Симисторный регулятор скорости вращения вентилятора выполняет функцию плавного изменения скорости вентилятора, которое выполняется при помощи установленного потенциометра.
Не сложная принципиальная схема данного устройства, предназначена для конструирования прибора регулировки скорости вращения напольного вентилятора. Печатная плата изготавливалась с таким расчетом, чтобы свободно вместилась в корпус зарядного устройства для телефона. Компактно выполненная конструкция дала возможность добавить туда еще клеммы от стандартной электрической розетки.
Принципиальная схема прибора:
Предложенная здесь система регулировки выполнена по схеме стандартного регулятора фазы. Ну это можно сказать, что приблизительно. Вначале у меня были попытки организовать управление вентилятором с помощью не сложной схемы. В которую были включены такие полупроводниковые приборы как, двух электродный тиристор (динисторы) и симметричный тиристор «симистор», но она мне не понравилась. Так как правильного управления скоростью у меня не получилось. Потом стал тщательнее разбираться, в чем причина некорректной работы устройства.
А оказывается все было элементарно. В напольном вентиляторе используется асинхронный двигатель, в принципе это всего лишь навсего две катушки индуктивности. Если вспомнить лекции по физике, то становится ясно, что в катушках индуктивности приложенное напряжение всегда опережает токовую фазу на 90 градусов. Работа симистора происходит в следующей последовательности. На управляющий вывод подается напряжение, причем независимо какой полярности, при превышении мощности сигнала определенного порога — открывается симистор. Удерживается открытое состояние проходящим через него ток нагрузки. Поэтому для нормальной регулировки, необходимо было управляющую фазу сдвинуть на 90 градусов относительно входящего напряжения и тогда получится плавная регулировка.
Для меня легче всего это было сконструировать на микросхеме PIC10F222, которая является недорогим, высокопроизводительным, 8-битным микроконтроллером, причем изготовлен он совершено на статической основе флэш-CMOS.
Кстати, устройство для программирования микроконтроллеров (программатор) вполне можно изготовить по схеме показанной ниже:
Чтобы изменять количество оборотов вентилятора, в промышленности используются преобразователи частоты. С их помощью можно повышать либо снижать частоту вращения вентилятора. Но ввиду дороговизны такого устройства в бытовых условиях его применение не целесообразно.
Прошивка и печатная плата: Скачать
usilitelstabo.ru
Сфер использования асинхронных двигателей много, но довольно часто требуется обеспечить плавное регулирование оборотов двигателя. В частности, всевозможные бытовые вентиляторы как мобильного типа, так и встраиваемые. Не всегда требуется максимальная мощность воздухообмена. Во многих случаях необходимо уменьшить частоту вращения двигателя, снизив шум и интенсивность движения воздушного потока. Но как организовать управление скоростью вращения двигателя, чтобы обеспечить необходимые режимы работы и интенсивность воздухообмена?
Сегодня можно купить регулятор скорости вращения вентилятора нескольких типов в зависимости от конструкции или способа регулирования. Выбор конкретного устройства зависит от основных параметров системы, ее функциональных характеристик. Есть много практических схем регуляторов, основанных на различных принципах управления:
Регулирование напряжением – принцип регулирования оборотов основан на изменении питающего напряжения с определенного уровня до максимума. Нижний порог зависит от характеристик самого двигателя, его конструкции и параметров обмоток. Этот режим является более простым в реализации, для чего можно использовать автотрансформаторы, симисторы или транзисторные схемы с регулированием напряжения. К нюансам работы подобных схем относится то, что двигатель, кроме скорости вращения, теряет и часть своей мощности. Кроме этого, существенно нагреваются обмотки двигателя, что говорит не о снижении мощности, а о ее подавлении на компонентах схемы, поэтому и об экономичности этих решений говорить не стоит.
Частотные регуляторы – самый эффективный метод управления скоростью вращения, позволяющий сохранять момент двигателя. Также частотный принцип изменения оборотов может обеспечить со снижением скорости вращения и экономию мощности, поэтому такая схема является более эффективной. Но из-за сложности реализации конструкции стоимость аппаратуры становится довольно высокой. По этой причине многие предпочитают использовать более простые устройства с регулированием напряжения.
Диммеры или схемы с автоматическим включением вращения. Представляют собой устройства, изготовленные на фотоэлементах или на звуковых датчиках, которые включат вентилятор по хлопку или по появлению объекта в зоне видимости сенсоров. Такие устройства актуально использовать в туалете, когда постоянно забываешь выключать свет.
Трансформаторные системы регулирования скорости вращения двигателей
На регулятор скорости вращения вентилятора 220в схема достаточно проста. Ступенчатое изменение осуществляется при помощи автотрансформаторов с дополнительными обмотками. Количество ступеней может быть любым, что зависит от плавности и дискретности переключения режимов. Трансформаторные устройства регулирования являются достаточно надежными и практичными.
Но сложность заключается в том, что переключение ступеней обычно выполняется механическим способом посредством 5-ступенчатого переключателя. В более дорогих устройствах применен принцип ступенчатого управления, но с использованием электронных ключей. Благодаря отсутствию скользящих контактов исключается вероятность искрения и прогорания контактных площадок на больших мощностях. Плюс ко всему осуществляется полностью беззвучное переключение между режимами.
К нюансам подобных устройств следует отнести:
Существует много вариантов реализации электронных систем регулирования угловой скоростью и все они имеют свои особенности. Отличительной чертой всех является сложность реализации, но при этом стоимость меньше, чем трансформаторных систем.
На практике используются следующие разновидности схем управления оборотами:
Благодаря способности компонента проводить ток в двух направлениях, обеспечивая тем самым регулирование переменного напряжения. А это, по сути, и является фактором дешевизны, простоты устройств. Регуляторы могут быть реализованы в небольших корпусах, непосредственно вместе с рычагами и переключателями. Довольно часто такие схемы исполняются в виде стандартных выключателей, только вместо клавиши-качельки применен вращающийся регулятор.
Симисторные схемы позволяют обеспечивать плавное регулирование скорости, но за счет изменения входного напряжения, а не частоты, КПД оказывается невысоким. Невзирая на это, многие производители бытовой техники предпочитают именно такие схемы, потому что они являются более дешевыми в исполнении. К тому же с их помощью можно выполнять регулирование оборотов мощных вентиляторов.
Тиристорный регулятор скорости вращения вентилятора по принципу работы сход с симисторными устройствами, но он более детальный. Для управления асинхронным двигателем необходимо использовать либо 2 тиристора, либо мощный выпрямительный мост и 1 тиристор, не учитывая схему отпирания его посредством сдвига фазы. Стоимость и сложность реализации устройства управления выше и сложнее, но при этом она является более доступной, потому что силовых компонентов можно найти много в старой советской аппаратуре.
Они могут осуществлять как изменение напряжения, так и частоты управления скорости вращения вентилятора. Особой разницы в схеме реализации замечено явно не будет, потому что изготовить генератор импульсов и обеспечить ключевой режим работы транзистора не так уж и сложно, но для обеспечения необходимой надежности работы аппарата лучше использовать IGBT или высококачественные полевые транзисторы с изолированным затвором и диодом Шоттки. Стоимость таких компонентов будет высокая, не учитывая сложность программы управления работой транзисторов.
Любые из представленных вариантов устройств всегда можно купить, а при желании сделать своими руками. Но существует такой фактор, как целесообразность, потому что качественные схемы найти сложно, а стоимость готовых устройств меньше, чем если бы вы его изготовили своими руками.
Более того, сегодня купить регулятор скорости вращения вентилятора на 220 В можно на любую мощность, но стоит понимать, что использование диммера для автоматического включения освещения не целесообразно, так как он не вытянет по току нагрузки.
Если все же вы решили купить диммер для вентилятора, то на рынке вы найдете массу предложений от различных производителей. Притом устройства изготавливаются на различную мощность. Но в основном эти аппараты рассчитаны на небольшие двигатели, устанавливаемые в вентиляции санузлов и кухонь.
Подключение регулятора скорости вентилятора осуществляется достаточно просто. Каждый производитель предусматривает на корпусе аппарата схему, в которой четко прописаны выводы, куда необходимо подавать фазу, ноль и подключать сам двигатель. Фактор ошибки минимален, поэтому не придется обращаться к услугам квалифицированных электриков.
Больше осложнений возникнет с трехфазными вентиляторами, потому что управление необходимо организовать по всем 3 проводам. Здесь можно также использовать как изменение входного напряжения, так и частоты. В любом случае более качественным и энергоэффективным является именно частотный метод. Поэтому для подключения трехфазного вентилятора лучше покупать готовые преобразователи.
remontoni.guru
Нередко в домашнем хозяйстве требуется установка регулятора скорости вращения вентилятора. Сразу следует отметить, что обычный диммер для регулировки яркости освещения не подойдет для вентилятора. Современному электродвигателю, особенно асинхронному, важно иметь на входе правильной формы синусоиду, но обычные диммеры для освещения искажают ее довольно сильно. Для эффективной и правильной организации регулировки скорости вентиляторов необходимо:
Существует достаточно много различных способов регулировки частоты вращения вентилятора, но практически применяются в домашних условиях только два из них. В любом случае Вы сможете только понизить число оборотов вращения двигателя только ниже максимально возможной по паспорту к устройству.
Разогнать электродвигатель возможно только с использованием частотного регулятора, но он не применяется в быту, потому что у него высокая как собственная стоимость, так и цена на услугу по его установке и наладке. Все это делают использование частотного регулятора не рациональным в домашних условиях.
К одному регулятору допускается подключение нескольких вентиляторов, если только их суммарная мощность не будет превышать величину номинального тока регулятора. Учитывайте при выборе регулятора, что пусковой ток электродвигателя в несколько раз выше рабочего.
Способы регулировки вентиляторов в быту:
Очень часто электродвигатель гудит на низких оборотах при использовании первых двух методов регулировки- старайтесь не эксплуатировать долго вентилятор в таком режиме. Если снять крышку, то при помощи находящегося под ней специального регулятора, Вы сможете, его вращая, установить нижний предел частоты вращения мотора.
Практически во всех регуляторах стоят внутри плавкие ставки, защищающие их от токов перегрузки или короткого замыкания, при возникновении которых она перегорает. Для восстановления работоспособности необходимо будет заменить или отремонтировать плавкую ставку.
Подключается регулятор довольно просто, как обычный выключатель. На первый контакт (с изображением стрелки) подключается фаза от электропроводки квартиры. На второй (с изображением стрелки в обратном направлении) при необходимости подключается прямой вывод фазы без регулировки. Он используется для включения, например дополнительно освещения при включении вентилятора. На пятый контакт (с изображением наклонной стрелки и синусоиды) подключается фаза, отходящая на вентилятор. При использовании такой схемы необходимо использовать для подключения распределительную коробку, с которой Ноль и при необходимости Земля заводятся напрямую на вентилятор, минуя сам регулятор, для подключения которого понадобится всего-то 2 провода.
Но если распределительная коробка электропроводки находится далеко, а сам регулятор стоит рядом с вентилятором, тогда рекомендую использовать вторую схему. На регулятор приходит кабель электропитания, а затем с него уходит сразу на вентилятор. Фазные провода подключаются аналогично. А 2 нуля садятся на контакты № 3 и № 4 в любой последовательности.
Подключение регулятора скорости вращения вентилятора довольно просто сделать и своими руками, не вызывая специалистов. Обязательно изучите и всегда соблюдайте правила электробезопасности- работайте только на обесточенном участке электропроводки.
jelektro.ru
При типовом включении трёхфазного двигателя соединённом звездой, при симметричной нагрузке, ток по нулевому проводу не течёт. В этом случае часто применяют схему включения электродвигателей без нулевого провода (Рис.1).
Рис.1
Для регулирования мощности асинхронных двигателей с помощью симисторных регуляторов, обычно используется фазовый метод регулирования (иногда в сочетании с другими алгоритмами). В этом случае возникает ситуация, когда при больших углах отсечки, межфазные токи отсутствуют. Это наглядно демонстрирует рисунок 2. В нижней части рисунка показана ситуация когда при включённом симисторе любой одной фазы, обе других оказываются выключенными. Другими словами включение фаз не перекрывается по времени и межфазного тока нет.
Рис.2
Поэтому все симисторные регуляторы для нормальной работы требуют подключения двигателей с нулевым проводом (Рис. 3).
Рис.3
В этом случае при больших углах отсечки, ток от каждой из включённых фаз протекает по нулевому проводу.
Контроллеры управления вентиляцией линейки КУВ для правильной работы и защиты оборудования анализируют ток в нулевом проводе. Результаты такого анализа позволяют выявить три возможных ситуации:
1 – нормальный режим, (в нулевом проводе присутствуют токи от коммутации всех трёх фаз)
2 – обрыв фазы (отсутствие токов от одной или двух фаз)
3 – отсутствие нулевого провода (полное отсутствие токов нагрузки в нулевом проводе)
При очень малой мощности нагрузки защита работать не сможет. Если суммарная мощность подключённых двигателей менее 2% от максимальной мощности (менее 200 Вт.), отключите защиту.
Характерной особенностью асинхронного двигателя является несинхронное (асинхронное) вращение его ротора с магнитным полем статора. Поэтому такой двигатель и назвали – асинхронный.
Отставание частоты вращения ротора от частоты вращения магнитного поля статора называют скольжением. В общем случае, чем меньше мощность двигателя, тем выше его скольжение. Кроме этого, существуют и специальные электродвигатели с повышенным скольжением.
Для работы с симисторными регуляторами мощности хорошо подходят асинхронные двигатели с повышенным скольжением. Это почти все двигатели мощностью до 0,37 кВт включительно. Они допускают большой диапазон регулирования мощности. Он показан зелёной и желтой стрелками на Рис. 4. Более мощные двигатели будут иметь более узкий диапазон регулирования мощности (красная стрелка на Рис. 4) и повышенный нагрев. Применять симистроные регуляторы с такими двигатели нежелательно.
Рис. 4
Механически нагруженный электродвигатель совершает работу и отдаёт механическую мощность. Для совершения этой работы он потребляет от сети электрическую мощность.
При искусственном ограничении потребляемой электрической мощности, падает отдаваемая механическая мощность и уменьшаются обороты двигателя. Двигатель при этом начинает работать на участке повышенного скольжения Рис.4. Соответственно, при отсутствии механической нагрузки регулирования мощности не будет.
Существует предел уменьшения подаваемой электрической мощности, ниже которого скольжение становится недопустимо большим и растёт нагрев двигателя. Этот запрещённый диапазон показан красной стрелкой на Рис.4. Минимально-допустимая мощность, подаваемая на двигатели зависит от типа применяемых двигателей и характера их нагрузки. Она должна определяться при монтаже системы управления путём длительных тестовых прогонов с контролированием температуры двигателей. Найденное значение минимально допустимой мощности заносится в контроллер КУВ. Это гарантирует, что двигатели никогда не будут работать на опасном участке с недопустимо большим скольжением.
www.evromash.ru
В статье рассказывается о том, как работает тиристорный регулятор мощности, схема которого будет представлена ниже
В повседневной жизни очень часто возникает необходимость регулирования мощности бытовых приборов, например электроплиты, паяльника, кипятильников и ТЭНов, на транспорте - оборотов двигателя и т.д. На помощь приходит простейшая радиолюбительская конструкция – регулятор мощности на тиристоре. Собрать такое устройство не составит труда, оно может стать тем самым первым самодельным прибором, который будет выполнять функцию регулировки температуры жала паяльника начинающего радиолюбителя. Стоит отметить, что готовые паяльные станции с контролем температуры и прочими приятными функциями стоят на порядок дороже простого паяльника. Минимальный набор деталей позволяет собрать простой тиристорный регулятор мощности навесным монтажом.
К сведению, навесной монтаж — это способ сборки радиоэлектронных компонентов без применения печатной платы, а при хорошем навыке он позволяет быстро собрать электронные устройства средней сложности.
Вы также можете заказать электронный конструктор тиристорного регулятора, а для тех, кто хочет разобраться во всём самостоятельно, ниже будет представлена схема и объяснён принцип работы.
Между прочим, это однофазный тиристорный регулятор мощности. Такой прибор может быть использован для управления мощностью или количеством оборотов. Однако для начала следует разобраться в принципе работы тиристора, ведь это позволит нам понять, на какую нагрузку лучше использовать такой регулятор.
Тиристор – это управляемый полупроводниковый прибор, способный проводить ток в одном направлении. Слово «управляемый» употреблено неспроста, поскольку с его помощью, в отличие от диода, который тоже проводит ток только к одному полюсу, можно выбирать момент, когда тиристор начнет проводить ток. Тиристор имеет три вывода:
Для того чтобы ток начал течь через тиристор, необходимо выполнить следующие условия: деталь должна стоять в цепи, находящейся под напряжением, на управляющий электрод должен быть подан кратковременный импульс. В отличие от транзистора, управление тиристором не требует удержания управляющего сигнала. На этом нюансы не заканчиваются: тиристор можно закрыть, лишь прервав ток в цепи, или сформировав обратное напряжение анод - катод. Это значит, что использование тиристора в цепях постоянного тока весьма специфично и часто неблагоразумно, а вот цепях переменного, например в таком приборе как тиристорный регулятор мощности, схема построена таким образом, что обеспечено условие для закрытия. Каждая из полуволн будет закрывать соответствующий тиристор.
Вам, скорее всего, не всё понятно? Не стоит отчаиваться - ниже будет подробно описан процесс работы готового устройства.
В каких цепях эффективно использовать тиристорный регулятор мощности? Схема позволяет отлично регулировать мощность нагревательных приборов, то есть воздействовать на активную нагрузку. При работе с высокоиндуктивной нагрузкой тиристоры могут просто не закрыться, что может привести к выходу регулятора из строя.
Я думаю, многие из читателей видели или пользовались дрелями, углошлифовальными машинами, которые в народе именуют "болгарками", и прочим электроинструментом. Вы могли заметить, что количество оборотов зависит от глубины нажатия на кнопку-курок прибора. Вот в этот элемент как раз и встроен такой тиристорный регулятор мощности (схема которого приведена ниже), с помощью которого осуществляется изменение количества оборотов.
Обратите внимание! Тиристорный регулятор не может изменять обороты асинхронных двигателей. Таким образом, напряжение регулируется на коллекторных двигателях, оборудованных щёточным узлом.
Типовая схема для того, чтобы собрать тиристорный регулятор мощности своими руками изображена на рисунке ниже.
Выходное напряжение у данной схемы от 15 до 215 вольт, в случае применения указанных тиристоров, установленных на теплоотводах, мощность составляет порядка 1 кВт. Кстати выключатель с регулятором яркости света сделан по подобной схеме.
Если у вас нет необходимости полной регулировки напряжения и достаточно получать на выходе от 110 до 220 вольт, воспользуйтесь этой схемой, которая показывает однополупериодный регулятор мощности на тиристоре.
Описанная ниже информация справедлива для большинства схем. Буквенные обозначения будут браться в соответствии первой схемы тиристорного регулятора
Тиристорный регулятор мощности, принцип работы которого основан на фазовом управлении величиной напряжения, изменяет и мощность. Данный принцип заключается в том, что в нормальных условиях на нагрузку действует переменное напряжение бытовой сети, изменяющееся по синусоидальному закону. Выше, при описании принципа работы тиристора, было сказано, что каждый тиристор работает в одном направлении, то есть управляет своей полуволной от синусоиды. Что это значит?
Если с помощью тиристора периодически подключать нагрузку в строго определенный момент, величина действующего напряжения будет ниже, поскольку часть напряжения (действующая величина, которая «попадёт» на нагрузку) будет меньше, чем сетевое. Данное явление проиллюстрировано на графике.
Заштрихованная область – это и есть область напряжения, которое оказалось под нагрузкой. Буквой «а» на горизонтальной оси обозначен момент открытия тиристора. Когда положительная полуволна закончится и начнется период с отрицательной полуволной, один из тиристоров закрывается, и в тот же момент открывается второй тиристор.
Схема первая
Оговорим заранее, что вместо слов "положительная" и "отрицательная" будут использованы «первая» и «вторая» (полуволна).
Итак, когда на нашу схему начинает действовать первая полуволна, начинают заряжаться ёмкости C1 и C2. Скорость их заряда ограничена потенциометром R5. данный элемент является переменным, и с его помощью задаётся выходное напряжение. Когда на конденсаторе C1 появляется необходимое для открытия динистора VS3 напряжение, динистор открывается, через него поступает ток, с помощью которого будет открыт тиристор VS1. Момент пробоя динистора и есть точка «а» на графике, представленном в предыдущем разделе статьи. Когда значение напряжения переходит через ноль и схема оказывается под второй полуволной, тиристор VS1 закрывается, и процесс повторяется заново, только для второго динистора, тиристора и конденсатора. Резисторы R3 и R3 служат для ограничения тока управления, а R1 и R2 - для термостабилизации схемы.
Принцип работы второй схемы аналогичен, но в ней идёт управление только одной из полуволн переменного напряжения. Теперь, зная принцип работы и схему, вы можете собрать или починить тиристорный регулятор мощности своими руками.
Нельзя не сказать о том, что данная схема не обеспечивает гальванической развязки от сети, поэтому существует опасность поражения электрическим током. Это значит, что не стоит касаться руками элементов регулятора. Необходимо использовать изолированный корпус. Следует проектировать конструкцию вашего прибора так, чтобы по возможности вы могли спрятать её в регулируемом устройстве, найти свободное место в корпусе. Если регулируемый прибор располагается стационарно, то вообще имеет смысл подключить его через выключатель с регулятором яркости света. Такое решение частично обезопасит от поражения током, избавит от необходимости поиска подходящего корпуса, имеет привлекательный внешний вид и изготовлено промышленным методом.
fb.ru
Регулятор мощности используется для разных целей. Например, для продления срока службы ламп. Они до сих пор повсюду используются, из-за своей цены и доступности. Устройство устанавливается между проводом питания и лампой, напряжение выставляется 70%. Срок службы увеличивается в несколько раз.
Когда в бытовом приборе выходит из строя трансформатор, у которого обмотки с разным напряжением, они не сгорают обе. И с использованием симисторного регулятора мощности поставив половину напряжения, получим живую деталь.
Купили бытовой прибор заграницей, а он рассчитан на работу от напряжения в 110 В? И здесь опять поможет регулятор мощности, выставив половину напряжения. При нагрузке до 250 Вт устройство не оснащается радиатором.
Ещё одни вариант классической схемы, собран на симисторе VS1 (TIC226M), динисторе VD3 (32 В). Конденсатор C1 заряжается с каждой волной напряжения, которое проходит через резисторы R3, R2. Когда уровень достигает 32 В, конденсатор C1 передаёт накопленный заряд динистору VD3, через резистор R4. Мощность на разъёме X1, зависит от времени работы симистра. Момент включения определяется напряжением на C1. Чем больше величина сопротивления на резисторе R2, тем дольше он находится в закрытом состоянии. Указанные номиналы обеспечивают регулировку на полном диапазоне мощностей.
Для достижения плавности, используют резистор R2 группы Б. Диоды VD2, VD1 и резистор обеспечивают плавность работы при минимальной мощности. Без такой надстройки, регулировка будет с провалами (яркость лампы увеличится с 0 сразу до 5%). Когда напряжение на C1 не превышает 30 В, а на R2 большое сопротивление, то динистр находится в закрытом положении и мощность равна 0.
Резистор R4, устанавливает ограничение на максимальный ток, проходящий через динистор до 0,1 А. Так увеличивается длительность импульса, необходимого для запуска VS1.
Симисторный регулятор PULSER используется для настройки электрообогревателей (однофазных и двухфазных). Крепится на вертикальную поверхность, подключается последовательно между аппаратом и сетью питания. PULSER оборудован входом для термодатчика и терморегулятора.
Управление осуществляется путём включения и выключения отопительного прибора на пропорциональной основе (30 секунд работает, 30 секунд отключён). Так, экономится электроэнергия, а температура в помещении остаётся на одном уровне. Распределение нагрузки осуществляется симистром (полупроводниковым прибором). Это обеспечивает дополнительную надёжность, из-за отсутствия механических элементов. Переключение производится при нулевом напряжение, это мешает образованию электромагнитных помех.
Если в помещении температура быстро меняется, то регулятор начинает работать в специальном режиме, с точкой возврата к исходным параметрам через 6 минут. В ночной период можно выставить специальную температуру. При чрезмерной мощности электрообогревателя, нагрузка разделяется на несколько приборов с управлением от одного регулятора.
Устройство соответствует европейским стандартам EN 50081-1.
Симисторный регулятор мощности PULSER/D используется для регулировки электрообогревателя.
Модель предназначена для установки на DIN рейки. Максимальная мощность 3,6 кВт (при 230 В), 6,4 кВт (при 400 В). Автоматическое переключение между пропорционально-интегральным и пропорциональным регулированием. На PULSER/D имеется разъём для термодатчика, который размещается в помещении или воздуховоде.
Регулирование температуры осуществляется включением и выключением электрообогревателя через заданные отрезки времени. Чем обеспечивается экономия электроэнергии при поддержании температуры на комфортной отметке. Настройки осуществляется синистром, выполненным без механических элементов, для повышения надёжности. Включение и выключение происходит при нулевом напряжении.
Когда температура в комнате быстро меняется, регулятор переходит в пропорционально-интегральный режим с фиксированным временем и зоной. Переход к штатным настройкам осуществляется через 6 минут. При медленном изменении окружающей температуры используется пропорциональный режим работы. Часовой механизм даёт возможность настройки ночного режима.
Регулятор для трехфазного электрообогревателя с управлением от термодатчиков. Присутствует функция максимальной и минимальной температуры. Предназначен для установки в шкаф или стенку. Выпускаются 3 разновидности для сетей 500 В, 400 В, 230 В. Когда напряжение тока больше 25 А, необходимо установить дополнение TT-SLAV. Общая нагрузка будет распределяться на оба устройства и не превысит 50%.
При постоянном включении и нагрузки в 100% в течение 2 минут, устройство переключается в стандартный режим работы и поддерживает заданную температуру. С постепенным уменьшением мощности по необходимости. Устройство самостоятельно включает и выключает отопительную систему по мере необходимости.
Ведомое устройство TT-MSLAV, определяет нагрузку на TTC и включает или выключает дополнительный обогрев. При загрузке на 90% аппарат повышает мощность на 1 ступень. Аналогичным образом происходит снижение. Для нормальной работы мощность не должна превышать 70% на каждой ступени. Для обеспечения плавности работы, переключение между стадиями происходит с задержкой в 5 минут.
Модели:
Регулятор подключается к трехфазному обогревателю с симметричной нагрузкой. Фазы питания подсоединяются к клеммам. Заземление крепится винтом. Питание подаётся через реле температуры обогревателя и датчика воздуха.
Если мощность отопительной системы превышает производительность регулятора, то можно задействовать 2 и более устройства. Каждый должен быть подключён к своей нагрузке. К главному подключается термодатчик, а блоки соединяются между собой клеммами.
Дополнительный узел TT-SLAV подсоединяется к передней панели TTC. Маркированные провода крепятся к первой и последней клемме. Для безопасности, электропитание подключается через предохранитель. Суммарная нагрузка не должна превышать 45%, иначе устройство будет неустойчиво работать.
При подключении TT-MSLAV, первая ступень не должна быть больше 70% мощности TTC, а вторая, в 2 раза больше, третья — в 4. Например, при суммарных показателях 85 кВт, на TTC приходится 14 кВт, на первую ступень — 10 кВт, на вторую — 20 кВт, на третью — 40 кВт.
Установка датчика требует чтобы второй переключатель был переведён в позицию «Вкл». Режим максимальной и минимальной температуры работает только при наличии термодатчиков REGIN. Который устанавливается в воздуховод и передаёт показания по клеммам. При установке модели TK-K330, положение 0°C соответствует полному повороту переключателя против часовой стрелки, конечное положение — 30°C, среднее — 15°C.
При подключении внешнего сигнала управление к модели TTC, 1-4 переключатели должны стоять в положении «ОТКЛ». Внешний сигнал подключается к 1 и 5 клемме.
Для включения пониженного режима температуры в ночной период необходимо замкнуть реле между 1 и 2 клеммами. Для работы необходим термодатчик REGIN.
Cимисторный регулятор мощности, повсюду применяется в бытовой техники. В домашнем хозяйстве поможет продлить жизнь лампочки накаливания, реанимирует вышедший из строя трансформатор, урежет напряжение для техники, рассчитанной на 110 В. Схема регулятора довольно проста и при наличии деталей, не составит проблем собрать самостоятельно. А если нет желания и возможности купите готовое решение, которых множество на рынке.
Оцените статью: Поделитесь с друзьями!elektro.guru
По сути, регулятор скорости вращения вентилятора занимается изменением напряжения, которое подается на устройство. Если говорить о двигателях, то вышеуказанный прибор отвечает за переключение обмотки. При этом частота тока может существенно колебаться.
Именно благодаря регуляторам вентиляторов электроприборы способны прослужить владельцу много лет. Происходит это за счет уменьшения износа важных узлов агрегата. Дополнительно есть возможность уменьшить потребление электричества. В свою очередь, на повышенных скоростях вентилятор значительно тише работает.
Тиристорный регулятор скорости вращения вентилятора (схема показана ниже) может устанавливаться исключительно на однофазном оборудовании. Из особенностей можно выделить надежную систему защиты. Благодаря ей регулятор скорости вращения вентилятора предотвращает перегрев важных узлов. В результате обороты можно контролировать путем изменения силы тока.
В качестве источников питания устройства выступает сеть с напряжением 220 В. При этом средняя частота колеблется в районе 55 Гц. Максимальное отклонение напряжения допускается в 15 %. Многие модели тиристорных регуляторов оборудуются специальными датчиками. Наиболее распространенными считаются устройства с маркировкой "РТС". Использоваться они могут при температуре от -50 до +50 градусов. В установке регулятор скорости вращения вентилятора довольно прост. При этом индикатор скорости вращения у него предусмотрен.
Как правило, частотный регулятор скорости вращения вентилятора способен справляться с очень высоким напряжением. При этом скорость вращения меняется за счет изменения силы тока. Чаще всего данный тип можно встретить на различных системах кондиционирования. Дополнительно частотные регуляторы идеально подходят для устройств, занятых вентилированием воздуха. В целом вышеуказанные приборы выглядят довольно просто.
Питаются они от сети с напряжением 220 В. Выходная мощность вентилятора при этом должна составлять не более 500 Вт. Максимальное сопротивление регулятора в среднем равняется 300 кОм, а сигнал управления системой может восприниматься до 10 В. Непосредственно блок регулятора потребляет мощности 3 В.
Стандартный комплект устройства состоит из кабеля, а также клемника винтового типа. Предохранители в приборе имеются с силой тока не менее 3 А. Степень защиты во многих моделях установлена класса "ИП21". Использоваться частотный регулятор скорости вращения вентилятора может при температуре от -10 до +30 градусов.
Трансформаторный регулятор скорости вращения вентилятора 12В используют исключительно для мощных однофазных либо трехфазных двигателей. Непосредственно контроль оборотов осуществляется ступенчатым способом. При этом есть возможность наладить автоматическое координирование. Датчики температуры установлены во многих моделях.
Дополнительно есть возможность выбрать трансформаторные регуляторы вентиляторов с индикаторами влажности. При этом их мощность можно менять при помощи таймера. Крепятся данные устройства при помощи винтов. Прибор может быть оборудован специальными фиксаторами для жесткости соединения. В качестве вводного контакта имеются клеммы. Кабели питания в стандартном комплекте прилагаются.
Сопротивление трансформаторный регулятор выдерживает на уровне 400 кОм. При этом сигнал управления воспринимается до 4 В. Дополнительно следует отметить высокую нагрузку релейного выхода. Потребляемая мощность прибора в среднем колеблется около 12 В. В целом данные устройства являются довольно громоздкими по сравнению с частотными регуляторами вентиляторов и более дорогими.
Симисторный регулятор скорости вращения вентилятора является наиболее сложным устройством из всех перечисленных выше типов. Используется он для управления сразу несколькими приборами. При этом двигатели на них могут быть установлены постоянного, а также переменного тока. Непосредственно изменение скорости происходит довольно плавно.
Также важно отметить, что диапазон напряжения очень широкий. Особой точностью выделяются трехфазные модели регуляторов. Для уменьшения громкости звука от работы устройства в механизме предусмотрен специальный сглаживающий конденсатор. Установка симисторного регулятора может быть разной. Наиболее распространенным считается утопленный монтаж, однако многие производители способны предложить крепления для внешней фиксации устройства.
Обработкой абсолютно всех данных занимается микропроцессорный блок. В свою очередь, для передачи сигнала на симисторный регулятор скорости вращения вентилятора имеется датчик. Подключается он через входное отверстие на боковой панели. Дополнительно датчик во время работы отслеживает температуру прибора. При этом сопротивление блока постоянно регулируется.
Чтобы устранять помехи, которые появляются во время эксплуатации, имеется цифровой фильтр. Также он может гасить импульсные скачки в системе. Резистор регулятора скорости вращения вентилятора отвечает за преобразование тока. В результате при резком повышении температуры датчик подает сигнал о необходимости снижения напряжения. Далее многое зависит от заданных настроек симисторного регулятора. Таким образом, при помощи программирования можно изменять основные величины.
Чтобы установить регулятор скорости вращения вентилятора 220В, следует полностью обесточить сеть. Далее важно снять основную панель, которая находится в передней части устройства. Только затем можно отсоединить крышку блока. Следующим шагом является установка датчика температуры во входное отверстие. Для подключения системы питания следует ознакомиться со схемой прибора.
Непосредственно соединение с электродвигателем вентилятора осуществляется при помощи изолированных проводов многожильного типа. Затем включается воздушный конденсатор, который находится рядом с датчиком температуры. При этом очень важно проверить основное гнездо устройства. Для хорошей связи там не должно быть каких-либо загрязнений. В противном случае сигнал не будет доходить до блока микропроцессора. Чтобы очистить разъем качественно, специалисты используют средства для удаления оксида меди.
После закрепления верхней крышки незащищенный участок смазывается пастой для хорошей теплопроводности. Как правило, используют средство исключительно на невысыхающей основе. Боковые пластины симистрового регулятора крепятся на фиксаторах. Сверху их также проклеивают для теплоизоляции. Ширина полоски при этом не должна быть меньше 10 мм. После этого регулятор скорости вращения вентилятора 220В можно закреплять на щитке. При этом важно обратить внимание на проводку и не зажимать ее во время фиксации прибора. Последним шагом установки является подключение сети питания. После проверки разъема на прочность нужно сделать пробное включение.
Отличительной чертой многих моделей является плавное регулирование скорости. При этом вентиляторы должны быть с номинальным током не более 6 А, а средняя частота - в районе 45 Гц. Источником питания регуляторов является сеть с напряжением 230 В. Степень защиты у них предусмотрена класса "ИП 54". Для программирования системы установлен специальный контроллер.
Благодаря вышеуказанным регуляторам, пуск двигателя осуществляется довольно плавно. При этом вал у него вращается с постоянной частотой. Токовая защита двигателя установлена во многих моделях. Минимальные обороты задавать котроллером можно.
Данная функция характерна для регуляторов с потенциометрами класса VM и VX. Сброс оборотов регулируется платой регулятора, а видеть его работу можно по светодиодным датчикам. Для стабилизации напряжения на обмотке двигателя имеется микроконтроллер. За счет исключения пропусков фаз можно достичь высокой экономии электроэнергии.
Регулятор скорости вращения вентилятора отопителя способен значительно уменьшить шум от работы электродвигателя. При этом у него предусмотрено удобное внешнее управление. В результате можно значительно сократить потребление электричества.
Дополнительно износ деталей довольно сильно уменьшается за счет регулирования предельной частоты. Отвечает за это в системе широтно-импульсный модулятор. Рабочий ток регулятора колеблется в районе 0.7 А. Максимальная выходная мощность составляет примерно 550 Вт. Входное сопротивление регуляторами данного класса поддерживается на отметке 200 кОм. При этом сигнал управления воспринимается на уровне 8 В. Кабель, как правило, в комплекте прикладывается экранированного типа.
Нагрузка на линейные выходы в среднем допускается 3 А. В свою очередь, потребляемая мощность устройства находится в диапазоне от 4 до 8 В. Предохранители в регуляторах для систем кондиционирования устанавливаются класса FUSE, а предельный ток они способны пропускать на уровне 5 А. Степень защиты у них имеется класса "ИП21". Крепятся почти все модели к системе кондиционирования исключительно внешним способом - при помощи винтов. В целом они являются довольно компактными и весят крайне мало.
fb.ru