ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Однофазный асинхронный двигатель, схема подключения и запуска. Асинхронный двигатель однофазный


Как подключить однофазный электродвигатель, схема запуска

Работа асинхронных электрических двигателей основывается на создании вращающегося магнитного поля, приводящего в движение вал. Ключевым моментом является пространственное и временное смещение обмоток статора по отношению друг к другу. В однофазных асинхронных электродвигателях для создания необходимого сдвига по фазе используется последовательное включение в цепь фазозамещающего элемента, такого как, например, конденсатор.

Содержание:

  1. Отличие от трехфазных двигателей
  2. Как это работает
  3. Основные схемы подключения
  4. Другие способы
  • Подбор конденсатора
  • Однофазный асинхронный двигатель

    Отличие от трехфазных двигателей

    Использование асинхронных электродвигателей в чистом виде при стандартном подключении возможно только в трехфазных сетях с напряжением в 380 вольт, которые используются, как правило, в промышленности, производственных цехах и других помещениях с мощным оборудованием и большим энергопотреблением. В конструкции таких машин питающие фазы создают на каждой обмотке магнитные поля со смещением по времени и расположению (120˚ относительно друг друга), в результате чего возникает результирующее магнитное поле. Его вращение приводит в движение ротор.

    Однако нередко возникает необходимость подключения асинхронного двигателя в однофазную бытовую сеть с напряжением в 220 вольт (например в стиральных машинах). Если для подключения асинхронного двигателя будет использована не трехфазная сеть, а бытовая однофазная (то есть запитать через одну обмотку), он не заработает. Причиной тому переменный синусоидальный ток, протекающий через цепь. Он создает на обмотке пульсирующее поле, которое никак не может вращаться и, соответственно, двигать ротор. Для того, чтобы включить однофазный асинхронный двигатель необходимо:

    1. добавить на статор еще одну обмотку, расположив ее под 90˚ углом от той, к которой подключена фаза.
    2. для фазового смещения включить в цепь дополнительной обмотки фазосдвигающий элемент, которым чаще всего служит конденсатор.

    Редко для сдвига по фазе создается бифилярная катушка. Для этого несколько витков пусковой обмотки мотаются в обратную сторону. Это лишь один из вариантов бифиляров, которые имеют несколько другую сферу применения, поэтому, чтобы изучить их принцип действия, следует обратиться к отдельной статье.

    После подключения двух обмоток такой двигатель с конструкционной точки зрения является двухфазным, однако его принято называть однофазным из-за того что в качестве рабочей выступает лишь одна из них.

    Схема подключения коллекторного электродвигателя в 220 В

    Схема подключения коллекторного электродвигателя в 220В

    Схема подключения однофазного асинхронного двигателя

    Схема подключения однофазного асинхронного двигателя (схема звезда)

    Как это работает

    Пуск двигателя с двумя расположенными подобным образом обмотками приведет к созданию токов на короткозамкнутом роторе и кругового магнитного поля в пространстве двигателя. В результате их взаимодействия между собой ротор приводится в движение. Контроль показателей пускового тока в таких двигателях осуществляется частотным преобразователем.

    Несмотря на то, что функцию фаз определяет схема присоединения двигателя к сети, дополнительную обмотку нередко называют пусковой. Это обусловлено особенностью, на которой основывается действие однофазных асинхронных машин – крутящийся вал, имеющий вращающее магнитное поле, находясь во взаимодействии с пульсирующим магнитным полем может работать от одной рабочей фазы. Проще говоря, при некоторых условиях, не подсоединяя вторую фазу через конденсатор, мы могли бы запустить двигатель, раскрутив ротор вручную и поместив в статор. В реальных условиях для этого необходимо запустить двигатель с помощью пусковой обмотки (для смещения по фазе), а потом разорвать цепь, идущую через конденсатор. Несмотря на то, что поле на рабочей фазе пульсирующее, оно движется относительно ротора и, следовательно, наводит электродвижущую силу, свой магнитный поток и силу тока.

    Основные схемы подключения

    В качестве фазозамещающего элемента для подключения однофазного асинхронного двигателя можно использовать разные электромеханические элементы (катушка индуктивности, активный резистор и др.), однако конденсатор обеспечивает наилучший пусковой эффект, благодаря чему и применяется для этого чаще всего.

    однофазный асинхронный двигатель и конденсатор

    однофазный асинхронный двигатель и конденсатор

    Различают три основные способа запуска однофазного асинхронного двигателя через:

    В большинстве случаев применяется схема с пусковым конденсатором. Это связано с тем, что она используется как пускатель и работает только во время включения двигателя. Дальнейшее вращение ротора обеспечивается за счет пульсирующего магнитного поля рабочей фазы, как уже было описано в предыдущем абзаце. Для замыкания цепи пусковой цепи зачастую используют реле или кнопку.

    Поскольку обмотка пусковой фазы используется кратковременно, она не рассчитана на большие нагрузки, и изготавливается из более тонкой проволоки. Для предотвращения выхода её из строя в конструкцию двигателей включают термореле (размыкает цепь после нагрева до установленной температуры) или центробежный выключатель (отключает пусковую обмотку после разгона вала двигателя).

    Таким путем достигаются отличные пусковые характеристики. Однако данная схема обладает одним существенным недостатком – магнитное поле внутри двигателя, подключенного к однофазной сети, имеет не круговую, а эллиптическую форму. Это увеличивает потери при преобразовании электрической энергии в механическую и, как следствие, снижает КПД.

    Схема с рабочим конденсатором не предусматривает отключение дополнительной обмотки после запуска и разгона двигателя. В данном случае конденсатор позволяет компенсировать потери энергии, что приводит к закономерному увеличению КПД. Однако в пользу эффективности проходится жертвовать пусковыми характеристиками.

    Для работы схемы необходимо подбирать элемент с определенной ёмкостью, рассчитанной с учетом тока нагрузки. Неподходящий по емкости конденсатор приведет к тому, что вращающееся магнитное поле будет принимать эллиптическую форму.

    Своеобразной «золотой серединой» является схема подключения с использованием обоих конденсаторов – и пускового, и рабочего. При подключении двигателя таким способом его пусковые и рабочие характеристики принимают средние значения относительно описанных выше схем.

    На практике для приборов, требующих создания сильного пускового момента используется первая схема с соответствующим конденсатором, а в обратной ситуации – вторая, с рабочим.

    Другие способы

    При рассмотрении методов подключения однофазных асинхронных двигателей нельзя обойти внимание два способа, конструктивно отличающихся от схем для подключения через конденсатор.

    С экранированными полюсами и расщепленной фазой

    В конструкции такого двигателя используется короткозамкнутая дополнительная обмотка, а на статоре присутствуют два полюса. Аксиальный паз делит каждый из них на две несимметричные половины, на меньшей из которых располагается короткозамкнутый виток.

    После включения двигателя в электрическую сеть пульсирующий магнитный поток разделяется на 2 части. Одна из них движется через экранированную часть полюса. В результате получается два разнонаправленных потока с отличной от основного поля скоростью вращения. Благодаря индуктивности появляется электродвижущая сила и сдвиг магнитных потоков по фазе и времени.

    Витки короткозамкнутой обмотки приводят к существенным потерям энергии, что и является главным недостатком схемы, однако она относительно часто используется в климатических и нагревательных приборах с вентилятором.

    С асимметричным магнитопроводом статора

    Особенностью двигателей с данной конструкцией заключается в несимметричной форме сердечника, из-за чего появляются явно выраженные полюса. Для работы схемы необходим короткозамкнутый ротор и обмотка в виде беличьей клетки. Характерным отличием этой конструкции является отсутствие необходимости в фазовом смещении. Улучшенный пуск двигателя осуществляется благодаря оснащению его магнитными шунтами.

    Среди недостатков этих моделей асинхронных электродвигателей выделяют низкий КПД, слабый пусковой момент, отсутствие реверса и сложность обслуживания магнитных шунтов. Но, несмотря на это, они имеют широкое применение в производстве бытовой техники.

    Подбор конденсатора

    Перед тем как подключить однофазный электродвигатель, необходимо произвести расчет необходимой ёмкости конденсатора. Это можно сделать самостоятельно или воспользоваться онлайн-калькуляторами. Как правило, для рабочего конденсатора на 1 кВт мощности должно приходиться примерно 0,7-0,8 мкФ емкости, и около 1,7-2 мкФ – для пускового. Стоит отметить, что напряжение последнего должно составлять не менее 400 В. Эта необходимость обусловлена возникновением 300-600 вольтного всплеска напряжения при старте и останове двигателя.

    Керамический и электролитический конденсатор

    Керамический и электролитический конденсатор

    Ввиду своих функциональных особенностей однофазные электродвигатели находят широкое применение в бытовой технике: пылесосах, холодильниках, газонокосилках и других приборов, для работы которых достаточно частоты вращения двигателя до 3000 об/мин. Большей скорости, при подключении к стандартной сети с частотой тока в 50 Гц, невозможно. Для развития большей скорости используют коллекторные однофазные двигатели.

    Это может быть интересно:

    tokidet.ru

    Однофазный асинхронный двигатель: принцип работы

    Особенности устройства и работы

    Двигатель имеет простое устройство. Статор укомплектован двумя обмотками: первая обмотка — основная, т.е. рабочая, вторая обмотка — пусковая, которая работает только во время запуска мотора.

    Если сравнивать с другими двигателями, у однофазного асинхронного мотора нет момента впуска. Если присмотреться, ротор внешне напоминает клетку для грызунов. Ток одной фазы создает магнитное поле, которое состоит из двух полей. При включении двигателя ротор остается без движения.

    Расчет результирующего момента при неподвижном роторе находится в основе магнитных полей, которые образуют два вращающих момента.

    Расчет:

    Mn = М1 - М2

    М - противоположные моменты;

    n - частота вращения.

    Асинхронный однофазный двигатель: принцип работы

    При задействовании неподвижной части наступает вращающий момент. Поскольку он возникает только после запуска, мотор укомплектован отдельным пусковым устройством.

    У однофазного асинхронного мотора есть немало отличий от, к примеру, трехфазных. Если говорить об основных, стоит отметить особенности статора. На пазах предусмотрена двухфазная обмотка: основная, т.е. рабочая, и пусковая.

    Магнитные оси расположены друг к другу перпендикулярно. При работе основная фаза не вызывает вращение ротора, ось магнитного поля остается неподвижной.

    Для расчета обмоток статора разработаны специальные программы.

    Какие бывают типы однофазных двигателей

    На сегодня существуют следующие типы однофазных асинхронных моторов: с конденсаторным и бифилярным механизмом. У каждого из механизмов свои особенности, достоинства и недостатки.

    Бифилярный пуск

    Бифилярная обмотка в постоянном режиме не используется, поскольку при таком использовании падает значение КПД. С увеличением оборотов, она обрывается. Обмотка пуска включается на пару секунд, расчет работы по 3 сек до 30 раз в час. Если будет превышен запуск, витки перегреются.

    Конденсаторный пуск

    Фаза расщепленная, цепь вспомогательной обмотки начинает работать при запуске. Для того, чтобы был достигнут пусковой момент, необходимо создать круговое магнитное поле. Для наилучшего пускового момента используется конденсатор. Моторы с включенными конденсаторами в цепи называются конденсаторными и работают на основе вращения поля магнитов. У конденсаторного мотора предусмотрено две катушки, которые находятся под постоянным напряжением.

    Основные принципы работы

    В основе принципа работы находится короткозамкнутый ротор. Магнитное поле имеет вид двух кругов с противоположными последовательностями, они двигаются в разные стороны с одинаковой скоростью. Достаточно разогнать ротор в нужную сторону, чтобы он продолжил движение в ту же сторону.

    Именно поэтому для запуска однофазного асинхронного двигателя используют кнопку пуска. С ее нажимом статор начинает работу. Токи заставляют вращаться магнитное поле, в воздушном зазоре появляется магнитная индукция. Всего спустя несколько секунд разгон ротора равняется номинальной скорости.

    Если кнопку пуска отпустить, электродвигатель переходит с режима двух фаз на одну фазу. Однофазный режим поддерживается за счет переменного поля магнитов, которое из-за скольжения вращается быстрее ротора.

    Схема центробежного выключателя

    Для эффективной работы однофазного асинхронного двигателя принято встраивать центробежный выключатель, а также реле с замыкающими контактами. Выключатель прерывает пуск статорной обмотки при достижении номинальной скорости ротора. Тепловое реле отключает двухфазную обмотку при перегреве. Это оптимальная комплектация мотора, которая обеспечит безопасную и надежную работу оборудования на долгие годы.

    Изменение направления роторного вращения происходит при перемене направления тока в любой из фаз обмотки при запуске. Для этого достаточно нажать пусковую кнопку и переустановить одну или две металлические пластины. Для образования фазового сдвига необходимо добавить в цепь конденсатор или дроссель, резистор.

    При запуске двигателя работает две фазы, потом - только одна. Как видите, асинхронный однофазный двигатель принцип работы имеет достаточно простой и понятный. В отличие от других моторов, с ним просто и легко работать.

    В чем достоинства однофазного асинхронного двигателя:

    В чем недостатки однофазного асинхронного двигателя:

    www.poroselectromotor.ru

    Асинхронный двигатель - технические характеристики и принцип работы

    Среди разнообразия выпускаемых на сегодняшний день типов электрических моторов большое распространение получили асинхронные двигатели. Их мощность и эффективность обеспечивает использование в деревообрабатывающей и металлообрабатывающей промышленности, в насосных агрегатах, на фабриках, в станках и ручном электрическом инструменте.

    асинхронный трехфазный двигатель

    асинхронный трехфазный двигатель

    Содержание:

    1. Асинхронный двигатель: что это такое
    2. Трехфазный асинхронный двигатель. Принцип работы
    3. Однофазный асинхронный двигатель
    4. Двухфазный асинхронный двигатель
    5. Схемы подключения
    6. Функциональные и эксплуатационные особенности
    7. Как производятся расчеты

    Асинхронный двигатель: что это

    Асинхронный двигатель – это асинхронная электрическая машина, применяемая для преобразования электрической энергии в механическую. Асинхронный дословно означает неодновременный – здесь имеется в виду, что у асинхронного двигателя магнитное поле всегда имеет большую частоту вращения, чем ротор, который словно пытается его догнать. Работают эти машины от сетей с переменным током.

    Любой асинхронный двигатель состоит из двух ключевых составляющих: ротора и статора. Эти части не контактируют между собой и отделены друг от друга воздушным зазором, в котором формируется подвижное магнитное поле.

    Статор асинхронной машины состоит из следующих частей:

    1. Корпус. Служит для скрепления всех деталей мотора. Для двигателей небольшого размера, как правило, используют цельные литые корпусы из чугуна, стальных и алюминиевых сплавов.
    2. Сердечник или магнитопроводник. Собирается из пластин, для изготовления которых применяют специальную электрическую сталь. Запрессовывается в корпус и улучшает магнитно-индукционные качества машины. Каждая пластина сердечника покрывается особым лаком, позволяющим уменьшить потери при возникновении вихревых токов. В некоторых случаях устройство асинхронного двигателя предусматривает установку корпуса-сердечника, совмещающего в себе обе функции.
    3. Обмотки. Устанавливаются в пазы сердечника. Представляет собой три катушки из меднопроволочных секций, расположенные под углом в 120˚ относительно друг друга. Называется первичной, потому что подключается к сети напрямую.

    Конструкция ротора состоит из основного блока с вентиляционной крыльчаткой, опирающегося на подшипники. Связь ротора с приводимым в движение механизмом обеспечивается с помощью прямого подключения, редукторов или других способов передачи механической энергии. В асинхронных двигателях используются два вида роторов:

    1. Массивный ротор – единая схема из прочного ферромагнитного соединения. Внутри неё индуцируются токи, и она же выполняет в конструкции роль магнитопровода.
    2. Короткозамкнутый ротор (изобретён великим русским инженером Михаилом Осиповичем Доливо-Добровольским, как и весь трёхфазный ток) – система соединенных с помощью колец проводников, похожая по внешнему виду на беличье колесо. Внутри него индуцируются токи, чье электромагнитное поле вступает во взаимодействие с магнитным полем статора, в результате чего ротор приводится в движение.
    беличье колесо

    беличье колесо

    Рекомендуем посмотреть это видео. Оно хоть и старое, но интересное и познавательное. Позволит закрыть непонятные моменты.

    Трехфазный асинхронный двигатель. Принцип работы

    Принцип действия асинхронного двигателя заключается во взаимном расположении обмоток и трехфазном напряжении, что приводит к возникновению вращающегося магнитного поля, которое и выступает движущей силой.

    Подробнее говоря, при подаче питания на первичную обмотку, на фазах образуются три магнитных потока, изменяющихся в зависимости от частоты входного напряжения. Они смещены между собой не только в пространстве, но и во времени, благодаря чему и появляется вращающийся магнитный поток.

    Во время вращения результирующий поток создает ЭДС в роторных проводниках. По причине того, что обмотка ротора представляет собой замкнутую цепь, в ней создается ток, создающий пусковой момент в направлении вращения магнитного поля статора. Это приводит к вращению ротора после превышения пусковым моментом его тормозного момента. Наблюдаемое в этот момент явление называется скольжением — величиной, показывающей в виде процентов соотношение частоты вращения магнитного поля к частоте вращения ротора. соотношение частоты вращения магнитного поля к частоте вращения ротора(n1 – частота магнитного поля статора; n2 – частота вращения ротора)

    Скольжение является очень важным параметром. На старте его величина всегда равна 1 и, естественно, становится меньше по мере увеличения разности между n1 и n2, что сопровождается также уменьшением электродвижущей силы и вращающего момента. Во время работы на холостом ходу скольжение минимально и растет по мере увеличения статического момента. Достигнув критического скольжения (обозначается как sкр), может спровоцировать опрокидывание двигателя. После уравновешивания тормозного и электромагнитного момента изменения величин прекращаются.

    Таким образом, принцип действия асинхронного двигателя основывается на взаимодействии магнитного поля ротора, находящегося во вращении, и токов, наведенных в роторе этим же полем. При этом обязательным условием возникновения вращающего момента является разница частот вращения полей.

    Однофазный асинхронный двигатель

    Фактически, любой асинхронный электродвигатель является трехфазным и предусматривает подключение к трехфазной сети с напряжением 380 В. Однофазным или двухфазным его называют при подключении к однофазной электросети с напряжением 200 В, когда питание подается лишь на две обмотки. В такой схеме на основную рабочую обмотку подается чистая фаза от сети, а на другую питание идет через фазосдвигающий элемент, как правило, конденсатор. Такая схема позволяет создать необходимую индукцию для смещения ротора и запустить асинхронный двигатель от однофазной сети. Для дальнейшей его работы даже необязательно, чтобы пусковая обмотка (которую подключают через конденсатор) оставалась под напряжением.

    Дело в том, что трехфазный асинхронный двигатель продолжает функционировать (под малой нагрузкой) даже если во время работы от него отключить подачу энергии по одному из питающих проводов, сымитировав таким образом работу от однофазной сети. Это обусловлено тем, что результирующее магнитное поле сохраняет вращение.

    Двухфазный асинхронный двигатель

    Создать вращающееся магнитное поле можно и при использовании двухфазных обмоток. Для обеспечения работоспособности схемы фазы обмоток необходимо расположить с 90˚ смещением друг от друга. При их питании токами, которые смещены по фазе на 90˚, возникает вращающееся магнитное поле, как и в трехфазной машине.

    Асинхронный двухфазный электродвигатель приводится в движение за счет токов, образуемых при взаимодействии результирующего поля с роторными стержнями. Он ускоряется до того момента, пока не будет достигнута предельная скорость его вращения. Для питания такого двигателя от электросети однофазного тока необходимо создать сдвиг по фазе на одной из обмоток. Для этого применяются конденсаторы необходимой ёмкости.

    На сегодняшний день все большее применение находят двухфазные асинхронных двигатели с полым алюминиевым ротором. Вращение ему придают вихревые токи, образованные внутри цилиндра, при взаимодействии с вращающимся магнитным полем.

    Инерционный момент ротора наделяет двигатель хорошими характеристиками для использования в некоторых специализированных отраслях, как, например, системы, регулирующие работу мостовых и компенсационных схем. Одна из обмоток в них подключается к питающей сети через конденсатор, а через вторую проходит управляющее напряжение.

    Схемы подключения

    Для того чтобы подключить трехфазный асинхронный двигатель используют несколько различных схем, но чаще всего применяются «треугольник» и «звезда».

    Треугольник

    Преимущество данной схемы заключается в том, что при подключении согласно ей трехфазный двигатель может развивать наибольшую номинальную мощность. Для этого обмотки соединяются по принципу конец-начало, что на схематичном изображении похоже на треугольник, однако в виде треугольника понять что к чему, не всегда удобно. По этому предлагаем для анализа схему снизу, а затем фотографию уже в сборе (еще ниже).

    схема подключения "треугольник"

    схема подключения «треугольник»

    В трехфазных электрических сетях величина линейного напряжения между выводами обмоток составляет 380 В. При этом нет необходимости создания рабочего нуля. Важно отметить, что в такой схеме может возникнуть большой пусковой ток, значительно перегружающий проводку.

    Звезда

    Этот способ подключения является наиболее используемым в сетях с трехфазным током 380 В. Название схемы связано с тем, что концы обмоток соединяются в одной точке, словно звездные лучи. Начала обмоток подключаются посредством аппаратуры коммутации к фазным проводникам. В такой конструкции линейной напряжение между начал составляет 380 В, а между местом соединения и подключения проводника – 200 В. Ниже представлена схема, а еще ниже уже фотография в собранном виде.

    схема подключения "звезда"

    схема подключения «звезда»

    Трехфазный двигатель для 380 В сетей, подключенный таким образом, не способен развить максимальную силу из-за того, что напряжение на каждой обмотке составляет 220 В. В свою очередь, такая схема предотвращает возникновение перегрузок по току, чем обеспечивается плавный пуск.

    Возможность подключения двигателя тем или иным способом, как правило, указывается на его табличке. Значок Y означает «звезду», а ∆ — «треугольник». Определить схему на уже подключенной машине можно по виду обмоток – одна двойная перемычка между ними говорит, что использована «звезда» (первое фото снизу), а если между клеммами обмоток видно три перемычки – «треугольник» (первое фото сверху).

    Асинхронный двигатель, треугольник в сборе

    Асинхронный двигатель, треугольник в сборе.

    Асинхронный двигатель, звезда в сборе

    Асинхронный двигатель, звезда в сборе

    В случае, когда необходимо запустить трехфазный асинхронный электродвигатель в обратном направлении вращения, следует поменять два питающих провода от трехфазного источника местами.

    Функциональные и эксплуатационные особенности

    Характерные преимущества асинхронных двигателей:

    Среди недостатков можно отметить:

    Как производятся расчеты

    Для того чтобы вычислить частоту вращения двигателя следует воспользоваться определенной нам ранее формулой скольжения:

    формула скольжения

    И выразить из нее скорость вращения ротора:

    скорость вращения ротора

    В качестве примера возьмем двигатель модели АИР71А4У2 мощностью в 550 Вт с 4 парами полюсов и частотой вращения ротора 1360 об/мин.

    При питании от сети с частотой 50 Гц статор будет вращаться со скоростью:

    скорость вращения

    Таким образом, величина скольжения электродвигателя составляет:

     величина скольжения электродвигателя составляет

    И, наконец, прекрасное, хотя и устаревшее, видео рекомендуемое всем для одноразового просмотра.

    Это может быть интересно:

    tokidet.ru

    Подключение однофазного двигателя: типы, различия, инструкция, подбор

    Вначале выясним тип двигателя. Не всегда решим вопрос однозначно. Внешний вид мало говорит, шильдик старого двигателя способен не соответствовать реальной начинке агрегата. Предлагаем кратко рассмотреть, какие асинхронные и коллекторные двигатели выпускает промышленность. Расскажем отличия эксплуатации, ключевых свойств, внешних и внутренних. Обсудим подключение однофазного двигателя к сети переменного тока.

    Коллекторные vs асинхронные двигатели

    Вопрос – коллекторный двигатель или асинхронный – решаем первоочередно. Процесс несложный. Коллектором называется барабан, разделенный медными секциями, формой близкой прямоугольной, сделанными из меди. Формирует токосъемник, в коллекторных двигателях ротор всегда питается электрическим током. Постоянным, переменным — поле создается приложенным напряжением.

    Коллекторный двигатель

    Коллекторный двигатель

    Коллекторный двигатель содержит минимум две щетки. Трехфазные встретим редко. Сведения о таких агрегатах описаны литературой середины прошлого века. Применялись коллекторные трехфазные двигатели, регулируя скорость вращения вала в широких пределах. Мотор указанного типа снабжен щетками, медным барабаном, разделенным секциями. Пропустить признак и невооруженным глазом затруднительно. Примеры коллекторных двигателей:

    1. Пылесос, стиральная машина.
    2. Болгарка, дрель, электрический ручной инструмент.

    Коллекторные двигатели широко используются, обеспечивая сравнительно простой реверс, реализуемый переменой коммутации обмоток. Скорость регулируется изменением угла отсечки питающего напряжения, либо амплитуды. К общим недостаткам коллекторных двигателей относятся:

    Все хорошо в меру. Коллекторные двигатели позволят получить заданную мощность (крутящий момент), на старте, после разгона. Сравнительно просто регулировать обороты. Названа причина увлечения бытовой техники коллекторными разновидностями, асинхронные двигатели выступают сердцем оборудования, обладающего повышенными требованиями к уровню звукового давления. Вентиляторы, вытяжки. Серьезные нагрузки потребуют внесения серьезных конструктивных изменений. Повышаются стоимость, размеры, сложность, делая невыгодным изготовление.

    Коллекторный двигатель отличается наличием… коллектора. Даже если нельзя увидеть снаружи (скрыт кожухом), заметим непременные графитовые щетки, прижатые пружинками. Деталь требует замены со временем, поможет коллекторный двигатель от асинхронного отличить.

    Однофазные и трехфазные д0вигатели асинхронного типа

    Договорились — трехфазные коллекторные двигатели достать сложно, текущий раздел речь ведет касательно асинхронных машин. Разновидности перечислим:

    1. Трехфазные асинхронные двигатели снабжены числом выводов три-шесть рабочих обмоток за вычетом различных предохранителей, внутренних реле, разнообразных датчиков. Катушки статора внутри объединяются звездой, делая невозможным напрямую включение в однофазную сеть.
    2. Однофазные двигатели, снабженные пусковой обмоткой, помимо прочего снабжаются парой контактов, ведущих к концевому центробежному выключателю. Миниатюрное устройство обрывает цепь, когда вал раскручен. Пусковая обмотка катализирует начальный этап. Дальнейшим действием будет мешать, снижая КПД двигателя. Принято конструкцию называть бифилярной. Пусковая обмотка наматывается двойным проводом, снижая реактивное сопротивление. Помогает уменьшить емкость конденсатора — критично. Ярким примером однофазных двигателей асинхронного типа с пусковой обмоткой выступают компрессоры бытовых холодильников.
    3. Конденсаторная обмотка, отличаясь от пусковой, работает непрерывно. Двигатели найдем внутри напольных вентиляторов. Конденсатор дает сдвиг фаз 90 градусов, позволяя выбрать направление вращения, поддержать нужную форму электромагнитного поля внутри ротора. Типично на корпусе двигателя конденсатор крепится. Асинхронные двигатели

      Трехфазные асинхронные двигатели

    4. Мелкие асинхронные двигатели, применяемые вытяжками, вентиляторами, способны запускаться без конденсатора вовсе. Начальное движение образуется махом лопастей, либо искривлением проводки (бороздок) ротора в нужном направлении.

    Научимся, как отличить однофазные двигатели асинхронного типа от трехфазных. В последнем случае внутри всегда имеется три равноценных обмотки. Поэтому можно найти три пары контактов, которые при исследовании тестером дают одинаковое сопротивление. Например, 9 Ом. Если обмотки объединены звездой внутри, выводов с одинаковым сопротивлением будет три. Из них любая пара дает идентичные показания, отображаемые экраном мультиметра. Сопротивление каждый раз равно двум обмоткам.

    Поскольку ток должен выходить, иногда трехфазный двигатель имеет вывод нейтрали. Центр звезды, с каждым из трех других проводов дает идентичное сопротивление, вдвое меньшее, нежели демонстрирует попарная прозвонка. Указанные выше симптомы говорят красноречиво: двигатель трёхфазный, теме сегодняшнего разговора чуждый.

    Рассматриваемые рубрикой моторы обмоток содержат две. Одна пусковая, либо конденсаторная (вспомогательная). Выводов обычно три-четыре. Отсутствуй украшающий корпус конденсатор, можно попробовать рассуждать, озадачиваясь предназначением контактов следующим образом:

    1. Выводов четыре штуки — нужно измерить сопротивление. Обычно звонятся попарно. Сопротивление ниже — нашли основную обмотку, подключаемую к сети 230 вольт без конденсатора. Полярность не играет роли, направление вращения задается способом включения вспомогательной обмотки, коммутацией катушек. Проще говоря, осуществите подключение однофазного электродвигателя характерного типа с одной лишь основной обмоткой — в начальный период времени вал стоит стоймя. Куда раскрутишь, туда пойдет вращение. Остерегайтесь производить старт рукой — поломает. Разборка выводов двигателя

      Устройство асинхронного двигателя

    2. Видим три вывода. Внутри концы катушек соединены, образуя звезду. Подаётся нейтраль (схемный нуль). Касаемо двух других выводов, сопротивление попарное будет наибольшим (равняется обеим обмоткам, включенным последовательно). Самое маленькое значение, как прежде, будет рабочей обмотки, фазу пусковой проходит, минуя конденсатор. Обеспечит сдвиг в нужную сторону. Обычно такой двигатель вращается однонаправленно, нельзя физически изменить полярность включения емкости. Однако существуют сведения (проверим эпюры в другой раз): питая рабочую катушку напряжением через конденсатор, пусковую включив напрямую, выполним реверс. Возможность подключить электродвигатель 3-проводной, реализуя обратное вращение, литературой опускается.

    Различение типов однофазных двигателей на практике

    Научимся, как отличить бифилярный двигатель от конденсаторного. Следует сказать, разница чисто номинальная. Схема подключения однофазного двигателя схожа. Бифилярная обмотка не предназначена работать постоянно. Будет мешать, снижать КПД. Поэтому обрывается после набора оборотов пускозащитным реле (присуще бытовым холодильникам), либо центробежными выключателями. Считается, пусковая обмотка работает несколько секунд. По общепринятым нормам, обеспечит запуск 30 раз в час длительностью 3 секунды каждый. Дальше витки могут перегреться (сгореть). Причина, ограничивающая нахождение пусковой обмотки под напряжением.

    Разница номинальная, но профессионалы отмечают любопытную особенность, по которой судят, находится перед нами бифилярный, либо конденсаторный двигатель. Сопротивление вспомогательной обмотки. Отличается номиналом от рабочей более чем в 2 раза, скорее всего, двигатель бифилярный. Соответственно, обмотка пусковая. Конденсаторный двигатель работает, пользуясь услугами двух катушек. Обе постоянно находятся под напряжением.

    Модель однофазная

    Однофазный асинхронный двигатель

    Тест нужно проводить осторожно, при отсутствии термопредохранителей, других средств защиты пусковая обмотка может сгореть. Придется вал раскручивать вручную, явно нелегкая задачка. Иногда целесообразно подключение однофазного асинхронного двигателя к однофазной сети выполнить, используя аналогичную схему, как сделано в предшествующем оборудовании. Рядовой холодильник снабжен пускозащитным реле, отдельная тема разговора. Параметры устройства тесно связаны с типом используемого двигателя, взаимная замена возможна далеко не в каждом случае (нарушение простого правила может вызвать поломку).

    Упомянем дважды: выводов обмоток может быть три-четыре. Число неинформативно. Допустима пара контактов термопредохранителя. Плюс описанное выше, включая центробежный выключатель. В случае при прозвонке сопротивление либо мало, либо наоборот — фиксируем разрыв. Кстати, не забудьте при определении сопротивления каждый конец катушки пробовать на корпус. Изоляция стандартно не ниже 20 МОм. В противном случае стоит задуматься о наличии пробоя. Также допускаем, что трехфазный двигатель, имеющий внутреннюю коммутацию обмоток по типу звезды, может иметь выход нейтрали на корпус. В этом случае двигатель требует непременного заземления, под которую предусматривается клемма (но более вероятно, что мотор просто вышел из строя из-за пробоя изоляции).

    Как подобрать конденсатор для пуска однофазного двигателя

    Уже рассказывали, как подобрать конденсатор для пуска трёхфазного двигателя, но методика в нашем случае не годится. Любители рекомендуют произвести попытку входа в так называемый резонанс. При этом потребление агрегата на 9 кВт составит порядка (!) 100 Вт. Это не значит, что вал потянет полную нагрузку, но в холостом режиме потреблением станет минимальным. Как подключить электродвигатель этим способом.

    Любители рекомендуют ориентироваться на потребляемый ток. При оптимальном значении емкости мощность станет минимальной. Оценить потребляемый ток можно при помощи китайского мультиметра. А так, подключение однофазного двигателя с пусковой обмоткой выполняют, руководствуясь электрической схемой, указанной на корпусе. Там приведены, например, сведения:

    1. Цвет кембрика определённой обмотки.
    2. Электрическая схема коммутации для цепи переменного тока.
    3. Номинал используемой емкости.

    Итак, если брать однофазный асинхронный двигатель, схема подключения чаще указана на корпусе.

    vashtehnik.ru

    Устройство и принцип работы однофазных электродвигателей

    Однофазные асинхронные двигатели выпускают от 5 Вт до 10 кВт.

    Схема устройства асинхронного двигателя

    Схема устройства асинхронного двигателя.

    Данные двигатели используются: в приводе стиральных машин, холодильников, центрифуг, заточных и небольших обрабатывающих станков и т.д.

    Схема включения однофазного АД

    Рисунок 1. Схема включения однофазного АД.

    Отметим, что однофазные АД по сравнению с трехфазными двигателями обычно имеют несколько худшие технические характеристики. Мощность однофазного АД составляет не более 70% от мощности трехфазного АД в том же габарите. Однофазные АД, кроме того, имеют более низкую перегрузочную способность.

    Схема включения однофазного АД представлена на рисунке 1.

    Двигатель имеет на статоре две обмотки – основную (рабочую) и пусковую, которая используется для пуска АД. Ротор АД выполнен короткозамкнутым в виде беличьей клетки.

    Рассмотрим принцип работы однофазного АД.

    Чтобы понять, для чего нужна пусковая обмотка, рассмотрим пример, когда двигатель подключен к сети 220 В только на одну обмотку - рабочую.

    Однофазный ток I1 этой обмотки создает пульсирующие магнитное поле, которое можно разложить на два поля Фа и Фв, имеющие равные амплитуды и вращающиеся в противоположные стороны с одинаковой скоростью.При неподвижном роторе магнитные поля Фа и Фв создают одинаковые по величине, но противоположные по знаку крутящиеся моменты М1 и М2. Поэтому при пуске результирующий момент ( Мn=M1-M2 ) равен нулю, и двигатель не может прийти во вращение даже без нагрузки на вале.

    Принципиальная схема однофазного асинхронного двигателя

    Рисунок 2. Принципиальная схема однофазного асинхронного двигателя.

    В связи с этим для пуска однофазного АД и используется дополнительная пусковая обмотка, которая позволяет получить вращающееся магнитное поле, за счет которого обеспечивается начальный пусковой момент, определяющий и направление вращения вала.

    Принципиальная схема однофазного асинхронного двигателя представлена на рисунке 2.

    Как известно из теории электрических машин, для получения вращающего магнитного поля на статоре двигателя должны быть расположены как минимум две обмотки, смещенные в пространстве на определенный угол и обтекаемые переменными токами.

    В соответствии с этим пусковая обмотка укладывается на статоре двигателя со смещением ее оси на 90% по отношению к оси рабочей обмотки, а сдвиг токов обеспечивается включением в ее цепь дополнительного фазосдвигающего элемента, в качестве которого могут быть использованы: активный резистор, катушка индуктивности или конденсатор. Либо пусковая обмотка мотается с небольшим количеством витков в обратную сторону (бифиляр).

    Дальше электродвигатель может работать только на рабочей обмотке, этот принцип применяется в холодильниках, где для запуска устанавливается пусковое реле, после запуска пусковая обмотка отключается (рисунок 3).

    Принцип работы электродвигателя

    Рисунок 3. Принцип работы электродвигателя.

    Есть схемы подключения, в которых пусковая обмотка остается в работе и после пуска, такой принцип применялся в стиральных машинках российского производства, и, кроме того, есть возможность работы - реверс, т.е. вращение в другую сторону.

    К однофазным электродвигателям относятся и электроинструмент и бытовые электроприборы: дрели, шлифмашинки, пылесосы, триммеры (газонокосилки) и т.д., для которых необходимо вращение более 3000 об/мин, а максимальное вращение электродвигателя при частоте 50 Гц ограничено примерно 3000 об/мин.

    Для эффективной работы вышеперечисленных агрегатов таких оборотов недостаточно. Поэтому были изобретены однофазные коллекторные электродвигатели с количеством оборотов в минуту более 3000.

    Поделитесь полезной статьей:

    Top

    fazaa.ru

    Однофазный асинхронный двигатель

    Однофазные асинхронные движки разрабатывают от 5 Вт до 10 кВт. Такие движки применяют: в приводах стиральных машин, холодильных камерах, различных центрифугах, маленьких обрабатывающих станках и др.

    Надо отметить, что однофазные асинхронные двигатели по сравнению с трёхфазными движками как правило имеют несколько худшие технические данные. Мощность у однофазного асинхронного двигателя не больше 70% от всей мощности трёхфазного асинхронного двигателя в таком же габарите. Кроме того, у однофазных асинхронных двигателей  более низкая перегрузочная способность.

    Схема включения однофазного асинхронного двигателя

    У двигателя имеется пара обмоток на статоре — основная (то есть рабочая) и пусковая, которая нужна, чтобы запускать асинхронный двигатель. Ротор асинхронного двигателя изготовлен короткозамкнутым в виде беличьей клетки.

    Принцип работы однофазного асинхронного двигателя

    Чтобы понять для чего необходима пусковая обмотка приведём пример, когда движок включён в сеть 220 Вольт только на одну обмотку — рабочую.

    Однофазный ток I1 данной обмотки создаёт пульсирующие магнитное поле, которое можно разделить на два поля Фа и Фв, они имеют одинаковые амплитуды и вращаются в противоположные направления с равной скоростью.

    Когда ротор неподвижен, магнитные поля Фа и Фв создают равные по величине, но противоположные по знаку крутящие моменты М1 и М2. По этой причине при пуске результирующий момент (Мn = M1 — M2) равен нулю, и движок не имеет возможности прийти во вращение даже без нагрузки на валу. Поэтому для запуска однофазного асинхронного двигателя и применяется дополнительная пусковая обмотка, она даёт возможность получать вращающиеся магнитные поля, за счёт которых обеспечиваются начальные пусковые моменты, которые определяют направления вращения вала.

    Схема однофазного АД

    Как правило из теории электромашин, чтобы получить вращающее магнитное поле на статоре движка должно быть установлено, не меньше двух обмоток, смещённых в пространстве на определенный угол и обтекаемых переменным током. По этой причине пусковая обмотка устанавливается на статор движка со смещением её оси на 90% по отношению к оси рабочей обмотки, а сдвиг токов выполняется подключением в её цепь дополнительного фазосдвигающего элемента, в роли которого могут быть применены: активный резистор, конденсатор либо катушка индуктивности.

    payaem.ru

    Асинхронный однофазный двигатель его устройство и подключение

    Асинхронный однофазный двигатель представляет собой машину, преобразующую электрическую энергию в механическую, снимаемую в виде вращательного момента на ее валу. Свое название она получила потому, что при увеличении нагрузки на вал ее скорость уменьшается, отставая от частоты вращения магнитного поля. Разница этих скоростей называется скольжением.

    асинхронный однофазный двигатель

    Состоит асинхронный однофазный двигатель, как и все электрические машины, из двух основных частей - статора и ротора. Внутри клеммной коробки, закрепленной на корпусе, сделаны выводы, обозначенные по-разному. Их четыре, и для того чтобы их правильно соединить, необходимо понимать назначение каждой из двух пар проводов.

    От обычного трехфазного электромотора асинхронный однофазный двигатель отличается количеством обмоток и их конфигурацией. Их две, и они не одинаковы. Основная обмотка предназначена для создания вращающегося магнитного поля эллиптической формы.

    подключение однофазного асинхронного двигателя

    Под прямым углом по отношению к ней располагается дополнительная или вспомогательная катушка индуктивности, генерирующая пусковой момент, нужный для придания ротору начального вращения. Необходимость этого элемента обусловлена тем, что одна электрообмотка возбуждает магнитное поле, ось симметрии которого остается неподвижной, а, следовательно, чтобы тронуть ротор с места, требуется дополнительное усилие. Форма его эллиптическая, и ее можно представить как сумму двух круговых полей с противоположными направлениями, одно из которых способствует вращению, а другое препятствует ему. Характеристики такой машины по этой причине значительно хуже, чем у трехфазной, однако в условиях квартиры или дома приходится мириться с этим недостатком.

    Как правило, асинхронный однофазный двигатель – машина невысокой мощности, используемая чаще всего для бытовых электроприборов. Примером могут служить фен, пылесос, кофемолка или кухонный комбайн. Со своей задачей электродвигатели этого типа вполне справляются, тем более что альтернативы им практически нет.

    однофазный асинхронный двигатель схема подключения

    Подключение однофазного асинхронного двигателя имеет свои особенности, обусловленные спецификой конструкции. Дело в том, что пусковая обмотка не предназначена для длительной работы. Запуск машины производится в кратковременном режиме. После набора рабочей угловой скорости цепь возбуждения дополнительного поля должна быть разомкнута, иначе произойдет ее опасный перегрев и, возможно, выход из строя. Время запуска, как правило, не превышает трех-пяти секунд. Размыкание может производиться как вручную (просто отпустить кнопку «Старт»), так и автоматически (с помощью размыкающего реле времени). В наиболее совершенных устройствах применяются центробежные системы, рассчитанные на отключение разгонной обмотки в тот момент, когда асинхронный однофазный двигатель достигнет номинальной скорости вращения.

    Помимо дополнительной обмотки и стартовой кнопки есть еще один элемент, необходимый для того, чтобы заставить вращаться однофазный асинхронный двигатель. Схема подключения предусматривает последовательное соединение с индуктивностью схемы, обеспечивающие фазовое смещение. Как правило, это конденсатор, при прохождении через который вектор электрического тока изменяет направление относительно вектора напряжения.

    fb.ru


    Смотрите также