Статор изготовлен в виде полого стального цилиндра c пазами на внутренней стороне. В пазах статора расположена 3-х фазная обмотка (несколько токовых катушек с осями под углом α =120°/р, где p число пар катушек- полюсов). Обмотки соединяются по схеме «звезда» или «треугольник».
Ротор представляет собой цилиндрический сердечник, собранный из листов электротехнической стали, изолированных друг от друга лаком. Сердечник ротора насажен на вал, закрепленный в подшипниках. В пазах сердечника ротора располагаются алюминиевые или медные стержни короткозамкнутой обмотки, торцевые концы которых замыкаются накоротко кольцами из того же материала, что и стержни. Если мысленно извлечь обмотку ротора из пакета ротора, то она будет иметь вид, показанный на рис. 34. Этот тип обмотки называется "беличья клетка".
Рис. 34
Статор имеет цилиндрическую форму. Он состоит из чугунного или алюминиевого корпуса, сердечника, набранного из тонких листов электротехнической стали. На внутренней поверхности сердечника вырублены пазы, в которые укладывается трехфазная обмотка.
Принцип действия асинхронного двигателя основан на взаимодействии вращающегося магнитного поля с токами, которые наводятся этим полем в проводниках ротора. Магнитное поле, пересекая активные проводники обмотки ротора индуцирует в них ЭДС согласно закону электромагнитной индукции. В замкнутых проводниках ротора возникает ток. На проводники ротора в магнитном поле действует сила, направление которой определяется правилом левой руки. Эта сила создает вращающий момент ротора. Ротор начинает вращаться с частотой n2 несколько меньшей n1. При увеличении нагрузки скорость вращения ротора уменьшается. Степень отставания характеризуется параметром скольжение s. s=n1-n2/n1.
Ответ 2:
Достоинства:
а) простота конструкции и обслуживания,
б) низкая стоимость,
в) надежность в эксплуатации, экономичность,
г) легко осуществлять реверс,
д) возможность использования во взрывоопасных производствах. ( нет искрения).
Недостатки:
а) Потребление реактивного намагничивающего тока, что снижает коэффициент мощности сети,
б) Плохие пусковые характеристики. Пусковой ток превышает номинальный 6-8 раз,
в) Неудовлетворительные регулировочные характеристики.
Ответ 3. Принцип получения вращающегося магнитного поля.
Рис. 35
Рис. 36
Рис. 37
Если подключить катушки статора АХ,ВY,CZ(рис.35) к 3-х фазному напряжению, то ток в каждой из катушек будет изменяться в соответствии с временной диаграммой изменения 3-х фазного напряжения (рис.37) , соответственно магнитное поле создаваемое этими токами будет изменяться аналогичным образом. В каждый момент времени магнитные поля каждой из катушек суммируются и дают результирующее поле. Рассмотрим процесс получения результирующего поля в моменты времени когда токи в фазах А, В и С максимальны и положительны ( интервал времени составит одну треть периода Т/3) .
Пусть в момент времени t1 ток катушкиАХIAположительный и поле этой катушки направлено вдоль оси этой катушки. В это же время токи катушек фазВиСотрицательны и их магнитные поля направлены противоположно их осям. Оси катушек расположены под углом 120°. Сумма 3х-полей дает магнитное поле направленное вдоль оси катушки АХ (рис.38).
Аналогичные рассуждения в моменты времени t2=t1+T/3 иt3=t3+T/3 дают результирующие поля вдоль осейBYвторой катушки иCZтретьей катушки соответственно. Через время равное периоду Т вектор магнитного поля вновь будет расположен вдоль оси АХ первой катушки. Таким образом, мы получили вращающееся магнитное поле. В каждый момент времени поле направлено перпендикулярно продольной оси статора.
Часть магнитного поля статора выходит из статора и замыкается по воздуху. Это поля рассеяния. Они не участвуют в процессе передачи энергии от статора к ротору.
studfiles.net
Количество просмотров публикации Укажите основной недостаток асинхронного двигателя. - 112
Перечислите режимы работы асинхронного электродвигателя
а) Режимы двигателя б) Режим генератора
в) Режим электромагнитного тормоза г) Все перечисленные
18.Как принято называть основная характеристика асинхронного двигателя?
а) Внешняя характеристика б) Механическая характеристика
в) Регулировочная характеристика г) Скольжение
19. Как изменится частота вращения магнитного поля при увеличении пар полюсов асинхронного трехфазного двигателя?
а) Увеличится б) Уменьшится
в) Останется прежней г) Число пар полюсов не влияет на частоту
вращения
20. определить скольжение трехфазного асинхронного двигателя, в случае если известно, что частота вращения ротора отстает от частоты магнитного поля на 50 об/мн. Частота магнитного поля 1000 об/мин.
а) S=0,05 б) S=0,02
в) S=0,03 г) S=0,01
а) Сложность конструкции
б) Зависимость частоты вращения от момента на валу
в) Низкий КПД
г) Отсутствие экономичных устройств для плавного регулирования частоты вращения ротора.
22.С какой целью при пуске в цепь обмотки фазного ротора асинхронного двигателя вводят дополнительное сопротивление?
а) Для уменьшения тока в обмотках б) Для увеличения вращающего момента
в) Для увеличения скольжения г) Для регулирования частоты вращения
Раздел 9 ʼʼСинхронные машиныʼʼ
1.Синхронизм синхронного генератора, работающего в энергосистеме невозможен, если:
а) Вращающий момент турбины больше амплитуды электромагнитного момента. б) Вращающий момент турбины меньше амплитуды электромагнитного момента.
в) Эти моменты равны
г) Вопрос задан некорректно
2.Каким образом, возможно, изменять в широких пределах коэффициент мощности синхронного двигателя?
а) Воздействуя на ток в обмотке статора двигателя
б) Воздействуя на ток возбуждения двигателя
в) В обоих этих случаях
г) Это сделать не возможно
3.Какое количество полюсов должно быть у синхронного генератора, имеющего частоту тока 50 Гц, в случае если ротор вращается с частотой 125 об/мин?
а) 24 пары б) 12 пар
в) 48 пар г) 6 пар
4.С какой скоростью вращается ротор синхронного генератора?
а) С той же скоростью, что и круговое магнитное поле токов статора б) Со скоростью, большей скорости вращения поля токов статора
в) Со скоростью, меньшей скорости вращения поля токов статора г) Скорость вращения ротора определяется заводом - изготовителем
5.С какой целью на роторе синхронного двигателя иногда размещают дополнительную короткозамкнутую обмотку?
а) Для увеличения вращающего момента
б) Для уменьшения вращающего момента
в) Для раскручивания ротора при запуске
г) Для регулирования скорости вращения
6.У синхронного трехфазного двигателя нагрузка на валу уменьшилась в 3 раза. Изменится ли частота вращения ротора?
а) Частота вращения ротора увеличилась в 3 раза
б) Частота вращения ротора уменьшилась в 3 раза
в) Частота вращения ротора не зависит от нагрузки на валу г) Частота вращения ротора увеличилась
referatwork.ru
В роторе изменит направление и фазу на 1800, момент измениться на противоположный и станет тормозящим, и машина будет работать в генераторном режиме и будет отдавать активную эн. в сеть, а реактивная эн., которая нужна для создания вращ. поля асинхр. г-ор будет потреблять из сети. Условия работы АМ в режиме г-ра n>n1 , то S=(n1-n)/n1<0 и 0>S>-¥.
Режим эл.магн.тормоза. Для того, чтобы перевести машину в этот режим необходимо вращать ротор против направления поля. S=(n1-(-n))/n1>1 и ¥>S>1 при реверсе и принудительно.
Пуск в ход СД.
Наиболее распространенным является асинхронный пуск. Для этого служит пусковая обмотка выполняемая в виде беличьей клетки.
Пуск: обмотка возбуждения шунтируется резистором, сопротивление которого в 10 раз больше сопротивления ов. Затем обмотка статора включается в сеть либо непосредственно, либо с помощью тр-ра или реактора в зав-ти от тяжести пуска. Машина начинает разворачиваться как АД. При достижении СД S= 0,05 включается возбужд., а шунтирующий резистор отключается. СД под действием входного момента втягивается в синхронизм. Пусковые характеристики СД проектируются для более тяжелых или более легких условий пуска.1 – лёгкий 2 – тяжёлый
Если оставить концы ОВ разомкнутыми, то в нач. момент времени пуска она будет индуктировать большую ЭДС и может случиться пробой изоляции.
Если закоротить концы ОВ накоротко, то под действием ЭДС будут протекать токи, которые будут создавать пульсирующее поле, которое состоит из прямого и обратного. Прямое создаёт момент направленный в сторону вращения. А момент обратного поля при S=0,5 М=0, при S>0.5 M>0, при S<0.5 M<0. В результате суммирования моментов в пусковой характеристике образуется провал в области S=0,5 и СД может не развернуться до скорости близкой с синхронной. 2. Пуск с наглухоподключенным возбудителем. Здесь ОВ не шунтируется резистором, и к ней подключена ОЯ возбудителя. При включении обмотки статора двигатель начинает разворачиваться. При S=0,05 машина втягивается в синхронизм. Схема пуска более простая, но для СД пуск более тяжёлый, поскольку ОВ шунтированная ОД возбудителя с малым акт.сопр. и проявляется эффект Гергеса. Этот пуск допускается при половинной нагрузке. 3.Пуск с помощью разгонного двигателя. Для этого необходим либо АД либо ДПТ либо дизельный. С его помощью СД разворачивается ≈ до ном. скорости при S=0,05 и после этого происходит грубая синхронизация с сетью. Частотный пуск. Для этого нужен преобразователь частоты. На выходе обеспечивается изменение ч-ты и U. При малых ч-тах вращения СД втягивается в синхронизм. Броски тока есть но не большие.
Достоинства и недостатки СД в сравнении с АД
Достоинства: 1.Возможность работы с cosj=1. Это приводит к улутшению cos в сети, а также к сокращению размеров двигателя, т.к. ток его меньше тока АД той же мощности. При работе с опережающим cos СД служит генератором Q мощности, поступающей в АД, что снижает потребление этой мощности от Г эл. станции.
2.Ммах пропорционален U1 а у АД U2 , поэтому СД мение чувствителен к изменению Uсети и имеет большую перегрузочную способность.
3.Возможность увеличения Iвозб позволяет увеличить устойчивость работы при аварийных изменениях в сети. (форсировка возбуждения).
4.В следствии большой величины воздушного зазора добавочные потери в стали и в клетке ротора меньше, чем у АД и поэтому КПД СД выше.
Недостатки: 1.Более сложная конструкция.
2.Наличие возбуждения, т.е. сложнее пуск.
3.Более высокая стоимость.
4.Склонность к качаниям при Р<100кВт. Устранение этого – демпферная обмотка.
СД при условии лёгких пусков целесообразно применять при Р=200 кВт и выше. СД выпускаются до Р=500 кВт.
Применение Сд сдерживают плохие пусковые с-ва и сложности регулирования скорости
Принцип действия АД. Режимы работы АД.
3-х фазная обмотка статора включается в 3-х фазную сеть. Обмотка симметрич., а напряжение сети представляет симметричную систему проямой последовательности. Через обмотку будет протекать симметричная 3-х фазная система токов , которые создают симметричн. вращ. поле. Полевращается с частотой n1=f1/p При вращении поле пересекает проводники обмотки статора и индуцирует в этой обмотке 3-х фазную систему ЭДС Е2 Под её действием в роторе протекает симметричная система токов i2 При неподвижном роторе, эти токи создают вращающеся магнитное поле, которое вращается с частотой n2=f2/p=f1/p=n1. Поле ротора и поле статора образует вращ. поле. При взаимодействии этого поля с токами i2 образуются эл. магнитные силы действующие на проводники. А силы образуют эл. магнитный момент. Если момент имеет достаточную величину, то ротор приходит во вращение. Причём частота вращения ротора не равна частоте вращения поля. В противном случае эл. магн. момент не будет развиваться. В зависимости от соотношения частот поля и ротора АМ может работать в режиме двигательный, генераторный, эл.маг.тормоза. Режим двигателя: при этом n<n1 относительная разность частот вращ.поля и ротора наз-ют скольжением S=(n1-n)/n1 . При пуске двигателя, когда ротор неподвижен S=1, а если ротор вращается с частотой поля, то S=0, т.е. 1>S>0. Развиваемый Мэм положителен и направлен в сторону вращения. Поле ротора при вращающемся роторе вращается с такой же частотой относительно статора, как и поле статора и оба этих поля создают общее вращающее магнитное поле. Режим генератора: Если с помощю внешнего момента вращать ротор побыстрее, чем вращ.магн.поле, то так
vunivere.ru