свой вклад несколько человек. Многие уверены, что именно Тесла сделал самый значительный вклад в создание радио.
В 1898 году Тесла продемонстрировал корабль с радиоуправлением в Мэдисон-Сквер-Гарден, где применялось безопасное соединение между передатчиком и приемником. С 1895 по 1897 гг. Никола Тесла получил беспроводные сигналы, передаваемые на коротких дистанциях.
Тесла считал, что однажды электрический ток можно будет передавать без проводов на большие расстояния.
Многие люди считают, что Никола Тесла был истинным изобретателем флуоресцентного освещения. Тесла предпочитал называть их фосфоресцирующими лампами. Исследования изобретателя в области способов обработки высоковольтного ВЧ-питания привели к созданию первого высокоэффективного и высокочастотного освещения ПРА.
Только в конце 1980-х гг. появились более мощные высокочастотные ПРА, которые имели сходство со столетним изобретением Николы Теслы: они начали использоваться все чаще.
Луч смерти (или как его иногда называли, пучок смерти) – теоритический пучок частиц или электромагнитное оружие, которое использовали с 1920 по 1930 гг. Как утверждается, его создателем стал Никола Тесла, а также другие изобретатели.
Примерно в 1918 году Тесла, по-видимому, использовал аппарат наподобие лазера, с помощью которого он направлял лучи на луну. После изучения его работы многие пришли к выводу, что изобретенная им лампа с кнопкой имела все составляющие для создания лазерного луча.
Эта лампа с кнопкой была сконструирована таким образом, что если в ее центр поместить такой материал, как графит, алмаз или рубин, а затем нажать на кнопку с электрической энергией, материал отскачет от кнопки внутрь колпака, а затем снова вернется к кнопке. Если Никола Тесла работал вместе с рубином, то он изобрел точную технологию рубинового лазера. В своих научных документах Тесла указывал, что с помощью этого устройства ему удалось создать луч, тонкий как карандаш.
Многие люди убеждены, что именно Тесла изобрел рубиновый лазер в 1893 году.
Считается, что в 1918 году изобретатель использовал точно такую же или схожую технологию, когда посылал лазерный импульс на луну.
Идея о луче смерти пришла к Тесле благодаря игрушечному пистолету, с которым он играл, когда был ребенком. Смешно, но правда. Ученый осознал, что луч не обладает достаточной энергией, чтобы действовать с разрушительной силой. Он пришел к выводу, что лазер будет рассеиваться на большие расстояния только с помощью другого лазера. Но вместо этого он соединил микроскопические гранулы со своим лучом смерти. Однако поток света не мог рассеиваться таким образом.
После исследования электростатического генератора Вана де Граафа, в котором использовался картонный ремень для генерации высокого напряжения, Тесла решил применить те же основные настройки для создания мощного заряда, но он заменил ремень ионизированным потоком воздуха, а затем использовал этот электрифицированный поток, чтобы отразить мелкие гранулы из вольфрама. Эти молекулы выстреливали из открытой вакуумной трубки, которая имела форму пушки.
Бифилярная катушка – это электромагнитная катушка с двумя близко расположенными параллельными обмотками. В инженерии слово бифилярный означает провод, сделанный из двух нитей. Он часто используется для обозначения специального типа обмотки проводов в трансформаторах.
Бифилярная катушка применяется в современной электротехнике как средство построения проволочных резисторов с незначительной паразитной самоиндукцией.
Примером устройства с бифилярной катушкой служит американский патент 512,340 Николы Теслы 1894 года.
skybox.org.ua
Никола Тесла был человеком с огромным количеством идей. Судите сами: с именем учёного связано более трёхсот патентов. Он далеко опережал время, поэтому многие его теории, к большому сожалению, не нашли физического воплощения. Несмотря на то, что Тесла так и не получил признания от главного соперника, Томаса Эдисона, его неоспоримый талант принёс человечеству действительно полезные изобретения. Мы собрали некоторые из наиболее впечатляющих творений Николы Теслы.
Самое зрелищное изобретение Николы Теслы
Катушка Тесла была изобретена в 1891 году. Она состояла из первичной и вторичной катушек, у каждой из которых был собственный конденсатор для запаса энергии. Между катушками находился искровой промежуток, в котором генерировался разряд электричества, способного преобразовываться в дуги, проходить сквозь тело и создавать область заряженных электронов.
Тесла был одержим мечтой беспроводной городской электрификации, что и послужило толчком к изобретению этого механизма. В наши дни катушка Тесла чаще всего используется для развлечения и популяризации науки — её можно увидеть в экспозициях естественно-научных музеев по всему миру. Однако важность данного изобретения заключается в том, что был найден ключ к пониманию природы электричества и возможности его использования.
Башня Варденклифф — один из символов гения Теслы
Развивая идею передачи электроэнергии без применения проводов, Тесла решил, что лучше всего это делать на больших высотах. Именно поэтому, пользуясь финансовой помощью меценатов, он создал лабораторию в горах Колорадо-Спрингс в 1899 году. Там он построил свою самую большую и мощную катушку Тесла, которую назвал «усиливающим передатчиком». Он состоял из трёх катушек и составлял почти 16 метров в диаметре. Передатчик генерировал миллионы вольт электричества и создавал пучки молний длиной до 40 метров. На тот момент это была самая мощная молния, созданная искусственно.
Проблема заключалась в том, что Тесла был слишком амбициозен для своей эпохи: идея беспроводной передачи энергии начала воплощаться в жизнь лишь во втором десятилетии XXI века, да и то в качестве концептов и образцов. Несмотря на то, что проект всё ещё лежит за пределами повседневного использования, дальновидность изобретателя поражает. Усиливающий передатчик был предшественником Башни Тесла, или башни Варденклифф, которая, по замыслу своего создателя, должна была обеспечить мир бесплатным электричеством и коммуникацией. Тесла начал работу над проектом в 1901 году, но после того, как финансирование прекратилось, он свернул свои изыскания, а в 1915 году участок был выставлен на торги. Провал выбил землю из-под ног изобретателя: его постиг нервный срыв, и Никола Тесла объявил о своём банкротстве.
Эффективность и рациональность всегда присутствовали в творениях Теслы
В начале XX века, на заре эры поршневых двигателей внутреннего сгорания, Тесла создал свою турбину, которая могла конкурировать с двигателем внутреннего сгорания (ДСВ). В турбине отсутствовали лопасти, а топливо сгорало вне камеры, вращая гладкие диски. Именно их вращение и давало работу двигателю.
В 1900 году, когда Тесла протестировал свой двигатель, эффективность потребления топлива составила 60% (к слову, с нынешними технологиями этот показатель не превышает 42% преобразования топлива в энергию). Несмотря на безусловный успех изобретения, оно не прижилось: бизнес был ориентирован именно на поршневые ДСВ, которые и сейчас, спустя более 100 лет, остаются основной движущей силой автомобилей.
Нога гения в ботинке стала достоянием истории
В 1895 году немецкий физик Вильгельм Конрад Рентген обнаружил таинственную энергию, которую он назвал «рентгеновскими лучами». Он обнаружил, что если поместить фотоплёнку между частью тела и свинцовым экраном, то получится снимок костей. Спустя несколько лет, именно снимок руки жены учёного, на котором видно костное строение конечности и обручальное кольцо, принёс Рентгену мировую известность.
При этом есть ряд доказательств того, что ещё до открытия рентгеновских лучей, Тесла знал об их существовании: его исследования были прекращены из-за пожара в лаборатории в 1895 году, который произошёл незадолго до публикации результата опытов Рентгена. Тем не менее, открытие новых лучей вдохновило Николу Теслу на создание собственной версии рентгена с использованием вакуумных трубок. Свою технологию он назвал «теневой фотографией».
Тесла считается первым человеком в США, сделавшим рентгеновский снимок собственного тела: «в кадре» оказались его ноги в ботинках. Этот снимок вместе с восторженным письмом, в котором Никола Тесла поздравлял своего коллегу с великим открытием, был отправлен Рентгену. Тот, в свою очередь, похвалил американского учёного за чёткость и хорошее качество его теневой фотографии. Эта особенность улучшенного метода внесла значительный вклад в развитие современных рентгеновских аппаратов, и её так и не удалось превзойти.
Тесла опередил Маркони, но всё же не стал отцом радио
Личность изобретателя радио по сей день является предметом ожесточённых споров. В 1895 году Тесла был готов передать радиосигнал на расстояние 50 км, но, как мы уже знаем, его лаборатория сгорела, что затормозило исследования в данной области. В то же время в Англии итальянец Гульельмо Маркони разработал и запатентовал технологию беспроволочной телеграфии в 1896 году. В системе Маркони использовались два контура, что снизило покрывающую площадь радиопередачи, а наработки Тесла могли значительно увеличить выходную мощность сигнала.
Никола Тесла представил своё изобретение перед Патентным бюро США в 1897 году и получил патент в 1900 году. В это же время Маркони попытался получить патент в США, но его изобретение было отвергнуто, так как оно слишком сильно походило на уже запатентованную технологию, принадлежащую Тесле. Испугавшись, Маркони открыл собственную компанию, находящуюся под серьёзной защитой Эндрю Карнеги и Томаса Эдисона.
В 1901 году, используя ряд патентов, принадлежащих Тесле, Маркони смог передавать радиоволны через Атлантику. В 1904 году, не имея внятного обоснования, Патентное бюро отменило своё решение и признало патент Маркони действительным, что и сделало его формальным изобретателем радио. В 1911 году итальянец получил Нобелевскую премию, а спустя 4 года, в 1915, Тесла подал в суд на компанию, принадлежащую Маркони, за незаконное использование чужой интеллектуальной собственности. К сожалению, на тот момент Никола Тесла был слишком беден, чтобы судиться с крупной корпорацией. Судебные тяжбы прекратились лишь в 1943 году, через несколько месяцев после смерти изобретателя. Тогда комиссия постановила законность его требований и оставила в силе патент Теслы.
Ко всему прочему, Тесла изобрёл неоновые вывески
Несмотря на то, что флуоресцентный или неоновый свет не был открыт Николой Теслой, он внёс весомый вклад в улучшение технологии их получения: никто до сих пор не придумал альтернативы его катодному излучению, получаемому с помощью электродов, помещённых в вакуумные трубки.
Тесла увидел потенциал экспериментов с газовой средой, через которую проходили электрические частицы, а также разработал четыре различных типа освещения. Например, он конвертировал так называемый чёрный цвет в видимый спектр с помощью фосфоресцирующих веществ, созданных им же. Кроме того, Тесла нашёл практическое применение таким технологиям, как неоновые лампы и рекламные вывески.
На Всемирной выставке в Чикаго (также именуемой Колумбийской Экспозицией) в 1893 году, Тесла оборудовал своё выставочное место неоновыми вывесками, которые мгновенно произвели впечатление на посетителей. Идея настолько понравилась людям, что неоновые огни с тех пор стали символом мегаполисов по всему миру.
Тесла построил первую подстанцию плотины, обуздавшей силу водопада
Комиссия по Ниагарскому водопаду находилась в поиске компании, которая в силах построить ГЭС, способную обуздать мощь водных ресурсов на долгие годы. Сначала фоворитом была фирма Томаса Эдисона, однако после того, как Тесла продемонстрировал эффективность переменного тока перед представителями компании «Уэстингхаус Электрик», выбор пал на него в 1983 году. Инженеры «Уэстингхаус» использовали наработки Николы Тесла, но большим препятствием было получение финансирования столь инновационного проекта, в жизнеспособности которого сомневались многие.
Тем не менее, 16 ноября 1896 года в машинном зале ГЭС Адамса был торжественно повернут рубильник, а станция начала обеспечивать электричеством город Буффало в штате Нью-Йорк. Позже были построены ещё десять генераторов, работающих для электрификации Нью-Йорка. Для того времени проект был поистине революционным и поставил планку для всех современных электростанций.
Ещё одно изобретение Тесла, которое всё ещё используется в каждом доме
Асинхронный двигатель состоит из двух частей — статора и ротора и в работе используется переменный ток. Статор остаётся неподвижным, с помощью магнитов вращая ротор, находящийся в середине конструкции. Такой тип двигателя отличается долговечностью, простотой в использовании и сравнительно низкой стоимостью.
В 80-х годах XIX века над созданием асинхронного двигателя трудились два изобретателя: Никола Тесла и Галилео Феррари. Оба они представили свои наработки в 1888 году, однако Феррари опередил своего соперника на два месяца. При этом их исследования были независимы, а результаты идентичны, к тому же оба изобретателя использовали патенты Теслы. Асинхронный двигатель стал невероятно популярным и используется до сих пор в пылесосах, фенах и электроинструментах.
Так выглядел предок современных дронов
В 1898 году, на выставке электротехники в Мэдисон-Сквер-Гарден, Тесла продемонстрировал своё изобретение, которое он назвал «телеавтоматом». По сути, это была первая в мире радиоуправляемая модель судна. У изобретения не было патента, так как представители Патентного бюро не желали признавать существование того, что (по их мнению) не могло существовать. Никола Тесла показал несостоятельность их сомнений, продемонстрировав своё изобретение на выставке. Он дистанционно управлял рулевым винтом модели и освещением корпуса с помощью радиоволн.
Это изобретение стало первой ступенью в трёх совершенно разных сферах. Во-первых, Тесла разработал пульт дистанционного управления, который сейчас применяется в быту — от домашних телевизоров до гаражных ворот. Во-вторых, модель была первым роботом, который двигался без прямого воздействия человека. И наконец, в-третьих, сочетание робототехники и дистанционного управления позволяют назвать катер Николы Тесла прадедушкой современных дронов.
Без этого изобретения Теслы современный мир выглядел бы иначе
Не подлежит сомнению тот факт, что наиболее важные изобретения Николы Теслы связаны с переменным током. Хоть изобретатель и не является пионером в этой области, его изыскания позволили провести электрификацию на мировом уровне.
Говоря о том, как переменный ток завоевал мир, нельзя не упомянуть имя Томаса Эдисона. На заре своей деятельности, Тесла трудился в компании своего будущего соперника. Именно фирма Эдисона первой стала работать с постоянным током. Переменный ток схож по характеристикам с батареями, так как посылает энергию на носители вне контура. Проблема в том, что сила тока постепенно ослабевает, а это делает невозможным перемещение электричества на большие расстояния. Эту задачу решил Тесла, работая с переменным током, который позволяет перемещать электричество от источника и обратно, а также покрывать огромные расстояния между объектами.
Томас Эдисон осуждал Николу Теслу за его исследования в области переменного тока, считая их бессмысленными и бесперспективными. Именно эта критика послужила поводом для того, чтобы пути двух изобретателей разошлись навсегда. Пока Тесла был безработным и перебивался на случайных заработках, он не мог собрать средства для создания собственной компании. Прошлые успехи привлекли к его работам внимание Джорджа Уэстингхауса, инженера и бизнесмена. Он выкупил все патенты Николы Теслы, связанные с переменным током.
Поворотным моментом в истории электричества можно назвать тендер на установку освещения Всемирной выставки в Чикаго в 1983 году, в котором участвовали фирмы Эдисона и Уэстингхауса. Первый предложил электрифицировать экспозицию за 554 тысячи долларов, а второй обещал сделать это за 399 тысяч долларов, что и дало ему победу и контракт, а затем и успешное воплощение обещанного в жизнь, тем самым обеспечив переменному току светлое будущее. И снова благодаря великому гению Николы Теслы.
Все эти изобретения ещё раз доказывают, что, в первую очередь, Тесла был мечтателем, который не боялся сойти с протоптанной тропы классической науки и мыслить шире установленных в то время рамок. Кто знает, в каком бы веке мы сейчас жили, не будь Тесла одержимым новыми идеями практиком?
Оцените статью: Поделитесь с друзьями!www.publy.ru
АЛЕКСАНДР МИКЕРОВ, д. т. н., проф. каф. систем автоматического управления СПбГЭТУ «ЛЭТИ»
Почти весь XIX век в практических применениях безраздельно господствовал постоянный ток. Главным препятствием широкой электрификации в то время была невозможность передачи электроэнергии на большие расстояния, а переходу на переменные токи мешало отсутствие эффективных электродвигателей переменного тока. Решение было найдено в новаторских работах гениального электротехника Николы Тесла.
Причин популярности постоянного тока тогда было несколько. Прежде всего, источниками тока служили гальванические батареи, и все производимые генераторы и моторы также были постоянного тока. Инженеры мыслили электрогидравлическими аналогиями, в которые не укладывалась идея потоков, меняющих свое направление, поэтому, например, приверженность Эдисона постоянным токам казалась вполне оправданной. Между тем недостатки устройств постоянного тока становились все более очевидными в связи с плохой работой коллектора электрических машин (искрением и износом), проблемами освещения и, главное, невозможностью передачи электроэнергии на большие расстояния.
Электрическое освещение стали использовать после появления дуговых ламп, среди которых наиболее простой была свеча Яблочкова в виде двух вертикально расположенных угольных электродов, разделенных слоем изолирующего материала [1–4]. Вскоре выяснилось, что на постоянном токе разнополярные электроды сгорают неодинаково, поэтому Яблочков предложил питать свечи переменным током, для чего совместно с известным французским заводом Грамма разработал специальный генератор переменного тока, конструкция которого оказалась столь удачной, что его производство доходило до 1000 штук в год [2]. Другое важное изобретение Яблочкова — это схема «дробления света» с использованием индукционной катушки (прообраза современного трансформатора) для параллельного питания от одного генератора любого числа свечей, подобно газовому освещению.
Однако эксплуатация выявила серьезные недостатки дугового освещения, особенно в быту: необходимость замены свечей через каждые два часа, шум, мерцание, большая дороговизна по сравнению даже с газом. Поэтому уже с начала 1890-х гг. электрические свечи были почти повсеместно вытеснены лампами накаливания Эдисона и применялись только в прожекторах или для больших пространств. Тем не менее, именно Яблочкову мы обязаны введением переменных токов в практическую электротехнику, что, в конечном счете, привело к решению острой проблемы дальней передачи электроэнергии, называемой тогда проблемой «распределения света».
Освещение по системе Эдисона имело низкое напряжение, 110 В, поэтому в каждом районе требовалось строить свою электростанцию. Например, в Петербурге из-за дороговизны земли такие электростанции ставились на баржах, стоящих в реках Мойке и Фонтанке [2]. Было ясно, что крупные генерирующие станции выгоднее строить вблизи рек и угольных бассейнов, вдали от городов. Но тогда для дальней передачи нужно или увеличивать сечение подводящих проводов, или повышать напряжение. Для проверки первого подхода на практике русский изобретатель Федор Апполонович Пироцкий предлагал использовать железнодорожные рельсы. Второй путь (повышение напряжения) был испробован французским инженером, впоследствии академиком Марселем Депре (Marcel Deprez), построившим несколько линий передачи постоянного тока с напряжением до 6 кВ. Первая из них, с напряжением 2 кВ, имела длину 57 км и питала двигатель постоянного тока с насосом для искусственного водопада на Мюнхенской электротехнической выставке 1882 г. [2, 4]. Однако для систем освещения такое высокое напряжение было непригодно.
Более простое решение — переход на однофазный переменный ток с повышающими и понижающими трансформаторами — было предложено известной компанией «Ганц и Ко» из Будапешта для освещения оперных театров в Будапеште, Вене и Одессе [2]. Талантливые инженеры этой компании, Микша Дери (Miksa D?ri), Отто Блати (Ott? Bl?thy) и Карой Циперновски (K?roly Zipernowsky), создали в 1884 г. наиболее совершенные конструкции трансформатора (и они же придумали сам этот термин). Отто Блати также изобрел первый электрический счетчик электроэнергии и прославился как выдающийся шахматист.
Рис. 1. Дистанционная передача Депре
Однако развитие промышленности требовало мощных приводов, которые не могли быть созданы на базе электродвигателей переменного тока с питанием от однофазной осветительной сети. Эта проблема формулировалась как «электрическая передача механической энергии» или «передача силы»[4]. Одно из ее первых решений было предложено Депре в 1879 г. в виде дистанционной передачи в опытный вагон движения поршней паровой машины (рис. 1) [5].
У нее был датчик в виде щеточного коммутатора (1) и приемник (2), содержащий ротор (3) с двумя взаимно перпендикулярными катушками, который в свою очередь был подключен к коммутатору (4) и находился в поле магнита (5). Устройство работало со скоростью до 3000 об/мин и с моментом до 5 Нм. Эта идея позднее получила свое развитие в виде сельсинных передач и шаговых двигателей, однако подходила для использования только в приборных системах.
Решение этой проблемы в целом пришло из-за океана, где появился деятельный человек, интуитивно осознавший грядущий переход на переменный ток. Это был Джордж Вестингауз (George Westinghouse) (рис. 2) — видный американский промышленник в сфере оборудования железных дорог, основатель компании Westinghouse, решивший заняться еще и электротехническим бизнесом [2, 4].
Рис. 2. Джордж Вестингауз (1846–1914)
Для того чтобы выйти на рынок со своей продукцией, ему нужны были новые патенты, поскольку основные патенты в этой области принадлежали Эдисону, Вернеру Сименсу (Verner Siemens) и другим конкурентам. Перевести освещение на переменный ток было сравнительно просто, и Вестингауз легко вышел на этот рынок, закупив европейские генераторы и трансформаторы и запатентовав ряд своих ламп накаливания. В 1893 г. он получи большой подряд на электрификацию Всемирной выставки в Чикаго, установив там 180 тыс. ламп накаливания и тысячи дуговых ламп [4].Однако электрические машины были совсем другим делом, поэтому для их разработки он подыскал через патентное ведомство никому не известного изобретателя Николу Теслу, имевшего десятки патентов на системы переменного тока. На встрече в Нью-Йорке в 1888 г. Вестингауз предложил Тесле уступить ему все уже полученные и будущие патенты в обмен на один миллион долларов, пост технического руководителя завода в Питтсбурге и один доллар за каждую л. с. двигателей и генераторов по системе Теслы, установленных на территории США в течение ближайших 15 лет. Третье условие соглашения сыграло в дальнейшем важную роль. Тесла все эти условия принял, и так началось его плодотворное сотрудничество с Вестингаузом [4].Будущий великий электротехник Никола Тесла (рис. 3) родился в семье сербского священника, жившей в Хорватии. Учился в Градском политехникуме и Пражском университете, но, не закончив их, поступил на работу в отделение компании Эдисона в Париже, откуда перебрался в США с рекомендательным письмом от директора отделения самому Эдисону.
Письмо гласило: «Я знаю двух великих людей: один из них вы, а второй — молодой человек, которого я вам рекомендую». Разумеется, Тесла был принят незамедлительно, и ему поручили самую ответственную работу с электротехническим оборудованием, включая ликвидацию аварий.
Рис. 3. Никола Тесла (1856 – 1943)
Впрочем, работа в этой компании продолжалась недолго. Поводом к расставанию якобы послужил отказ Эдисона выплатить обещанную премию в 50 тысяч долларов за совершенствование генераторов постоянного тока. Когда Тесла напомнил об этом шефу, тот сказал: «Молодой человек, вы не понимаете американского юмора» [4]. Однако скорее всего причиной ухода Теслы было упорное нежелание Эдисона разрешать молодому сербу заниматься бесколлекторным электродвигателем переменного тока, с мечтой о котором Тесла прибыл из Европы. Поэтому, разумеется, Тесла с радостью принял предложение Вестингауза, которое предоставляло ему прекрасные возможности для работы над своей идеей.
Еще в мае 1888 г. Тесла получил семь патентов США на системы переменного тока и бесщеточные двигатели [4]. Главным в них было новаторское предложение строить всю цепочку генерации, передачи, распределения и использования электроэнергии как многофазную систему переменного тока, включающую генератор, линию передачи и двигатель переменного тока, названный Теслой «индукционным». Пример такой системы показан на рис. 4.
Здесь: 1 — синхронный генератор с возбуждением от постоянных магнитов и с двумя взаимно перпендикулярными фазами обмотки ротора (2), соединенными через контактные кольца (3) и линию передачи (4) с двухфазным индукционным двигателем (5) с обмоткой статора (6) и ротором (7) в виде стального цилиндра со срезанными сегментами [4]. Действие такого двигателя, называемого теперь асинхронным, объяснялось формированием «перемещающегося», а по современной терминологии вращающегося магнитного поля. Для линии дальней передачи предлагалось включение двухфазных повышающего и понижающего трансформаторов. В мае того же года Тесла выступил с большим докладом о многофазных системах на семинаре Американского института инженеров-электриков AIEE (предшественника IEEE). Продолжая исследования, он вскоре реализовал и другие идеи: двухфазный и трехфазный асинхронный двигатель с обмоткой в звезду, трехфазный генератор с нейтралью и без, трех- и четырехпроводные линии электропередачи и т. д. Всего по многофазным системам у Теслы был 41 патент [2].
Рис. 4. Двухфазная система Теслы
Несомненно,Тесле принадлежит патентный, а Вестингаузу промышленный приоритет на многофазные системы переменного тока, поскольку им сразу же было развернуто массовое производство двигателей, генераторов и другой аппаратуры таких систем. Вершиной этой бурной деятельности было строительство в 1895 г. самой крупной по тем временам Ниагарской электростанции на американском берегу Ниагарского водопада, высота которого составляла 48 метров. На плотине было установлено 10 двухфазных генераторов по 3,7 мВт каждый, а также проложена линия электропередачи 11 кВ длиной 40 км в Буффало, где был создан промышленный район с многочисленными потребителями электроэнергии переменного тока [2, 4].
Рис. 5. Опыт Теслы
Однако Теслу тяготила производственная деятельность, и он ушел от Вестингауза, желая и дальше развивать идею дальней передачи электроэнергии, но уже без проводов. Этим он и стал с увлечением заниматься в собственной лаборатории.Его первой мыслью было создать с помощью высоковольтного и высокочастотного излучателя мощное электрическое поле, действующее на значительные расстояния, из которого потребитель мог бы черпать электроэнергию. Тесла изобретает первый электромеханический СВЧ-генератор, использованный позднее в первых радиостанциях и для индукционного нагрева, передающую и приемную антенны, а также резонансный контур приемника для выделения определенной частоты. Всех поразил опыт Теслы, когда при включении генератора безо всяких проводов в его руках загоралась электрическая лампа, как показано на рис. 5.
Тесла был в одном шаге от изобретения радио, но не пошел по этому пути, поскольку его занимала мысль о передаче электроэнергии, а не информации. Однако именно ему принадлежит приоритет в создании телемеханики, реализованной в 1898 г. в виде дистанционно управляемого водяного катера.
Тем временем, многочисленные опыты показывали, что электролампу удается зажигать только на расстоянии не более нескольких сотен метров. Тесла попытался реализовать другой способ передачи электроэнергии: не через атмосферу, а прямо сквозь землю путем возбуждения в земном шаре, как огромном конденсаторе, поверхностных стоячих волн, в пучности которых можно было отбирать энергию в любой точке поверхности Земли. Для этого он построил в местечке Уорденклиф под Нью-Йорком огромную антенну с мощным надземным и подземным возбудителями, подключенными к отдельной электростанции, как показано на рис. 6. Опыты с этой башней по беспроводной передаче электроэнергии в период с 1899 по 1905 г., судя по всему, не дали желаемого эффекта, поскольку Тесла их неожиданно забросил, не опубликовав результатов. И ученые до сих пор спорят, чего же все-таки достиг Тесла в этом эксперименте, поскольку он работал без помощников и не оставил никаких записей [4, 6].
Рис. 6. Башня Уорденклифф
Задача беспроводной передачи электроэнергии не решена до сих пор. Последние достижения используют узконаправленные микроволновое или лазерное излучения для удаленного электропитания космических аппаратов от спутника с солнечными батареями или от управляемых дронов [7]. Экспериментально доказана возможность передачи порядка десятка киловатт на расстояние километров. Другое направление разработок — это лазерное оружие, предвозвестником которого был знаменитый «Гиперболоид инженера Гарина».Тем не менее заслуги Теслы были всемирно признаны. В честь него единица индукции магнитного поля в системе SI названа «тесла», он был избран членом и почетным доктором наук многих академий и университетов. Одна из самых престижных наград IEEE — медаль Теслы — ежегодно присуждается за выдающиеся заслуги в области производства и использования электроэнергии. Тесле принадлежит около 800 патентов, причем, в отличие от патентов Эдисона, они считаются более новаторскими. Существует несколько памятников Тесле и посвященных ему музеев, среди которых самый впечатляющий находится в Белграде, выпущены банкноты с его портретом (рис. 7).
Рис. 7. Банкнота Сербии
Однако личная жизнь Теслы сложилась неудачно [4, 6]. В конце XIX в. в США разразился экономический кризис, поставивший компанию Вестингауза на грань разорения. Узнав об этом, Тесла явился в штаб-квартиру своего бывшего патрона и публично разорвал их первичное соглашение, потеряв около 10 млн долларов, причитавшихся ему в соответствии с третьим пунктом этого договора. Буквально через две недели после этого великодушного жеста дотла сгорела его великолепная лаборатория, и он остался без средств. В отличие от Эдисона, он не был бизнесменом и вложил все, что у него имелось, в эту лабораторию. После этого Тесла был вынужден проводить свои дальнейшие исследования на различные гранты и пожертвования, в частности, башня Уорденклифф была построена на деньги американского финансиста Моргана.
Биограф Теслы Велимир Абрамович писал: «Пытаясь представить себе Теслу, я не вижу его улыбающимся, а наоборот, грустным…» [6]. Тесла не пил вина, никогда не знал женщин, не имел семьи и умер в одиночестве и бедности в отеле «Нью-Йоркер» [4].
Потребность в передаче электроэнергии на большие расстояния возникла в конце XIX в., прежде всего в связи с широким внедрением систем освещения.
Такая передача на постоянном токе была технически целесообразной только при высоком напряжении и практически неприемлемой для низковольтного освещения.
Линии передачи переменного тока с трансформаторами удовлетворяли задачам освещения, однако для промышленности требовались мощные электродвигатели, все известные конструкции которых были постоянного тока.
Решение этой комплексной проблемы было предложено изобретателем Теслой и предпринимателем Вестингаузом, создавшими многофазные системы переменного тока с синхронными генераторами, линиями передачи и асинхронными двигателями.
Исследования же Теслы по беспроводной передаче электроэнергии до сих пор не получили практического завершения.
Литература
controleng.ru
Асинхронный электродвигатель - электрическая асинхронная машина для преобразования электрической энергии в механическую.
Четырехтактный карбюраторный двигатель внутреннего сгорания.
Принцип работы асинхронного электродвигателя основан на взаимодействии вращающегося магнитного поля, возникающего при прохождении трехфазного переменного тока по обмоткам статора, с током, индуктированным полем статора в обмотках ротора, в результате чего возникают механические усилия, заставляющие ротор вращаться в сторону вращения магнитного поля при условии, что частота вращения ротора n меньше частоты вращения поля n1. Таким образом ротор совершает асинхронное вращение по отношению к полю. Впервые явление, названное магнетизмом вращения, продемонстрировал французский физик Д. Ф. Арагон (1824). Он показал, что укрепленный на вертикальной оси медный диск начинает вращаться, если вращать над ним постоянный магнит. Спустя 55 лет, 28 июня 1879, английский ученый У. Бейли получил вращение магнитного поля поочередным подключением обмоток 4 стержневых электромагнитов к источнику постоянного тока. В работах М. Депре (Франция, 1880—1883), И. Томсона (США, 1887) и др. описываются устройства, основанные также на свойствах вращающегося магнитного поля. Однако строгое научное изложение сущности этого явления впервые практически одновременно и независимо друг от друга было дано в 1888 г. итальянским физиком Г. Феррарисом и хорватским инженером и ученым Н. Тесла.
Схема включения асинхронного электродвигателя с фазным ротором: 1 - обмотка статора, 2 - обмотка ротора, 3 - контактные кольца, 4 - щетки, R - резисторы.
Двухфазный асинхронный электродвигатель был изобретен Н. Тесла в 1887 г. (английский патент № 6481), публичное сообщение об этом изобретении он сделал в 1888 г. Распространение этот тип асинхронного двигателя не получил в основном из-за плохих пусковых характеристик. В 1889 г. М. О. Доливо-Добровольский испытал сконструированный им первый в мире трехфазный асинхронный двигатель, в котором применил ротор типа «беличье колесо» (германский патент № 51083), а обмотку статора разместил в пазах по всей окружности статора. В 1890 г. Доливо-Добровольский изобрел фазный ротор с кольцами и пусковыми устройствами (патенты английский № 20425 и германский № 75361). Через 2 года им же была предложена конструкция ротора, названная «двойной беличьей клеткой», которую, однако, стали широко применять только с 1898 г. благодаря работам французского инженера П. Бушеро, представившего асинхронный электродвигатель с таким ротором, как двигатель со специальными пусковыми характеристиками. Благодаря своей простоте устройства, надежности в эксплуатации двигатели такого типа являются самыми распространенными электрическими машинами в мире. Фазные обмотки статора электродвигателя соединяются в звезду или треугольник (в зависимости от напряжения сети). Если в паспорте электродвигателя указано, что обмотки выполнены на напряжение 220/380 В, то при включении его в сеть с линейным напряжением 220 В обмотки соединяют в треугольник, а при включении в сеть 380 В - в звезду.
Схемы соединения обмоток статора трехфазного асинхронного двигателя.
Схемы соединения обмоток статора трехфазного асинхронного двигателя: а - в звезду, б - в треугольник, в - в звезду и треугольник на клеммном щитке электродвигателя. Схема включения асинхронного электродвигателя с фазным ротором: 1 - обмотка статора, 2 - обмотка ротора, 3 - контактные кольца, 4 - щетки, R - резисторы. Для изменения направления вращения вала асинхронного двигателя необходимо изменить направление вращения магнитного поля статора. Для этого достаточно поменять местами два любых провода, соединяющих обмотку статора с питающей сетью.
История создания двигателя переменного тока, основанного на изобретении вращающегося магнитного поля, гораздо более драматична и даже детективна, как и всякая история настоящего изобретения. Двигатели постоянного тока уже эксплуатировались на полную мощность. Концентрация промышленных объектов вдали от мест производства электроэнергии требовала ее передачи на все большие и большие расстояния. Но передача постоянного тока на такие расстояния вела к огромным потерям. Такая передача была бы целесообразна лишь при применении напряжения в десятки тысяч вольт. Но получить такое напряжение в генераторах постоянного тока было невозможно. Тогда пришли к идее передачи переменного тока с последующей его трансформацией.
Схема простого самодельного электродвигателя.
Пользуясь однофазными генераторами с механической коммутацией концов катушек ротора (коллектор, щетки), стали производить переменный ток низкого напряжения, затем трансформаторами повышать его до любой требуемой величины, передавать на расстояние высоким напряжением, а на месте потребления снова снижать до требуемого и использовать в токоприемниках. Но… снова возникала проблема выпрямления переменного тока в постоянный для использования в двигателях, что приводило практически к таким же потерям, что и в линиях при передаче постоянного тока Еще не существовало электродвигателей переменного тока. А ведь уже в начале 1880-х годов электроэнергия потреблялась главным образом для силовых нужд. Электродвигатели постоянного тока для привода самых различных машин применялись все шире. Создать электродвигатель, который мог бы работать на токе без выпрямителей, стало основной задачей электротехники. В поисках новых путей всегда необходимо оглянуться назад. Не было ли в истории электротехники чего-либо такого, что могло бы подсказать путь к созданию электродвигателя переменного тока? Поиски в прошлом увенчались успехом. Вспомнили, что еще в 1824 году Арагон демонстрировал опыт, положивший начало множеству плодотворных исследований. Речь идет о демонстрации «магнетизма вращения». Медный (немагнитный) диск увлекался вращающимся магнитом. Возникла идея: нельзя ли, заменив диск витками обмотки, а вращающийся магнит вращающимся магнитным полем, создать электродвигатель переменного тока? Наверное, можно, но как получить вращение магнитного поля? В эти годы было предложено много различных способов применения переменного тока. Добросовестный историк электротехники должен будет назвать имена различных физиков и инженеров, пытавшихся в середине 80-х годов создать электродвигатели переменного тока. Он не забудет напомнить об опытах Бейли (1879 г.), Марселя Депре (1883 г.), Бредли (1887 г.), о работах Венстрома, Хазельвандера и многих других. Предложения, несомненно, были очень интересны, но ни одно из них не могло удовлетворить промышленность: электродвигатели их были либо громоздки и неэкономичны либо сложны и ненадежны. Все они были основаны на механической коммутации обмоток электромагнитов, что было еще дороже и ненадежнее, чем выпрямление.
Электромагнитная индукция.
Поиски решения именно этой задачи, создание вращающегося магнитного поля, начал Никола Тесла. Он шел своим путем и предложил коренное решение возникшей проблемы. Еще в Будапеште весной 1882 года Тесла ясно представил себе, что если каким-либо образом осуществить питание обмоток магнитных полюсов электродвигателя двумя различными переменными токами, отличающимися друг от друга лишь сдвигом по фазе, то чередование этих токов вызовет переменное образование северного и южного полюсов, или вращение магнитного поля. Вращающееся магнитное поле должно увлечь и обмотку ротора машины. Тесла первым, еще в 1882 году, независимо ни от кого, построил источник двухфазного тока (двухфазный генератор синусоидального тока со сдвигом фаз 900) и такой же двухфазный электродвигатель, уложив его статорные обмотки так, чтобы создавалось вращающееся магнитное поле, и тем осуществил свою идею независимо и самостоятельно и впервые. В этом именно и заключается создание двигателя переменного тока. Тогда он еще, так же как и никто в мире, не имел представления о паразитных токах взаимоиндукции, и его пара «генератор-двигатель» с цельнометаллическими статором и ротором сильно перегревалась. Но это был тот самый главный и отчаянный рывок в электротехнике, описанный им в патенте № 6481 за 1887 год, где Тесла, теоретически рассмотрев все возможные случаи сдвига фаз, остановился на сдвиге в 90°, то есть на двухфазном токе, но описал возможность применения вращающегося поля и для многофазных систем. На основе этого описания затем и работал Доливо-Добровольский над своей трехфазной системой. Но Тесла не был единственным ученым, вспомнившим об опыте Арагона и нашедшим решение важной проблемы. В те же годы исследованиями в области переменных токов занимался итальянский физик Галилее Феррарис, представитель Италии на многих международных конгрессах электриков (1881 и 1882 годы в Париже, 1883 год в Вене и другие). Подготавливая лекции по оптике, он пришел к мысли о возможности постановки опыта, демонстрирующего свойства световых волн.
Схема включения коллекторного двигателя.
Для этого Феррарис укрепил на тонкой нити медный цилиндр, на который действовали два магнитных поля, сдвинутых под углом в 90°. При включении тока в катушки, попеременно создающие магнитные поля то в одной, то в другой из них (опять же с помощью механической коммутации обмоток этих катушек М.Н.), цилиндр под действием этих полей поворачивался и закручивал нить, в результате чего поднимался на некоторую величину вверх. Устройство это прекрасно моделировало явление, известное под названием поляризации света. Феррарис и не предполагал использовать свою модель для каких-либо электротехнических целей. Это был всего лишь лекционный прибор, остроумие которого заключалось в умелом применении электродинамического явления для демонстраций в области оптики. Но Феррарис не ограничился этой моделью. Во второй, более совершенной ему удалось достигнуть вращения цилиндра со скоростью до 900 оборотов в минуту. Но за определенными пределами, как бы ни увеличивалась в цепи сила тока, создававшего магнитные поля (другими словами, как бы ни увеличивалась затрачиваемая мощность), достигнуть увеличения числа оборотов не удавалось. Подсчеты показали, что мощность второй модели не превышала 3 ватт. Несомненно, Феррарис, будучи не только оптиком, но и электриком, не мог не понимать значения произведенных им опытов. Однако ему, по собственному его признанию, и в голову не приходило применить этот принцип к созданию электродвигателя переменного тока. Самое большое, что он предполагал, - использовать его для измерения силы тока, и он даже начал конструировать такой прибор. 18 марта 1888 года в Туринской академии наук Феррарис сделал доклад «Электродинамическое вращение, произведенное с помощью переменных токов». В нем он рассказал о своих опытах и пытался доказать, что получение в таком приборе коэффициента полезного действия свыше 50 процентов невозможно. Феррарис был искренне убежден, что, доказав нецелесообразность использования переменных магнитных полей для практических целей, он оказывает науке большую услугу. Доклад Феррариса опередил сообщение Николы Тесла в Американском институте электроинженеров. Но заявка, поданная для получения патента еще в октябре 1887 года, свидетельствует о несомненном приоритете Тесла перед Феррарисом.
Схема подключения электродвигателя.
Но не это принципиально! Принципиально то, что Феррарис создавал вращающееся магнитное поле механической коммутацией концов катушек электромагнитов, а Тесла еще создал и двухфазный генератор переменного тока и описал его работу в своем патенте за 1887 год. Однофазные генераторы переменного тока уже давно работали как и однофазные трансформаторы. Т.е. Тесла открыл само явление под названием «сдвиг фаз» и впервые уложил обмотки и генератора, и двигателя специальным образом, заложив основы для создания многофазных систем. Что же касается публикации, то статья Феррариса, доступная для чтения всем электрикам мира, была опубликована лишь в июне 1888 года, то есть после широко известного доклада Тесла. На утверждение Феррариса, что работы по изучению вращающегося магнитного поля начаты им в 1885 году, Тесла имел все основания возразить, что он занимался этой проблемой еще в Граце, решение ее нашел в 1882 году, а в 1884 году в Страсбурге демонстрировал действующую модель своего двигателя. Но, конечно, дело не только в приоритете. Несомненно, оба ученых сделали одно и то же открытие независимо друг от друга: Феррарис не мог знать о патентной заявке Тесла, так же как и последний не мог знать о работах итальянского физика. Еще раз повторяю, принципиальное отличие открытия Николы Тесла от описания явления Галилео Феррариса и позднейших разработок Доливо-Добровольского заключается в создании им рабочей пары многофазного переменного тока «генератор-двигатель» и теоретического описания принципа их работы.
Поделитесь полезной статьей:
Topfazaa.ru