Англоязычный справочник называет асинхронный электродвигатель индукционным. Сразу точки встают над i. Интернет забит вопросами отличий данного типа машин, нюансы коллекторных, синхронных движков, на деле выходит просто. Единственный вид двигателей, создающий полюсы явлением индукции. Прочие конструкции применяют постоянные магниты, катушки, питаемые током… Только в индукционных (асинхронных) двигателях используются наводки, создающие движущую силу. Фактор определяет особенность – отличие скорости вращения вала от частоты поля.
Статор классический
Начнем простейшим распространенным вариантом: питание переменным током подается на обмотки статора. Посмотрите фото: типичный образчик статора. Вынув ротор, нельзя сказать, какому типу двигателей принадлежит сердечник, увитый медью. Получили главный вывод: статор не определяет методику формирования движущей силы. Скорее выступает опорой, относительно которой действует статор.
Видим составной сердечник, содержащий две катушки. Направление намотки создает два явных полюса. Нельзя назвать сгущения напряженности поля северным или южным, поскольку направление линий постоянно меняется (с удвоенной частотой сети 100 Гц). Сборка ведется следующим образом:
Сердечник собирается из пластин, изолированных друг от друга при помощи лака. Идет работа асинхронного электродвигателя на 230 вольт, переменное поле наводит вихревые токи, вызывая эффект перемагничивания. Чтобы снизить потери, сердечник разбивается на пластины. Специальная сталь, легированная добавками кремния обеспечивает низкий коэффициент электропроводности.
Статор электрического двигателя
В бытовых асинхронных электродвигателях полюсов статора два. Встречаются исключения из правила. На другом снимке видим статор асинхронного двигателя напольного вентилятора с тремя скоростями. Полюсов восемь, чтобы запитать такую кучу железа, понадобился конденсатор. Сдвигает фазу напряжения на минус 90 градусов относительно тока. Становится возможным создать переменное вращающееся поле внутри статора. Данный тип асинхронных двигателей называется конденсаторным.
Первым две фазы использовать предложил Никола Тесла.
Схема выглядит следующим образом:
Как подстраиваются обороты? Регуляторы скорости асинхронного электродвигателя коммутируют обмотку. Клавиатура управления устроена в каждый момент времени допускать нажатие одной кнопки, либо никакой. Восемь обмоток имеют пару отводов. Статором производится нужная коммутация, некоторые ветви запитываются конденсатором. Нажатие каждой кнопки включает в работу часть обмотки. Полностью статор работает на высшей скорости.
Принцип работы схемы
Примерная схема, демонстрирующая принцип работы, иллюстрируется фото. Скорость вращения задается коммутацией обмоток кнопками 1, 2, 3. Необходимость защиты от одновременного включения диктуется требованиями к нормальной работе устройства. В результате реализуется простейшими методами управление по скорости.
Сердечник магнитопровода составлен листами электротехнической стали, снижающей потерь на нагрев. Температура может достигать значительных размеров, поэтому ротор асинхронного двигателя вентилятора снабжается лопастями (см. фото). Любой вентилятор реально может только разогревать воздух, никак не наоборот.
Роторы асинхронных двигателей
В данном случае двигатель обеспечит долговременную работу. Поэтому ротор снабжен лопастями тангенциального вентилятора. Помогает охладить конструкцию жаркими летними ночами. Хозяин может спокойно спать, игнорируя возможность пожара. Любой хороший прибор работает аналогичным образом (себя охлаждает). В данном случае двигатель сконструирован по схеме с короткозамкнутым ротором. На валу сидит барабан, где в силумин утоплены медные жилы. Закорочены друг на друга кольцевым соединителем. Подобное техническое решение в литературе традиционно называется беличьей клеткой (колесом) в силу очевидных причин.
Асинхронный короткозамкнутый электродвигатель является доминирующим в быту. Поля в проводниках наводятся статором, затем происходит сцепление через эфир, вал набирает обороты. Никогда не догонит частоту сети. Потому что индукционные токи обращаются в нуль, сцепление нарушается. Вал тормозит, снова подхватывается полем. Подобным образом действуют однофазные асинхронные электродвигатели, любые другие. В сущности, нет разницы, при помощи чего создается переменное поле.
Выделяют ещё одно большое семейство. Устройство асинхронного электродвигателя принципиально иное. Ротор снабжен обмотками, как коллекторный мотор. Обычно трехфазные. Это позволит навести гораздо более сильные поля, возникает крупная проблема: сложно стронуть с места вал. Огромная напряженность поля образует невероятной силы сцепление, за счет чего имеется возможность выхода оборудования из строя. Кроме того вал вообще так не раскрутится.
Вот поэтому для уменьшения силы наведенных токов (напряженности поля) в цепи всех фаз ротора врубается реостат. Активное сопротивление мешает ЭДС развить мощность на валу: некоторая доля рассеивается джоулевым теплом, формируемым активным сопротивлением. Стартовый момент асинхронного двигателя с фазным ротором достаточно велик, срыва оборотов не происходит. Понятно, что значение сопротивлений реостата для каждой конструкции свое. Определяют цифру ротор асинхронного электродвигателя, заданные характеристики, стартовая нагрузка.
Обратите внимание, что во всех случаях с асинхронными двигателями наблюдаем большие потери. Особенно хорошо видно на примере реостата. Мощность асинхронного электродвигателя напрямую тратится на рассеиваемое тепло. Главным достоинство рассматриваемого класса приборов все-таки считаются простота конструкции и обслуживания. В противном случае любые типы асинхронных электродвигателей заброшены бы были на помойку истории.
Статор создает вращающееся магнитное поле. Направление линий напряженности определяется правилом буравчика (правой руки). Поэтому статор пока отложим в сторону, попробуем понять, что параллельно происходит на роторе. Начнем беличьей клеткой.
Внутри статора находится поле, линии напряженности которого в первом приближении направлены к центру, где находится вал. Пересекают проводник беличьей клетки под углом близким 90 градусам. По правилу правой руки переменное поле индуцирует ЭДС, порождающую ток. В результате возникает ответ.
Любая пара проводников беличьей клетки обращается в рамку. Вокруг вращается поле статора. По правилу руки возникает ответное поле, направленное противоположно исходному:
Принцип действия
Простое краткое объяснение того, почему беличья клетка, в конце концов, начинает вращаться. Ротор не должен быть слишком тяжелым, сцепление полей не очень сильное. Это объясняет низкое тяговое усилие, развиваемое асинхронным двигателем на старте. Пусковой ток высок, поскольку ничто не препятствует генерации поля внутри статора. Обратите внимание: в роторе однофазного асинхронного двигателя, показанного на фото в начале статьи, проводники беличьей клетки чуть наклонены к оси барабана. Помогает создать более равномерный магнитный полюс, компенсируя недостатки (в первую очередь неравномерность) вращения поля статора.
Фазный ротор состоит из обмоток, нормаль которых направлена примерно на центр двигателя (вал). Можно каждую представить гипертрофированной ячейкой беличьей клетки. Витков много (в дрелях, к примеру, порядка 40), сила поля намного выше. За счет резкого скачка на старте потребляемая энергия стала бы слишком большой. Уровень ЭДС значителен (определен скоростью изменения магнитного потока). Цепь ротора дополняется реостатом, пытаются компенсировать недостаток. Активное сопротивление понижает ток, закономерно снижая ответное поле, генерируемое проводниками.
Фазный ротор может улучшить характеристики асинхронных электродвигателей, два-три проводника (грубо говоря) дают большее тяговое усилие. К минусам технического решения относят наличие токосъемников, щеточного аппарата. Для снижения износа в некоторых асинхронных двигателях после набора оборотов ротор закорачивается специальным механизмом. Намного продляется жизнь оборудования.
Не видим причин рассматривать подробнее фазный ротор, лучшей иллюстрацией послужит усиленная беличья клетка. Представьте себе: вместо одной стало сорок штук! Количество (от 40 и вниз) регулируется сопротивлением реостата.
Любой, в том числе асинхронный трехфазный, электродвигатель неспособен развить обороты близкие частоте поля. Количество полюсов стремятся снизить. Но даже в этом случае редко удается достичь желанных 3000 об/мин (50 Гц х 60 сек). В принципе невозможно. Увеличение количества полюсов статора практикуется для понижения оборотов, как показано выше на примере напольного вентилятора.
Чаще практикуется подключение асинхронного электродвигателя с короткозамкнутым ротором на трехфазный регулятор амплитуды. Методика позволит максимально просто добиться результата. Токи асинхронных электродвигателей велики на старте, «благодаря» потерям сердечника ротора (с ростом оборотов снижаются). Нельзя сказать, что ремонт своими руками статоров относится к категории простых, но намного лучше, нежели перематывать ротор коллектора. Простотой конструкции объясняется любовь промышленности к этому роду устройств.
vashtehnik.ru
Здравствуйте, уважаемые посетители сайта http://zametkielectrika.ru.
Электрические машины переменного тока нашли широкое распространение, как в сфере промышленности (шаровые мельницы, дробилки, вентиляторы, компрессоры), так и в домашних условиях (сверлильный и наждачный станки, циркулярная пила).
Основная их часть является бесколлекторными машинами, которые в свою очередь разделяются на асинхронные и синхронные.
Асинхронные и синхронные электрические машины обладают одним замечательным свойством под названием обратимость, т.е. они могут работать как в двигательном режиме, так и в генераторном.
Но чтобы дальше перейти к более подробному их рассмотрению и изучению, необходимо знать принцип их работы. Поэтому в сегодняшней статье я расскажу Вам про принцип работы асинхронного двигателя. После прочтения данного материала Вы узнаете про электромагнитные процессы, протекающие в электродвигателях.
Итак, поехали.
С устройством асинхронного двигателя мы уже знакомились, поэтому повторяться второй раз не будем. Кому интересно, то переходите по ссылочке и читайте.
При подключении асинхронного двигателя в сеть необходимо его обмотки соединить звездой или треугольником. Если вдруг на выводах в клеммнике отсутствует маркировка, то необходимо самостоятельно определить начала и концы обмоток электродвигателя.
При включении обмоток статора асинхронного двигателя в сеть трехфазного переменного напряжения образуется вращающееся магнитное поле статора, которое имеет частоту вращения n1. Частота его вращения определяется по следующей формуле:
Это вращающееся магнитное поле статора пронизывает, как обмотку статора, так и обмотку ротора, и индуцирует (наводит) в них ЭДС (Е1 и Е2). В обмотке статора наводится ЭДС самоиндукции (Е1), которая направлена навстречу приложенному напряжению сети и ограничивает величину тока в обмотке статора.
Как Вы уже знаете, обмотка ротора замкнута накоротко, у электродвигателей с короткозамкнутым ротором, или через сопротивление, у электродвигателей с фазным ротором, поэтому под действием ЭДС ротора (Е2) в ней появляется ток. Так вот взаимодействие индуцируемого тока в обмотке ротора с вращающимся магнитным полем статора создает электромагнитную силу Fэм.
Направление электромагнитной силы Fэм можно легко найти по правилу левой руки.
На рисунке ниже показан принцип работы асинхронного двигателя. Полюса вращающегося магнитного поля статора в определенный период обозначены N1 и S1. Эти полюса в нашем случае вращаются против часовой стрелки. И в другой момент времени они будут находится в другом пространственном положении. Т.е. мы как бы зафиксировали (остановили) время и видим следующую картину.
Токи в обмотках статора и ротора изображены в виде крестиков и точек. Поясню. Если стоит крестик, то значит ток в этой обмотке направлен от нас. И наоборот, если точка, то ток в этой обмотке направлен к нам. Пунктирными линиями показаны силовые магнитные линии вращающегося магнитного поля статора.
Устанавливаем ладонь руки так, чтобы силовые магнитные линии входили в нашу ладонь. Вытянутые 4 пальца нужно направить вдоль направления тока в обмотке. Отведенный большой палец покажет нам направление электромагнитной силы Fэм для конкретного проводника с током.
На рисунке показаны только две силы Fэм, которые создаются от проводников ротора с током, направленным от нас (крестик) и к нам (точка). И как мы видим, электромагнитные силы Fэм пытаются повернуть ротор в сторону вращения вращающегося магнитного поля статора.
Поясняющий рисунок для определения электромагнитной силы Fэм для проводника с током, который направлен от нас (крестик).
Поясняющий рисунок для определения электромагнитной силы Fэм для проводника с током, который направлен к нам (точка).
Совокупность этих электромагнитных сил от каждого проводника с током создает общий электромагнитный момент М, который приводит во вращение вал электродвигателя с частотой n.
Эта частота называется, асинхронной.
Отсюда и произошло название асинхронный двигатель. Частота вращения ротора n всегда меньше частоты вращающегося магнитного поля статора n1, т.е. отстает от нее. Для определения величины отставания введен термин «скольжение», который определяется по следующей формуле:
Выразим из этой формулы частоту вращения ротора:
Например, у меня есть двигатель типа АИР71А4У2 мощностью 0,55 (кВт):
Вот его бирка.
Определим частоту вращения поля статора этого двигателя при частоте питающей сети 50 (Гц):
Найдем величину скольжения для этого двигателя:
Кстати, направление движения вращающегося магнитного поля статора, а следовательно, и направление вращения вала электродвигателя, можно изменить. Для этого необходимо поменять местами любые два вывода источника питающего трехфазного напряжения. Об этом я упоминал Вам в статьях про реверс электродвигателя и чередование фаз.
Зная принцип работы асинхронного двигателя, можно сделать вывод, что электрическая энергия преобразуется в механическую энергию вращения вала электродвигателя.
Частота вращения магнитного поля статора, а следовательно и ротора, напрямую зависит от числа пар полюсов и частоты питающей сети. Если число пар полюсов ограничивается типом двигателя (р = 1, 2, 3 и 4), то частоту питающей сети можно изменить в большем диапазоне, например, с помощью частотного преобразователя.
Если в нашем примере частоту питающей сети увеличить всего на 10 (Гц), то частота вращения магнитного поля статора увеличится на 300 (об/мин).
Опыт по установке и монтажу частотных преобразователей у меня есть, но не большой. Несколько лет назад на городском водоканале мы проводили замену двух высоковольтных двигателей насосов холодной воды на низковольтные двигатели с частотными преобразователями. Но это уже отдельная тема для разговора. Сейчас покажу Вам несколько фотографий.
Вот фотография старого высоковольтного двигателя напряжением 6 (кВ).
А это новые двигатели напряжением 400 (В), установленные вместо старых высоковольтных.
Вот шкафы частотных преобразователей. На каждый двигатель свой шкаф. К сожалению, изнутри сфотографировать не успел.
Подписывайтесь на рассылку новостей с моего сайта, чтобы не пропустить самое интересное. В ближайшее время я расскажу Вам про пуск и способы регулирования частоты вращения трехфазных асинхронных двигателей двигателей, схемы их подключения и многое другое.
P.S. На этом статью про принцип работы асинхронного двигателя я завершаю. Спасибо за внимание.
Если статья была Вам полезна, то поделитесь ей со своими друзьями:
zametkielectrika.ru
Асинхронная машина — это электрическая машина переменного тока, частота вращения ротора которой не равна (меньше) частоте вращения магнитного поля, создаваемого током обмотки статора. Асинхронные машины — наиболее распространённые электрические машины. В основном они используются как электродвигатели и являются основными преобразователями электрической энергии в механическую.
Как и любая электромеханическая машина, асинхронная машина имеет статор и ротор, разделённые воздушным зазором.
Её активными частями являются обмотки и магнитопровод; все остальные части — конструктивные, обеспечивающие необходимую прочность, жёсткость, охлаждение, возможность вращения и т. п.Обмотка статора представляет собой трёхфазную (в общем случае — многофазную) обмотку, проводники которой равномерно распределены по окружности статора и пофазно уложены в пазах с угловым расстоянием 120°. Фазы обмотки статора соединяют по стандартным схемам «треугольник» или «звезда» и подключают к сети трёхфазного тока. Магнитопровод статора перемагничивается в процессе изменения (вращения) магнитного потока обмотки возбуждения, поэтому его изготавливают шихтованным (набранным из пластин) из электротехнической стали для обеспечения минимальных магнитных потерь.
По конструкции ротора асинхронные машины подразделяют на два основных типа: с короткозамкнутым ротором и с фазным ротором. Оба типа имеют одинаковую конструкцию статора и отличаются лишь исполнением обмотки ротора. Магнитопровод ротора выполняется аналогично магнитопроводу статора — из электротехнической стали и шихтованным.
Ротор асинхронной машины типа «беличья клетка»
Короткозамкнутая обмотка ротора, часто называемая «беличья клетка» из-за внешней схожести конструкции, состоит из медных или алюминиевых стержней, замкнутых накоротко с торцов двумя кольцами. Стержни этой обмотки вставляют в пазы сердечника ротора. В машинах малой и средней мощности ротор обычно изготавливают путём заливки расплавленного алюминиевого сплава в пазы сердечника ротора. Вместе со стержнями «беличьей клетки» отливают короткозамыкающие кольца и торцевые лопасти, осуществляющие самовентиляцию самого ротора и вентиляцию машины в целом. В машинах большой мощности «беличью клетку» выполняют из медных стержней, концы которых вваривают в короткозамыкающие кольца.
Зачастую пазы ротора или статора делают скошенными для уменьшения высших гармонических ЭДС, вызванных пульсациями магнитного потока из-за наличия зубцов, магнитное сопротивление которых существенно ниже магнитного сопротивления обмотки, а также для снижения шума, вызываемого магнитными причинами.
Асинхронные двигатели с таким ротором имеют небольшой пусковой момент и значительный пусковой ток, что является существенным недостатком «беличьей клетки». Поэтому их применяют в тех электрических приводах, где не требуются большие пусковые моменты. Из достоинств следует отметить лёгкость в изготовлении, малый момент инерции и отсутствие механического контакта со статической частью машины, что гарантирует долговечность и снижает затраты на обслуживание.
Фазный ротор имеет трёхфазную (в общем случае — многофазную) обмотку, обычно соединённую по схеме «звезда» и выведённую на контактные кольца, вращающиеся вместе с валом машины. С помощью металлографитовых щёток, скользящих по этим кольцам, в цепь обмотки ротора включают пускорегулирующий реостат, выполняющий роль добавочного активного сопротивления, одинакового для каждой фазы.
В двигателях с фазным ротором имеется возможность увеличивать пусковой момент до максимального значения(в первый момент времени) с помощью пускового реостата, тем самым уменьшая пусковой ток. Такие двигатели применяются для привода механизмов, которые пускают в ход при большой нагрузке.
При питании обмотки статора трёхфазным (в общем случае — многофазным) током создаётся вращающееся магнитное поле, синхронная частота вращения [об/мин] которого связана с частотой сети [Гц] соотношением:
,где — число пар магнитных полюсов обмотки статора.
Если ротор неподвижен или частота его вращения меньше синхронной, то вращающееся магнитное поле пересекает проводники обмотки ротора и индуцирует в них ЭДС, под действием которой по обмотке ротора начинает течь ток. На проводники с током этой обмотки, расположенные в магнитном поле обмотки возбуждения, действуют электромагнитные силы; их суммарное усилие образует электромагнитный вращающий момент, увлекающий ротор за магнитным полем. Если этот момент достаточно велик, то ротор приходит во вращение, и его установившаяся частота вращения [об/мин] соответствует равенству электромагнитного момента тормозному, создаваемого нагрузкой на валу, силами трения в подшипниках и инерцией ротора. Частота вращения ротора не может достигнуть частоты вращения магнитного поля, так как в этом случае угловая скорость вращения магнитного поля относительно обмотки ротора станет равной нулю, магнитное поле перестанет индуцировать в обмотке ротора ЭДС и, в свою очередь, создавать крутящий момент; таким образом, для двигательного режима работы асинхронной машины справедливо неравенство:
.Относительная разность частот вращения магнитного поля и ротора называется скольжением:
.Очевидно, что при двигательном режиме .
Если ротор разогнать с помощью внешнего момента (например, каким-либо двигателем) до частоты, большей частоты вращения магнитного поля, то изменится направление ЭДС в обмотке ротора и активной составляющей тока ротора, то есть асинхронная машина перейдет в генераторный режим. При этом изменит направление и электромагнитный момент, который станет тормозящим. В генераторном режиме работы скольжение .
При отсутствии первоначального магнитного поля в обмотке статора поток возбуждения создают с помощью постоянных магнитов, либо за счёт остаточной индукции машины и пусковых конденсаторов, параллельно подключенных по схеме «звезда» к фазам обмотки статора .
Асинхронный генератор потребляет намагничивающий ток значительной силы и требует наличия в сети генераторов реактивной мощности в виде синхронных машин,синхронных компенсаторов,батарей статических конденсаторов(БСК). Несмотря на простоту обслуживания, асинхронный генератор применяют сравнительно редко, в основном как вспомогательные источники небольшой мощности и как тормозные устройства.
Если изменить направление вращения ротора или магнитного поля так, чтобы они вращались в противоположных направлениях, то ЭДС и активная составляющая тока в обмотке ротора будут направлены так же, как в двигательном режиме, и машина будет потреблять из сети активную мощность. Однако электромагнитный момент будет направлен встречно моменту нагрузки, являясь тормозящим. Такой режим работы асинхронной машины называется режимом электромагнитного тормоза, и для него справедливы неравенства .
Под управлением асинхронным двигателем переменного тока понимается изменение частоты вращения ротора. Существуют следующие способы управления асинхронным двигателем:
Wikimedia Foundation. 2010.
dic.academic.ru
Здравствуйте, уважаемые читатели и посетители сайта «Заметки электрика».
Буквально перед этими выходными у меня вышел из строя асинхронный двигатель АОЛ 22-4 мощностью 400 (Вт), установленный в приводе переключения ступеней РПН силового трансформатора.
Причиной его выхода из строя стало межвитковое замыкание обмотки. Такая ситуация случается крайне редко, но все таки иногда случается. Условия эксплуатации дают о себе знать — повышенное содержание угольной пыли. Может дело даже не в условиях эксплуатации, а в поставляемом некачественном проводе для ремонта двигателя.
Опять задел тему некачественного производства кабельной и проводниковой продукции, поэтому напомню Вам еще раз как правильно купить кабель или провод в магазине, а также как самостоятельно определить сечение провода по его диаметру.
Ну, раз мне предстояло разбирать сгоревший электродвигатель, то я решил заодно написать статью об асинхронном двигателе (АД), его применении и устройстве.
В последнее время асинхронные двигатели очень широко применяются, как в промышленности в виде электрических приводов дымососов, шаровых мельниц, транспортеров, насосов, дробилок, сверлильных и наждачных станков, так и в быту. Перечислить все области применения просто невозможно.
А почему они так широко применяются?
Да потому что они имеют ряд достоинств по сравнению с другими электрическими машинами, например, обладают высокой надежностью, простотой обслуживания и не менее важное, они могут работать непосредственно от сети переменного напряжения.
А теперь перейдем к устройству асинхронного двигателя на примере АОЛ 22-4 мощностью 400 (Вт).
Я уже говорил чуть выше, что асинхронный двигатель АОЛ 22-4 устанавливается в приводе переключающего устройства РПН силового трансформатора (17 ступеней). Вот так выглядит сам привод.
Питание двигателя осуществляется от сети с изолированной нейтралью с линейным напряжением 220 (В).
Кстати, этот двигатель специально был переделан под наши нужды.
Поэтому на его бирке Вы увидите обозначение, вместо 220/380 (В), 220/380 (В) (зачеркнуто на бирке 380 и треугольник), т.е. его обмотки перемотаны на напряжение 127 (В).
Поэтому при линейном напряжении 220 (В) обмотки статора мы соединяем в звезду. Хотя в принципе мы и не собираем. Я попросил у мастера обмоточного отделения после ремонта собирать звезду внутри двигателя и выводить на колодку (клемму) всего 3 вывода, вместо 6.
Переходите по ссылке и читайте более подробно про соединение обмоток статора в схему звезды или треугольника.
Итак, поехали дальше.
Асинхронный двигатель (АД) состоит из двух частей, разделенных между собою воздушным зазором. Первая часть – это неподвижный статор, а вторая часть – это подвижный или вращающийся ротор.
Что статор, что ротор состоят из сердечника и обмотки. Но обмотка статора является первичной обмоткой, т.е. включается в сеть, а обмотка ротора является вторичной. Более подробно об этом Вы сможете прочитать в статье про принцип действия асинхронного электродвигателя.
Конструктивно они делятся на 2 разновидности:
Мой сгоревший двигатель марки АОЛ 22-4, как Вы уже догадались, относится именно к асинхронному двигателю с короткозамкнутым ротором.
Статор у такого двигателя состоит из:
Сам корпус чаще всего изготавливают, либо из алюминиевого сплава, либо из чугуна. В моем примере АОЛ 22-4 имеет алюминиевый корпус с алюминиевой станиной.
Сердечник статора выполняется шихтованным, т.е. набирается из тонких листов электротехнической стали, покрытыми изоляционным лаком. Толщина этих листов составляет примерно от 0,35 до 0,5 (мм). Так сделано с целью уменьшения вихревых токов, появляющихся во время перемагничивания «железа» сердечника под действием вращающегося магнитного поля.
С внутренней стороны сердечника статора асинхронного двигателя находятся продольные пазы, в которые укладывается обмотка.
Обмотка может быть, как однослойная, так и многослойная.
Часть обмотки, которая расположена в пазах, называется пазовой.
Пазовые части обмоток за пределами сердечника (с торца) соединяются с лобовыми частями обмоток.
Это все, что касается статора. Теперь перейдем к тому, как устроен ротор. Как я уже говорил выше, ротор – это вращающаяся часть асинхронного двигателя. Состоит он из вала и сердечника с короткозамкнутой обмоткой.
Кстати, короткозамкнутую обмотку асинхронного двигателя еще называют «беличьем колесом».
Обмотка короткозамкнутого ротора состоит из ряда алюминиевых или медных (реже) стержней, которые расположены в пазах сердечника ротора. Эти стержни с двух сторон замыкаются короткозамыкающими кольцами.
Сердечник ротора, как и сердечник статора, имеет шихтованную конструкцию, но листы из электротехнической стали у него покрыты не лаком, а тонкой пленкой окисла. Этого вполне достаточно для ограничения вихревых токов малой величины из-за не частого перемагничивания сердечника.
В большинстве случаях короткозамкнутую обмотку ротора АД выполняют с помощью заливки собранного сердечника расплавленным алюминиевым сплавом. При этом одновременно отливаются и короткозамыкающие кольца и вентиляционные лопатки.
Вал короткозамкнутого ротора вращается на двух подшипниках качения (их видно на рисунке выше), которые расположены в подшипниковых щитах.
Несколько слов расскажу Вам об охлаждении асинхронного двигателя.
Охлаждение асинхронных двигателей мощностью до 15 (кВт) происходит методом обдува наружной поверхности двигателя с помощью центробежного вентилятора. Сам вентилятор прикрыт защитным кожухом с отверстиями для забора воздуха.
Фото другого типа двигателя.
Охлаждение асинхронных двигателей мощностью более 15 (кВт), помимо вышеописанного способа, выполняется с внутренней вентиляцией. В подшипниковых щитах есть специальные отверстия, их называют «жалюзи», через которые воздух с помощью вентилятора проходит сквозь внутреннюю полость двигателя. В таком случае воздух пронизывает нагретые части обмоток и сердечника, что приводит к более эффективному охлаждению.
Также асинхронные двигатели для увеличения площади охлаждения могут иметь поверхность из продольных ребер.
Для защиты людей от поражения электрическим током асинхронный двигатель необходимо заземлять. Для этого имеются специальные болты (винты) для заземления. Обычно один болт (винт) находится на корпусе двигателя.
А другой в клеммной колодке.
АД с короткозамкнутым ротором имеет один существенный недостаток в виде ограниченного пускового момента из-за короткозамкнутых стержней, что нельзя сказать об АД с фазным ротором.
Конструкция статора асинхронного двигателя с фазным ротором аналогична конструкции статора асинхронного двигателя с короткозамкнутым ротором.
А вот по конструктивному исполнению ротора есть большая разница.
Ротор такого двигателя имеет усложненную конструкцию. На его валу закреплен шихтованный сердечник с трехфазной обмоткой. Начала обмоток соединяют звездой, а их концы соединяют к контактным кольцам. Эти кольца тоже расположены на валу ротора и изолированы от вала и между собой.
Для осуществления контакта с обмоткой вращающегося ротора на каждое кольцо предусмотрено две металлографитовые щетки. Щетка находится в щеткодержателе, который снабжен пружинами для обеспечения необходимой силы прижатия щетки к контактному кольцу.
Таким образом, трехфазная обмотка ротора соединяется с внешним пусковым реостатом, создающим в цепи ротора добавочное сопротивление.
Зачем это нужно, Вы узнаете из следующих статей раздела «Электродвигатели». Подписывайтесь на получение уведомлений о выходе новых статей на сайте. Форма подписки находится в правой колонке сайта и внизу статьи.
На корпусе каждого двигателя установлена пластина со следующими техническими данными:
Пример пластины асинхронного двигателя смотрите на фото ниже:
Если сравнить асинхронный двигатель с короткозамкнутым ротором и с фазным ротором, то можно сделать следующий вывод.
Электродвигатель с фазным ротором имеет более сложную конструкцию, требует больше времени на обслуживание и менее надежен по сравнению с электродвигателем с короткозамкнутым ротором. Но самое главное его достоинство – это лучшие пусковые и регулировочные свойства.
В следующих статьях читайте про: (список будет пополняться по мере написания статей)
P.S. На этом статью на тему асинхронный двигатель, его устройство и применение я завершаю. Спасибо за внимание.
Если статья была Вам полезна, то поделитесь ей со своими друзьями:
zametkielectrika.ru
Асинхронные двигатели представляют собой наиболее надежный и дешевый электрический двигатель по себестоимости, в сравнении с остальными электрическими машинами, в том числе и с машинами переменного тока.
Конструкция АД включает две главных основные части, это: неподвижный статор и вращающийся в нем – ротор. Между ними существует, разделяющий их воздушный зазор. И ротор, и статор имеют обмотку. Обмотка статора двигателя подключается к электрической сети переменного напряжения и считается первичной. Обмотка ротора считается вторичной, так получает электроэнергию от статора за счет создаваемого магнитного потока.
Корпус статора, который является одновременно корпусом всего электродвигателя, состоит из запрессованного в него сердечника, в его пазы укладываются, изолированные друг от друга электротехническим лаком, проводники обмотки. Его обмотка подразделяется на секции, соединяемые в катушки, составляющих фазы двигателя к которым подключены фазы электросети.
Конструкция ротора АД включает вал и сердечник, набранный из пластин электротехнической стали, с симметрично расположенными пазами для укладки проводников обмотки. Вал предназначен для передачи крутящего момента от вала двигателя к приводному механизму.
По конструктивным особенностям ротора, электродвигатели подразделяются на двигатель с короткозамкнутым или фазным ротором.
Короткозамкнутый ротор состоит из алюминиевых стержней, которые расположены в сердечнике и замкнуты на торцах кольцами так называемое беличье колесо. В двигателях высокой мощности, до 400 кВт, пазы между пластинами ротора и шихтованным сердечником залиты алюминием под высоким давлением, благодаря чему создается повышенная прочность.
Фазный ротор АД включает некоторое число катушек от 3, 6, 9 и т. д., в зависимости от количества пар полюсов. Катушки сдвинуты на угол 120о, 60о и т. д. по отношению друг к другу. Количество пар полюсов ротора должны соответствовать количеству пар полюсов статора. Обмотки фазного ротора соединены в «звезду», концы, которой выводят к контактным токосъемным кольцам, соединенным с помощью щеточного механизма пусковым реостатом.
При подаче на трехобмоточный статор двигателя трехфазного напряжения от электрической сети переменного тока, происходит возбуждение магнитного поля, оно вращается со скоростью большей, чем скорость, с которой вращается ротор, в (n2<n1). Пересечение линий вращающегося поля статора полем ротора способствует созданию электродвижущей силы (ЭДС). Под воздействием индутируемой ЭДС, в закороченной роторной обмотке, происходит возникновение электрического тока. Когда происходит взаимодействие электрического тока в роторе машины и магнитного поля статора происходит возникновение крутящего момента, который заставляет двигатель работать.
Главные условия, соответствующие качественной работе асинхронной машины, определенны ГОСТ. В них входят:
На основании вышеприведенных признаков подразумеваются следующие режимы работы, всего их 9:
Основные параметры – это: напряжение по номинальному пределу, частота, ток номинальный, мощность на валу двигателя, количество оборотов вращения вала, КПД (коэффициент полезного действия), коэффициент мощности. При соединении обмоток электродвигателя в треугольник или звезду дается параметр их напряжения и тока при обоих этих соединениях.
При пуске АД на полное значение напряжения создается высокий пусковой ток, в это время значение пускового момента невелико, для его увеличения применяется повышение активного сопротивления вторичной цепи.
Асинхронный двигатель имеет три режима торможения.
Кроме подразделения по признаку, разделяющему двигатели в зависимости от устройства ротора на короткозамкнутый или фазный, электродвигатели делятся по конструктивным признакам, базового и модифицированного изготовления.
В базовое исполнение входят электродвигатели монтажного IM1001 (1081) или климатического УЗ, для работы в режиме S1 исполнения, с требуемыми стандартами по ГОСТ.
В модифицированном исполнении присутствуют некоторые конструктивные отличия, соответствующие особенностям монтажа, усиленной степени защиты, характерному климатическому исполнению, предназначенные для использования в определенном регионе.
Асинхронные двигатели высокой мощности со степенью защиты, характерной для закрытого электродвигателя от попадания влаги и брызг, IP23 — 4 А, 5 А.
Взрывозащищенные двигатели, используемые для предприятий первой категории по электробезопасности.
АД специального предназначения используются в узкоспециализированном профиле, например, для лифтов, подъемных механизмов, транспорта.
Изготовление двигателей для специальных и строго определенных условий эксплуатации положительно сказывается на энергосбережении, это позволяет адаптировать электродвигатель к определенному электроприводу, что позволяет достичь наибольшего коэффициента экономической эффективности при эксплуатации. Проектирование асинхронного электродвигателя к регулируемому электроприводу обеспечивает эффективное энергосбережение.
Энергоэффективность достигается за счет увеличения длины сердечника статора без изменения величины и геометрии поперечного сечения, а также за счет уменьшения количества витков статорной обмотки для электропривода с возможностью регулирования. В результате получается значительное энергосбережение.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.
podvi.ru
Асинхронный двигатель – это асинхронная электрическая машина переменного тока в двигательном режиме, у которой частота вращения магнитного поля статора больше чем частота вращения ротора.
Принцип работы берет основу из создания вращающегося магнитного поля статора, о чем подробнее вы можете почитать из указанной ссылки.
Асинхронные двигатели – одни из самых распространённых электрическим машин, и зачастую являются одним из основных преобразователей электрической энергии в механическую энергию. Самым большим достоинством является отсутствие контакта между подвижными и подвижными частями ротора, я имею ввиду электрический контакт, к примеру, в двигателях постоянного тока через щетки и коллектор. Однако это справедливо только к АД с короткозамкнутым ротором, в асинхронных двигателях с фазным ротором, этот контакт имеет место, но об этом чуть позже.
Конструкция асинхронного двигателя.
Рассмотрим конструкцию, примером послужит асинхронный двигатель с короткозамкнутым ротором, но так же существует фазный тип ротора. Асинхронный двигатель состоит из статора и ротора между которыми воздушный зазор. Статор и ротор в свою очередь еще имеют так называемые активные части – обмотка возбуждения (отдельно статорная и отдельно роторная) и магнитопровод (сердечник). Все остальные детали АД, такие как: вал, подшипники, вентилятор, корпус, и т.п. – чисто конструктивные детали, обеспечивающие защиту от окружающей среды, прочность, охлаждение, возможность совершать вращение.
Рисунок 1 – Конструкция асинхронного двигателя.
Статор представляет собой трёх (или много)-фазную обмотку, проводники которой равномерно уложены в пазах по всей окружности, с угловым расстоянием в 120 эл. градусов. Концы обмотки статора обычно соединяют по схемам «звезда» или «треугольник», и подключаются к сети питающего напряжения. Магнитопровод выполняется из электротехнической шихтованной (набрано из тонких листов) стали.
Как я уже сказал ранее, в асинхронном двигателе существует всего 2 типа роторов: это фазный тип ротора, и короткозамкнутый. Магнитопровод ротора также выполнен из шихтованной электротехнической стали. Короткозамкнутый ротор имеет вид так называемой «беличьей клетки» из-за схожести своей конструкции на эту клетку. Состоит эта клетка из медных стержней, которые накоротко замкнуты кольцами. Стержни непосредственно вставлены в пазы сердечника ротора. Для улучшения пусковых характеристики АД с таким типом ротора, применяют специальную форму паза, это дает возможность использования эффекта вытеснения тока, что влияет на увеличение активного сопротивления роторной обмотки при пуске (больших скольжения). Сами по себе, АД с короткозамкнутым ротором имеют малый пусковой момент, что пагубно сказывается на области их использования. Наибольшее распространение они нашли в системах которые не требуют больших пусковых моментов. Однако, данный тип ротора отличается тем, что на его обслуживание тратится меньше средств чем на обслуживание двигателя с фазным ротором, вследствие отсутствия физического контакта в типе ротора беличья клетка.
Рисунок 2 – Ротор АД «беличья клетка»
Фазный ротор состоит из трёхфазной обмотки, зачастую соединенной по схеме «звезда», и выведенную на контактные кольца, которые вращаются вместе с валом. Щетки выполнены из графита. Фазный ротор дает много преимуществ, таких как пуск звезда-треугольник, регулирование частоты вращения изменением сопротивления ротора.
Режимы работы
Подробнее рассмотреть механическую характеристику в моей ранней статье, а так же способы пуска с реверсом.
К тормозным режимам стоит отнести несколько основных:
– торможение противовключением;
– торможение однофазным переменным током и конденсаторное торможение;
– динамическое торможение.
Асинхронный двигатель имеет низкую стоимость, надёжен, и очень дешевый в обслуживании, особенно если он выполнен с короткозамкнутым ротором.
h4e.ru
Принцип работы любого асинхронного двигателя основан на физическом взаимодействии магнитного поля, возникающего в статоре, с током, который это же поле наводит в обмотке ротора. Электрическое напряжение прикладывается к обмотке статора, которая выполнена как три группы катушек. Под действием напряжения в обмотке возникает переменный трехфазный ток, который и наводит вращающееся магнитное поле. При пересечении замкнутой обмотки ротора, это поле, в соответствии с законом об электромагнитной индукции, создает в ней ток. Взаимодействие вращающегося магнитного поля (статор) и тока (ротор) создает вращающий электромагнитный момент, который и приводит ротор в движение. Благодаря совокупности моментов, создаваемых отдельными проводниками, возникает результирующий момент, электромагнитная пара сил, заставляющая вращаться ротор в направлении, в котором движется электромагнитное поле в статоре. Ротор и магнитное поле при этом вращаются с различными скоростями, т.е. асинхронно (отсюда и основное название двигателей). У асинхронных двигателей скорость, с которой будет вращаться ротор, всегда будет меньше скорости, с которой вращается магнитное поле в статоре.
С момента начала вращения ротор может выполнить механическую работу – с помощью подсоединенного вала приводить в движение технологическую машину (насос, вентилятор, транспортер и т.д.).
Принцип работы асинхронного двигателя показан на видео:
Асинхронный двигатель с фазным ротором необходим в приводах, которые сразу требуют большого пускового момента – лифты, краны, мельницы и т.д. В таких механизмах необходимее уже при запуске двигателя получить максимальный момент, но при этом ограничив значение пускового тока.
Основные элементы асинхронного двигателя – ротор и статор, разделяемые воздушным зазором. Активные части двигателя – магнитопровод и обмотки, остальные составляющие – конструктивные, призванные обеспечить необходимую жесткость, прочность, возможность вращения и его стабильность, охлаждение и т.д.
Cтатор – неподвижная часть, на внутренней стороне сердечника которого размещаются обмотки. Обмотка статора - это трехфазная (для общего случая - многофазная) обмотка, в которой проводники равномерно распределяются по окружности статора и уложены пофазно в пазах, соблюдая угловое расстояние равное 120 эл.град. Статорные фазы обмотки соединены стандартно – «звезда» или «треугольник» - и подключены к трехфазной сети электротока. В процессе вращения (изменения) магнитного потока в обмотках возбуждения, происходит перемагничивание магнитопровода статора, поэтому он изготовлен шихтованным (набирается из пластин) из особой электротехнической стали – таким способом удается минимизировать магнитные потери.
Рис. 1. Схема асинхронного двигателя
На асинхронный двигатель с фазным ротором установлен ротор, на котором размещают три, как и на статоре, фазные обмотки, соединяемые между собой по схеме «звезда» («треугольник» встречается очень редко). К медным кольцам (их количество равно количеству обмоток), которые закреплены на валу рота и полностью изолированы как сердечника ротора, так и между собой, присоединены концы фазных обмоток. Благодаря этому соединению асинхронный двигатель с фазным ротором имеет и другое название – двигатель с контактными кольцами.
Асинхронные двигатели сегодня – это доля в 80% от всего количества разнообразных электродвигателей, выпускаемых мировой промышленностью. Все это – благодаря простоте конструкции, в эксплуатации и обслуживании, низкой себестоимости и высокой надежности. Но есть один существенный недостаток – из сети асинхронные двигатели потребляют реактивную составляющую мощности. Поэтому их предельная мощность напрямую зависит от мощности системы энергоснабжения. Кроме того, такой электропривод имеет значения пускового тока, которые в втрое больше рабочих. При малой мощности системы энергоснабжения, это может вызвать значительное падение напряжение в сети и отключение других приборов. Асинхронные двигатели с фазным ротором, благодаря введению в цепь ротора пусковых реостатов, могут запускаться с небольшим пусковым током.
Рис. 2 . Асинхронные двигатели
Резисторы, стоящие в цепи ротора, помогают ограничить ток не только в течении запуска, но так же и при торможении, реверсе и при снижении скорости. По мере того, как двигатель набирает скорость – разгоняется, чтобы поддерживать необходимое ускорение, резисторы выводятся. При окончании разгона и выхода на паспортную частоту, все резисторы шунтируются, двигатель переходит на работу со своей естественной механической характеристикой.
Рассмотрим пример запуска асинхронного двигателя с фазным ротором.
Рис. 3. Схема запуска асинхронного двигателя с фазным ротором
Используя схему асинхронного двигателя (рис. ) рассмотрим запуск в две ступени который проводится с использованием релейно-контакторной аппаратуры. Одновременно напряжение подается как на силовые цепи, так и на управляющие – замыкается выключатель QF.
При подаче напряжения реле времени (обозначены КТ1 и КТ2) в цепи управления срабатывают, размыкая свои контакты. После нажатия кнопки запуска (SB1) срабатывает контактор КМ3 и запускается двигатель с резисторами, которые введены в цепь ротора – в этот момент на контакторах КМ1 и КМ2 питания нет. При подключении контактора КМЗ, из-за потери питания, в цепи контактора КМ1 реле КТ1 замыкает контакт через интервал времени, заданный задержкой времени в реле КТ1. По истечению времени (двигатель разгоняется, ток ротора начинает падать) происходит включение контактора КМ1 – происходит шунтирование первой пусковой ступени резисторов. Ток снова возрастает , но по мере разгона его значение начинает уменьшаться. Одновременно с этим в цепи происходит размыкание реле КТ2, оно теряет питание и с выставленной выдержкой происходит замыкание контакта в цепи контактора КМ2. Происходит шунтирование второй ступени резисторов, включенных в цепь ротора. Двигатель работает в штатном режиме.
Благодаря ограничению пускового тока, асинхронный двигатель с фазовым ротором можно устанавливать в слабых сетях.
Порядок подключения асинхронного двигателя приведен на видео:
Как уже указывалось выше, если сравнивать его с двигателем с короткозамкнутым ротором, имеет два основных преимущества:
Кроме того, следует отметить и другие достоинства:
Отметим и недостатки:
На практике асинхронные двигатели с фазным ротором оптимально подходят для случаев, когда нет необходимости в широкой и плавной регулировке скорости и требуется очень большая (особенно на первоначальном этапе) мощность двигателя.
Для правильного подключения асинхронного двигателя важно правильно определить начала и концы фазных обмоток. Как это сделать – подробно рассмотрено на видео:
44kw.com