Как известно, ротор асинхронного двигателя вращается в ту же сторону, что и магнитное поле со скоростью, несколько меньшей скорости вращения поля, так как только при этом условии в обмотке ротора будут индуцироваться ЭДС и токи и на ротор будет действовать вращающий момент.
Обозначим скорость вращения поля (синхронная скорость) через а скорость вращения ротора через 2Тогда разность 3
Выразим скольжение s через угловые скорости вращения поля и ротора
откуда
Полученные выражения подставим в формулу скольжения (5.7)
Выясним влияние скольжения на мощность, развиваемую двигателем.
Пусть мощность, потребляемая двигателем, мощность, развиваемая ротором при его вращении. Тогда
длина окружности ротора, R — его радиус, и
Взяв отношение получим:
но (обе силы электромагнитные и в установившемся режиме вращения действие равно противодействию), тогда
откуда окончательно имеем:
Из полученного соотношения следует, что мощность развиваемая ротором асинхронного двигателя, зависит от скольжения 5.
Если скольжение выражать в процентах, то от мощности потребляемой двигателем из сети, преобразуется в механическую мощность, а остальные мощности расходуются на покрытие потерь в двигателе, поэтому для получения высокого КПД двигателя скольжение необходимо делать возможно меньшим.
Частота вращения асинхронного двигателя
n = n1 (1 – s) = (60f1/p) (1-s) (85)
Из этого выражения видно, что ее можно регулировать, изменяя частоту f1 питающего напряжения, число пар полюсов р и
Рис. 266. Схема переключения катушек обмотки статора (одной фазы) для изменения числа полюсов: а — при четырех полюсах; б — при двух полюсах
скольжение s. Последнее при заданных значениях момента на валу Мвн и частоты f1 можно изменять путем включения в цепь обмотки ротора реостата.
Регулирование путем изменения числа пар полюсов. Этот способ позволяет получить ступенчатое изменение частоты вращения. Для этой цели отдельные катушки 1, 2 и 3, 4, составляющие одну фазу (рис. 266), переключаются так, чтобы изменялось соответствующим образом направление тока в них (например, с последовательного согласного соединения на встречное). При согласном включении катушек (рис. 266, а) число полюсов равно четырем, при встречном включении (рис. 266, б) — двум. Катушки двух других фаз, сдвинутые в пространстве на 120°, соединяются таким же образом. Такое же уменьшение числа полюсов можно осуществить при переключении катушек с последовательного на параллельное соединение. При изменении числа полюсов изменяется частота вращения n1 магнитного поля двигателя, а следовательно, и частота вращения n его ротора. Если нужно иметь три или четыре частоты вращения n1, то на статоре располагают еще одну обмотку, при переключении которой можно получить еще две частоты. Существуют двигатели, которые обеспечивают изменение частоты вращения n1 при постоянном наибольшем моменте или при приблизительно постоянной мощности (рис. 267).
В асинхронном двигателе число полюсов ротора должно быть равно числу полюсов статора. В короткозамкнутом роторе это условие выполняется автоматически и при переключении обмотки статора никаких изменений в обмотке ротора выполнять не требуется.
Рис. 267. Механические характеристики двухскоростных асинхронных двигателей с постоянным наибольшим моментом (а) и постоянной мощностью (б)
Рис. 268. Механические характеристики асинхронного двигателя при регулировании частоты вращения путем включения реостата в цепь обмотки ротора
Рис. 269. Схемы подключения асинхронного двигателя к сети при изменении направления его вращения
В двигателе же с фазным ротором в этом случае надо было бы изменять число полюсов обмотки ротора, что сильно усложнило бы его конструкцию, поэтому такой способ регулирования частоты вращения используется только в двигателях с коротко-замкнутым ротором. Такие двигатели имеют большие габаритные размеры и массу по сравнению с двигателями общего применения, а следовательно, и большую стоимость. Кроме того, регулирование осуществляется большими ступенями; при частоте f1 = 50 Гц частота вращения поля n1 при переключениях изменяется в отношении 3000:1500:1000:750.
studfiles.net
В итоге взаимодействия магнитного поля с токами в роторе асинхронного мотора создается крутящий электрический момент, стремящийся уравнять скорость вращения магнитного поля статора и ротора.
Разность скоростей вращения магнитного поля статора и ротора асинхронного мотора характеризуется величиной скольжения s = (n1 — n2) / n2, где n1— синхронная скорость вращения поля, об/мин, n2 — скорость вращения ротора асинхронного мотора, об/мин. При работе с номинальной нагрузкой скольжение обычно не достаточно, так для электродвигателя, к примеру, с n1 = 1500 об/мин, n2 = 1 460 об/мин, скольжение равно:s = ((1500 — 1460) / 1500 ) х 100 = 2,7%
Асинхронный движок не может достигнуть синхронной скорости вращения даже три отсоединенном механизме, потому что при ней проводники ротора не будут пересекаться магнитным полем, в их не будет наводиться ЭДС и не будет тока. Асинхронный момент при s = 0 будет равен нулю.
В исходный момент запуска в обмотках ротора протекает ток с частотой сети. По мере ускорения ротора частота тока в нем будет определяться скольжением асинхронного мотора: f2 = s х f1, где f1 — частота тока, подводимого к статору.
Сопротивление ротора находится в зависимости от частоты тока в нем, при этом чем больше частота, тем больше его индуктивное сопротивление. С повышением индуктивного сопротивления ротора возрастает сдвиг фаз меж напряжением и током в обмотках статора.
При пуске асинхронных движков коэффициент мощности потому существенно ниже, чем при обычной работе. Величина тока определяется эквивалентным значением сопротивления электродвигателя и приложенным напряжением.
Величина эквивалентного сопротивления асинхронного мотора с конфигурацией скольжения меняется по сложному закону. При уменьшении скольжения в границах 1 — 0,15 сопротивление возрастает, обычно, менее чем в 1,5 раза, в границах от 0,15 до sном в 5-7 раз по отношению к исходному значению при пуске.
Ток по величине меняется назад пропорционально изменению эквивалентного сопротивления Таким макаром, при пуске до скольжения порядка 0,15 ток опадает некординально, а в предстоящем стремительно миниатюризируется.
Момент вращения электродвигателя определяется величиной магнитного потока, током и угловым сдвигом меж ЭДС и током в роторе. Любая из этих величин в свою очередь находится в зависимости от скольжения, потому для исследования рабочих черт асинхронных движков устанавливается зависимость момента от скольжения и воздействия на него подводимого напряжения и частоты.
Момент вращения может быть также определен по электрической мощности на валу как отношение этой мощности к угловой скорости ротора. Величина момента пропорциональна квадрату напряжения и назад пропорциональная квадрату частоты.
Соответствующими значениями момента зависимо от скольжения (либо скорости) являются изначальное значение момента (когда электродвигатель еще неподвижен), наибольшее значение момента (и соответственное ему сколь жение, называемое критичным) и малое значение момента в пределе скоростей от недвижного состояния до номинальной.
Значения момента для номинального напряжения приводятся в каталогах для электронных машин. Познание малого момента нужно при расчете допустимости запуска либо самозапуска механизма с полной нагрузкой механизма. Потому его значение для определенных расчетов должно быть или определено, или получено от завода-поставщика.
Величина наибольшего значения момента определяется индуктивным сопротивлением рассеяния статора и ротора и не находится в зависимости от величины сопротивления ротора.
Критичное скольжение определяется отношением сопротивления ротора к эквивалентному сопротивлению (обосновано активным сопротивлением статора и индуктивным сопротивлением рассеяния статора и ротора).
Повышение только активного сопротивления ротора сопровождается повышением критичного скольжения и перемещением максимума момента в область более больших скольжений (наименьшей скорости вращения). Таким методом может быть достигнуто изменение черт моментов.
В асинхронных двигателях с фазным ротором изменение момента при разных скольжениях осуществляется при помощи сопротивления, вводимого в цепь обмотки ротора. В асинхронных движках с короткозамкнутым ротором изменение момента может быть достигнуто за счет внедрения движков с переменными параметрами либо при помощи частотных преобразователей.
Школа для электрика
elektrica.info
Скольжение асинхронного двигателя — относительная разность скоростей вращения ротора и изменения переменного магнитного потока, создаваемого обмотками статора двигателя переменного тока. Скольжение может измеряться в относительных единицах и в процентах.
s=(n1−n)/n1{\displaystyle s=(n_{1}-n)/n_{1}},
где n{\displaystyle n} — скорость вращения ротора асинхронного двигателя, об/мин
n1{\displaystyle n_{1}} — скорость циклического изменения магнитного потока статора, называется синхронной скоростью двигателя.
n1=60×f/p{\displaystyle n_{1}=60\times f/p},
где f — частота сети переменного тока, Гц
p — число пар полюсов обмотки статора (число пар катушек на фазу).
Из последней формулы видно, что скорость вращения двигателя n практически определяется значением его синхронной скорости, а последняя при стандартной частоте 50 Гц зависит от числа пар полюсов: при одной паре полюсов — 3000 об/мин, при двух парах — 1500 об/мин, при трёх парах — 1000 об/мин и т. д.
Холостой ход асинхронного двигателя имеет место в том случае, если на валу отсутствует нагрузка в виде рабочего органа или редуктора. При сборке нового двигателя всегда проводится испытания холостого хода, для того чтобы определить потери в подшипниках, вентиляторе и магнитопроводе, а также узнать значения намагничивающего тока. Во время холостого хода скольжение составляет: S=0,01÷0,08.
Следует заметить, что так же существует режим идеального холостого хода, при котором n2=n1, что практически реализовать невозможно, даже если учесть, что нет силы трения в подшипниках. На самом деле суть заключается в том, что асинхронному двигателю необходимо, чтобы ротор отставал от магнитного вращающегося поля статора. При отставании поле статора индуцирует магнитное поле в ротор, что заставляет его вращаться за полем статора.
Если постепенно повышать нагрузку двигателя, то скольжение будет расти (ротор будет все сильнее отставать от вращающегося магнитного поля), при этом пропорционально скольжению будет расти ток, наводимый в роторе, а пропорционально ему будет расти и момент. Поэтому при малых нагрузках можно считать, что момент пропорционален скольжению. Но при росте скольжения возрастают активные потери в роторе, которые снижают ток ротора, поэтому момент растет медленнее чем скольжение, и при определенном скольжении момент достигает максимума, а потом начинает снижаться. Скольжение, при котором момент достигает максимума, называется критическим.
ru-wiki.org
Как известно, ротор асинхронного двигателя вращается в ту же сторону, что и магнитное поле со скоростью, несколько меньшей скорости вращения поля, так как только при этом условии в обмотке ротора будут индуцироваться ЭДС и токи и на ротор будет действовать вращающий момент.
Обозначим скорость вращения поля (синхронная скорость) через а скорость вращения ротора через 2Тогда разность 3называемая скоростью скольжения, будет представлять собой скорость ротора относительно поля, а отношение скорости скольжения к синхронной скорости, выраженное в процентах, называют скольжением 4
Выразим скольжение s через угловые скорости вращения поля и ротора
откуда
Полученные выражения подставим в формулу скольжения (5.7)
Выясним влияние скольжения на мощность, развиваемую двигателем.
Пусть мощность, потребляемая двигателем, мощность, развиваемая ротором при его вращении. Тогда
длина окружности ротора, R — его радиус, и — силы, действующие на ротор (соответственно электромагнитная и механическая). Тогда
Взяв отношение получим:
но (обе силы электромагнитные и в установившемся режиме вращения действие равно противодействию), тогда
откуда окончательно имеем:
Из полученного соотношения следует, что мощность развиваемая ротором асинхронного двигателя, зависит от скольжения 5.
Если скольжение выражать в процентах, то от мощности потребляемой двигателем из сети, преобразуется в механическую мощность, а остальные мощности расходуются на покрытие потерь в двигателе, поэтому для получения высокого КПД двигателя скольжение необходимо делать возможно меньшим.
На практике у двигателей мощностью от 1 до 1000 кВА при номинальной нагрузке скольжение составляет 3-6%, а при больших мощностях - 1-3%. Так, при скоростях вращения магнитного поля 3000, 1500 и 1000 об/мин скорости вращения ротора обычно имеют соответственно значения 2800,1410 и 930 об/мин.
Частота вращения асинхронного двигателя
n = n1 (1 – s) = (60f1/p) (1-s) (85)
Из этого выражения видно, что ее можно регулировать, изменяя частоту f1 питающего напряжения, число пар полюсов р и
Рис. 266. Схема переключения катушек обмотки статора (одной фазы) для изменения числа полюсов: а — при четырех полюсах; б — при двух полюсах
скольжение s. Последнее при заданных значениях момента на валу Мвн и частоты f1 можно изменять путем включения в цепь обмотки ротора реостата.
Регулирование путем изменения числа пар полюсов. Этот способ позволяет получить ступенчатое изменение частоты вращения. Для этой цели отдельные катушки 1, 2 и 3, 4, составляющие одну фазу (рис. 266), переключаются так, чтобы изменялось соответствующим образом направление тока в них (например, с последовательного согласного соединения на встречное). При согласном включении катушек (рис. 266, а) число полюсов равно четырем, при встречном включении (рис. 266, б) — двум. Катушки двух других фаз, сдвинутые в пространстве на 120°, соединяются таким же образом. Такое же уменьшение числа полюсов можно осуществить при переключении катушек с последовательного на параллельное соединение. При изменении числа полюсов изменяется частота вращения n1 магнитного поля двигателя, а следовательно, и частота вращения n его ротора. Если нужно иметь три или четыре частоты вращения n1, то на статоре располагают еще одну обмотку, при переключении которой можно получить еще две частоты. Существуют двигатели, которые обеспечивают изменение частоты вращения n1 при постоянном наибольшем моменте или при приблизительно постоянной мощности (рис. 267).
В асинхронном двигателе число полюсов ротора должно быть равно числу полюсов статора. В короткозамкнутом роторе это условие выполняется автоматически и при переключении обмотки статора никаких изменений в обмотке ротора выполнять не требуется.
Рис. 267. Механические характеристики двухскоростных асинхронных двигателей с постоянным наибольшим моментом (а) и постоянной мощностью (б)
Рис. 268. Механические характеристики асинхронного двигателя при регулировании частоты вращения путем включения реостата в цепь обмотки ротора
Рис. 269. Схемы подключения асинхронного двигателя к сети при изменении направления его вращения
В двигателе же с фазным ротором в этом случае надо было бы изменять число полюсов обмотки ротора, что сильно усложнило бы его конструкцию, поэтому такой способ регулирования частоты вращения используется только в двигателях с коротко-замкнутым ротором. Такие двигатели имеют большие габаритные размеры и массу по сравнению с двигателями общего применения, а следовательно, и большую стоимость. Кроме того, регулирование осуществляется большими ступенями; при частоте f1 = 50 Гц частота вращения поля n1 при переключениях изменяется в отношении 3000:1500:1000:750.
studfiles.net
Принцип действия асинхронного двигателя основан на использовании вращающихся магнитных полей и основных законов электротехники.
Рис. 3
При включении двигателя в сеть трехфазного тока в статоре образуется постоянное по величине, но вращающееся в пространстве магнитное поле, силовые линии которого пересекают витки обмоток ротора. При этом согласно закону электромагнитной индукции, в обмотке ротора индуцируется ЭДС, величина которой пропорциональна частоте пересечения силовых линий. Под действием индуцированной ЭДС в короткозамкнутом роторе возникают значительные токи.В соответствии с законом Ампера на проводники с током, находящиеся в магнитном поле, действуют механические силы, которые по принципу Ленца стремятся устранить причину, вызывающую индуцированный ток, т.е. пересечение стержней обмотки ротора силовыми линиями вращающегося поля. Таким образом, возникшие механические силы будут раскручивать ротор в направлении вращения поля, уменьшая скорость пересечения стержней обмотки ротора магнитными силовыми линиями.
Достичь частоты вращения поля в реальных условиях ротор не может, так как тогда стержни его обмотки оказались бы неподвижными относительно магнитных силовых линий и индуцированные токи в обмотке ротора исчезли бы. Поэтому ротор вращается с частотой, меньшей частоты вращения поля, т.е. не синхронно с полем или асинхронно.
Для изменения направления вращения ротора асинхронного двигателя необходимо изменить направление вращения магнитного поля, т.е. изменить порядок чередования фаз обмоток статора переключением любых двух из трех фазных проводов, питающих двигатель.
Частота вращения магнитного поля n1(синхронная частота вращения) жестко зависит от частотыf1подводимого напряжения и количества пар полюсовpдвигателя:n1 = 60f1/p.
Из этого вытекает, что при принятой в России промышленной частоте питающего напряжения ( f1 = 50 Гц) наибольшее число оборотов магнитного поля оказывается равным 3000 об/мин приp= 1. При увеличении числа пар полюсов частота вращения магнитного поля уменьшается, а следовательно, снижается и частота вращения ротора. Приp= 2,n= 1500 об/мин и т.д.
Если силы, тормозящие вращение ротора, невелики, то ротор вращается с частотой, близкой к частоте вращения поля. При увеличении нагрузки на валу двигателя частота вращения ротора уменьшается, токи в витках его обмоток увеличиваются, что приводит к возрастанию вращающего момента двигателя. При некоторой частоте вращения ротора устанавливается равновесие между тормозными вращающим моментами.
Обозначим через n2частоту вращения ротора асинхронного двигателя, а черезn1частоту вращения магнитного поля. В предыдущем разделе было показано, чтоn2<n1.
Частоту вращения магнитного поля относительно ротора, т.е. разность n1–n2, называютскольжением. Обычно скольжение выражают в долях частоты вращения поля и обозначают символомs:
s = (n1 – n2)/ n1 .
Скольжение зависит от нагрузки на валу двигателя. При номинальной нагрузке его значение составляет около 0,05 у машин небольшой мощности и около 0,02 у мощных двигателей.
Из равенства, приведенного выше, легко найдем соотношение: n2=n1(1 – s). И после простого преобразования получим выражение для частоты двигателя, удобное для дальнейших рассуждений:n2 = 60f1(1 ‑ s)/p.
Поскольку при нормальном режиме работы двигателя скольжение невелико, частота вращения двигателя мало отличается от частоты вращения поля.
На практике скольжение часто выражается в процентах:
b = 100 (n1 – n2)/ n1 .
У большинства асинхронных двигателей скольжение колеблется в интервале 2 –6 %.
Скольжение является одной из важнейших характеристик двигателя; через него выражаются ЭДС и ток ротора, вращающий момент, частота вращения ротора.
При неподвижном (n2= 0) ротореs= 1. Таким скольжением обладает двигатель в момент пуска.
Как уже было отмечено, скольжение зависит от момента нагрузки на валу двигателя; следовательно, и частота вращения ротора зависит от тормозного момента на валу. Номинальное значение частоты вращения ротора n2,ном, соответствующее расчетному значению нагрузкиМн, частотыf1,номи напряжения сетиU1,ном, указывается на заводском щитке, крепящемся на корпусе асинхронного двигателя.
studfiles.net
Вследствие связи тока с магнитным полем в роторе асинхронного двигателя образовывается крутящийся электромагнитный момент, который стремится сравнять крутящую скорость магнитного поля ротора и статора.Разница крутящих скоростей магнитного поля ротора и статора асинхронного двигателя обуславливается величиной скольжения. Во время работы с обычной нагрузкой скольжение мало, при вращении поля в 1500 об/мин, скольжение равно 2,7%.
Даже при отключенном механизме у асинхронного двигателя не получится достичь параллельной скорости кручения, потому что при такой скорости проводники ротора не смогут пересекаться с магнитным полем. В этом случае не будет тока и не будет показана ЭДС. Асинхронный момент при величине скольжения в 0 будет равен нулю.
При старте в обмотках ротора проходит ток с частотой с сети. При увеличении скорости ротора частота электроэнергии в нем будет устанавливаться скольжением асинхронного двигателя.
Сопротивление ротора подчиняется частоте тока, находящейся в нем, то есть если частота увеличивается, то и увеличивается его индуктивное сопротивление. При повышении сопротивления ротора повышается смещение фаз среди тока и напряжения в обмотках статора.
Во время включения асинхронного двигателя достаточно низкий коэффициент мощности, если сравнивать при нормальной эксплуатации. Показатель тока определяется приложенным напряжением и эквивалентным значением сопротивления двигателя.
Показатель эквивалентного сопротивления асинхронного электродвигателя при изменении скольжения меняется по сложному закону. При спаде скольжения в рамках 1 - 0,15 единиц - сопротивление повышается, но не больше чем в 1,5 раза, в рамках от 0,15 увеличивается до 7 раз, если сравнивать начальный запуск двигателя.
Ток по показателю меняется пропорционально эквивалентному сопротивлению. Так что, на период пуска - скольжения примерно 0,15 ток уменьшается незначительно, но далее спад его идет намного быстрее.Момент вращения электродвигателя устанавливается показателем магнитного потока, угловым сдвигом и током среди тока в роторе и ЭДС. Каждый показатель зависит от скольжения, следовательно, изучаются рабочие свойства асинхронных двигателей. Устанавливается взаимосвязь между моментом и скольжением и влияния на него частоты и напряжения.
Момент кручения может быть найден по электромагнитной мощности на валу, как связь угловой скорости ротора и мощности. Показатель момента обратно пропорционален квадрату частоты и пропорционален квадрату напряжения.Свойственными показаниями момента в зависимости от скорости (скольжения) являются максимальное значение момента (и его скольжение, которое зовется критическим), минимальное значение момента в рамках скоростей недвижимого состояния до номинального и начальное значение момента (электродвигатель не движется).Для номинального напряжения показания момента приводятся в специальных каталогах для электромашин. Показание минимального момента требуются при расчете допустимого включения или самовключения механизма с абсолютной нагрузкой механизма.
1303462820_r3.jpg | 9.7 КБ |
1303462835_r4.jpg | 8.78 КБ |
44kw.com
В предыдущем разделе было показано, что скорость вращения магнитного поля определяется частотой переменного тока. В частности, если трехфазную обмотку двигателя разместить в шести пазах на внутренней поверхности статора (рис. 8.5), то за половину периода переменного тока вектор магнитной индукции сделает пол-оборота, а за полный период — один оборот. В этом случае обмотка статора создает магнитное поле с одной парой полюсов и называется двухполюсной.
Если обмотка статора состоит из шести катушек (по две последовательно соединенные катушки на каждую фазу), размещенных в двенадцати пазах, то за половину периода переменного тока вектор магнитной индукции повернется на четверть оборота, а за полный период — на пол-оборота. Вместо двух полюсов на трех обмотках теперь магнитное поле статора имеет четыре полюса (две пары полюсов).
Таким образом, если обмотка статора имеет 2, 3, 4 и т.д. пары полюсов, то вектор магнитной индукции за время одного периода изменения тока повернется соответственно на 1/2, 1/3, 1/4 и т.д. часть окружности статора. В общем случае,
обозначив буквой р число пар полюсов, мы можем сделать вывод, что угол, описанный вектором магнитной индукции за время одного периода изменения тока, равен одной р-й
части окружности статора и, следовательно, скорость вращения магнитного поля пх обратно пропорциональна числу пар полюсов:
Поскольку число пар полюсов может быть только целым, то скорость вращения магнитного поля может принимать не произвольные, а только определенные значения:
р | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 12 | 24 |
3000 | 1500 | 1000 | 750 | 600 | 500 | 375 | 250 | 125 |
Ротор асинхронного двигателя вращается в ту же сторону, что и магнитное поле, со скоростью, несколько меньшей скорости вращения магнитного поля, так как только в этом случае в обмотке ротора будут индуцироваться ЭДС и токи и на ротор будет действовать вращающий момент. Обозначим скорость вращения ротора п2. Тогда величина п1 - п2, которая
называется скоростью скольжения, представляет собой относительную скорость магнитного поля и ротора, а степень отставания ротора от магнитного поля, выраженная в процентах, называется скольжением s:Скольжение асинхронного двигателя при номинальной нагрузке обычно составляет 3-7 %. При увеличении нагрузки скольжение увеличивается и двигатель может остановиться.
Вращающий момент М асинхронного двигателя создается благодаря взаимодействию магнитного потока поля статора ф с индуцированным в обмотке ротора током I2, поэтому
величина его пропорциональна произведению 12Ф .
Так как в механическую работу на валу двигателя может превращаться только активная мощность, то вращающий момент будет создаваться активной составляющей тока.
Двигатель будет работать устойчиво, с постоянной скоростью ротора при равновесии моментов, т. е. тогда, когда вращающий момент Мвр равен тормозному моменту на валу двигателя Мтор:
Любой нагрузке машины соответствует определенное число оборотов ротора п2 и определенное скольжение s.
Магнитное поле статора вращается относительно ротора
со скоростью п1-п2 И индуцирует в его обмотке ЭДС Е2, под
действием которой по замкнутой обмотке ротора протекает ток 12
Если нагрузка на валу двигателя увеличилась, т. е. увеличился тормозной момент, то равновесие моментов будет нарушено. Это приведет к уменьшению числа оборотов ротора, т. е. к увеличению скольжения. С увеличением скольжения
магнитное поле статора чаще пересекает проводники обмотки ротора и индуцированная в обмотке ротора ЭДС Е2 возрастает, а следовательно, увеличивается ток в роторе и развиваемый двигателем вращающий момент. Увеличение скольжения и тока в роторе будет происходить до тех пор, пока не наступит равновесие моментов, т. е. вращающий момент не станет равен тормозному.
Аналогично протекает процесс изменения числа оборотов ротора и развиваемого момента при уменьшении нагрузки двигателя. При уменьшении нагрузки на валу двигателя тормозной момент станет меньше вращающего, что приведет к увеличению числа оборотов ротора, т. е. к уменьшению скольжения. С уменьшением скольжения уменьшаются ЭДС и ток в обмотке ротора и, следовательно, вращающий момент уменьшается до значения, равного тормозному.
Реверсирование — это изменение направления вращения ротора двигателя. Как известно, направление вращения ротора зависит от направления вращения магнитного поля статора, поэтому для изменения направления вращения ротора следует изменить последовательность фаз (см. разд. 8.3). На практике это осуществляется путем перемены мест любых двух фаз. Для этого часто используют трехполюсные переключатели (рис. 8.12):
studfiles.net