При подключении конденсатора в цепь обмотки вентилятора, создаются резонансные условия, поэтому увеличивается напряжение на обмотке вентилятора от 100 Вольт до 120 Вольт, а его обороты растут на 20 %, при неизменном токе потребления от аккумулятора, питающего преобразователь DC/AC. Эксперимент достаточно точный, так как прибором контролируется постоянный ток потребления, а не переменный ток с частотой 50 Гц (применяется обычный инвертер DC/АС и 12В аккумулятор). Споры о фазовом сдвиге и реактивной мощности, в данном случае, неуместны. Резонансный метод увеличивает реальную мощность в нагрузке, определяемую силой тока. Аналогичным образом, можно настроить любой электропривод, имеющий индуктивность, и получить энергосберегающий эффект. К сожалению, обычные электроприводы не могут показать хорошую добротность, так как резонанс в них стараются подавить конструктивно, еще на стадии разработки и проектирования. Это явление может привести к скачкам напряжения и вывести мотор из строя. Для того, чтобы получить электропривод, потребляющий, например, 1 кВт в резонансе, а работающий на все 10 кВт, его надо сконструировать для работы в резонансных условиях. Тем не менее, стандартные асинхронные приводы большой мощности (от 10 кВт и более), особенно крановые электроприводы, подходят для экспериментов в данной области.
Рассмотрим подробно способы получения автономного режима в конструкциях с асинхронными моторами. Сземы и фото взяты из книги Партика Кили, Practical Guide to Free-Energy Devices которая содержит 2500 страниц на сайте www.free-energy-info.com в открытом доступе Широкое развитие в среде энтузиастов альтернативной энергетики получила схема резонансного мотор-генератора с названием «РотоВертер», которая собрана их двух трехфазных электродвигателей. По заявлениям авторов, система производит примерно в 10 раз больше мощности, чем потребляет. Эта система была воспроизведена несколькими независимыми исследователями. Детали схемы показаны на рис. 101.
Рис. 101. Схема мотор-генератора. Подробнее на сайте www.free-energy-info.com
Устройство на выходе представляет собой генератор переменного тока, который приводится в действие трехфазным электродвигателем мощностью от 3 л.с. до 7.5 л.с. Оба этих устройства могут быть стандартными «асинхронными электродвигателями с короткозамкнутым ротором». Привод запускается в действие не обычным образом, а с помощью резонанса. Поэтому входное напряжение для данного двигателя должно всегда меньше его номинального эксплуатационного напряжения, 110 Вольт на каждую фазу, вместо 220 Вольт. Прирост напряжения даст резонанс. Виртуальная третья фаза создается, за счет использования конденсатора, который создает 90 градусный сдвиг фаз между прикладываемым напряжением и током.
Цель состоит в том, чтобы подобрать нужный конденсатор для обмоток электродвигателя, и получить резонансный режим. Конденсатор запуска подключается, используя кнопочный выключатель, чтобы довести двигатель до скорости, на которой выключатель размыкается, позволяя двигателю работать с конденсатором намного меньшей емкости. Хотя работающий конденсатор показан на схеме, как постоянное значение, сначала конденсатор должен быть отрегулирован во время работы двигателя, чтобы получить резонансный режим. Для этого обычно строится конденсаторный настроечный блок, рис. 102, где каждый конденсатор снабжен собственным выключателем, для того, чтобы различные комбинации дали широкий диапазон различных суммарных значений емкости конденсатора. С этими шестью конденсаторами, показанными выше, может быть быстро подобрано любое значение емкости от 0.5 микрофарад до 31.5 микрофарад, чтобы найти резонанс. Конденсаторы должны быть мощными с масляной изоляцией. Мощность велика, поэтому настройка проходит не без определенной степени опасности.
Этот метод может дать эффект автономного режима генерирования энергии, но это опасно в случае точной настройки, быстрого роста напряжения и мощности, вплоть до того, что обмотка двигателя выйдет из строя.
Перейдем к практическим деталям сборки этой системы. Двигатель (переменного тока), который, по мнению американских авторов проекта, считается лучшим для этого устройства, является «Baldor EM3770T» 7.5 л.с. Тип двигателя 07H002X790, напряжение включения 230Вольт или 460Bольт, для выбора рабочего напряжения в конструкции есть шесть независимых обмоток. Их можно соединить попарно последовательно, или парами параллельно.
Ток в обмотках 19 А или 9.5 А, в зависимости от соединения обмоток. Частота вращения 1770 оборотов в минуту, коэффициент мощности 81. Мотор-привод, включаемый на низкое входное напряжение, имеет обмотки, соединенные по две параллельно. Это дает большое омическое сопротивление и возможность выдерживать резонансное повышение напряжения до 460 Вольт, хотя от первичного источника подается всего 110 Вольт с частотой 50Гц.
Генератор имеет обмотки, соединенные параллельно, что дает возможность уменьшить активное сопротивление и обеспечить большую силу тока на выходе. Первичный привод может стартовать от DC/AC инвертора, работающего от батареи 12VDC. Система нуждается в настройке, которая заключается в поиске лучшего стартового конденсатора, который используется в течение нескольких секунд при запуске, и точно подобранного для постоянной работы резонансного конденсатора.
Авторы конструкции РОТОВЕРТЕР заявляют: «Это устройство использует вход 110 Вольт, малой мощности, а производит электрический выход более высокой мощности, который может использоваться для того, чтобы снабжать энергией больших по мощности потребителей. Выходная мощность намного больше чем входная. Это и есть свободная энергия, какое бы название Вы бы не употребили».
Авторы не показывали, как они замыкали цепь первичного возбуждения и цепь генерирования мощности, поэтому их устройство можно назвать «усилителем мощности», но не автономным генератором электроэнергии. Преимущество, которое необходимо подчеркнуть, состоит в том, что в проекте РОТОВЕРТЕР очень немного нужно конструировать, так как используются готовые двигатели. Кроме того, не требуется знание электроники, что делает этот проект одним из самых легких по сборке устройств свободной энергии, доступных в настоящее время. Один небольшой недостаток заключается в том, что настройка резонансного режима зависит от величины нагрузки, так как у большинства потребителей существуют различные уровни потребляемой мощности в различное время.
Итак, параллельный резонанс можно применить для уменьшения тока потребления, а последовательный резонанс позволяет во много раз увеличить напряжение в колебательном контуре. Рассмотрим некоторые примеры высоковольтных и других резонансных конструкций.
Имя Римилия Федоровича Авраменко известно всем, кто читал знаменитый журнал «Изобретатель и Рационализатор» в 1994 году и помнит статью о «бластере» Авраменко, который мог произвести мощный луч плазмы, или шаровые молнии, при питании от обычной батарейки. Для такого «генератора плазмы», говоря словами автора, необходимо «определенное сочетание ионизации и движения среды. Тогда образуется канал, своего рода проводник, по которому начинает перетекать энергия».
Исследования Авраменко также показали, что электрической составляющей, о которой пишут в учебниках, в радиоволнах нет, а ток в антенне приемника возбуждают «какие-то совсем другие волны». Возможно, это и есть явления, связанные с продольными волнами в эфире, рассмотренными нами ранее.
«Уже сегодня можно приступить к проектированию электростанций нового типа, абсолютно безвредных для окружающей среды. Постепенно заменим ими тепловые, водяные и атомные станции, и по сути, подключимся к энергетическим запасам Вселенной – неисчерпаемым и экологически чистым», так писал Академик Российской Академии Естественных Наук Римилий Федорович Авраменко – ученый, посвятивший свою жизнь проблеме обороноспособности нашей страны, отдавший много сил фундаментальной физике. Его работы открывают новые пути для решения задач альтернативной энергетики. В 2001 году он написал книгу «Будущее открывается квантовым ключом».
Известный разработчик в области резонансных генераторов энергии – Андрей Анатольевич Мельниченко. Первые статьи о нем появились в 1996 году, в журнале «Техника Молодежи». Он описал случай на даче, когда ему пришлось включать в сеть 110 Вольт инструмент, предназначенный для работы от 220 Вольт. Мельниченко подключил конденсатор, повышая напряжение с помощью резонанса, получил мощность в нагрузке и, в дальнейшем, стал активно развивать данное направление экспериментальных работ. В одной из его патентных заявок от 22 апреля 1996 года, поставлена задача создать «Резонансный трансформатор с усилением выходной мощности». Мельниченко так описывает свое изобретение: «Резонансный трансформатор имеет в первичной цепи настроенные в резонанс при резонансной частоте индуктивность и емкость (резонанс токов или напряжений). при резонансе полная мощность на катушке трансформатора в первичной цепи в Q раз (добротность) превышает полную мощность, подведенную к первичной цепи».
Позже он развивал другие схемы, в том числе, использующие сложение электромагнитных волн разных источников в одной области пространства, где помещается приемная катушка. Мельниченко показал, что энергия волн не складывается, а умножается. Аналогичный метод мы рассмотрим позже, при анализе конструкции Хаббарда, рис. 179.
В 2010–2011 мы обсуждали с ним успешные испытания его генераторов, организованные в Московском Техническом Университете. На данном этапе, получена эффективность на уровне 150–200 %, позволяющая проектировать «усовершенствованные» источники бесперебойного питания с аккумулятором, которые не требуют подзарядки от сети. Одна из схем Мельниченко приведена на рис. 104.
Рис. 104. Одна из схем генератора МельниченкоСуть данного эффекта в том, что если положить рядом с «открытым электромагнитом» (сердечник которого не замкнут, например, стержень или брусок феррита) другой «открытый электромагнит», то в обмотке второго электромагнита наводится электродвижущая сила, и возможно извлечение некоторой мощности.
Требуется подстройка частоты или регулировка сердечника катушки. В общем, это обычная резонансная взаимоиндукция. Однако, потокосцепление в данном случае слабое, поэтому влияние поля индуцированного тока второго электромагнита на первичный источник незначительное. Первичный источник создает меняющееся поле, а вторичный источник преобразует колебания энергии поля. Можно сказать, что второй электромагнит более похож на детекторный контур или «резонансный приемник колебаний эфира», чем на вторичный контур трансформатора.
В таком случае, есть возможность получать в «приемнике» большее количество энергии, чем тратит передатчик на «возбуждение эфира».
Отметим, что в области переменного магнитного поля первичного источника можно расположить несколько таких «приемных устройств». Исследовательскую работу по данной теме, целесообразно проводить с применением более высоких частот, хотя с увеличением частоты растут потери и усложняется схемотехника.
Поскольку мы рассматриваем резонансные эффекты, то отметим также магнитно-резонансный усилитель Нормана Вутена (MRA, Norman Wootеn), рис. 105. Это устройство маломощное (милливатты), но показывает эффективность 8 к 1, как заявляет автор. Оно состоит из маломощного высоковольтного генератора сигнала синусоидальной формы, примерно 20–40 КГц, к которому последовательно подключается пьезоэлектрический вибратор и первичная катушка 1:1 трансформатора (примерно 150 витков), намотанном на сердечнике из бариевого постоянного магнита.
Пьезоэлектрический вибратор, использующий титанат бария, может играть роль конденсатора в резонансной цепи, но его главная роль состоит в создании механических вибраций. В этой схеме мы можем найти признаки эффекта Баркгаузена. При вибрациях сердечника, особенно магнитотвердых материалов, можно наблюдать скачкообразное изменение намагниченности. Впервые аналогичный эффект наблюдался Баркгаузеном (Н. G. Barkhansen), 1919 г.
Отдельное направление исследований, относящееся к резонансам, называется «параметрические резонансы». Классический подход к этой теме детально проработал в 1950-е годы Академик Николай Дмитриевич Папалекси в колебательных контурах (конденсатор и катушка индуктивности), не имеющих источника питания. Это, фактически, один из немногих официальных открытых проектов по свободной энергии.
Параметрический резонанс – это явление возникновения и увеличение амплитуды электрических колебаний в результате изменения параметра элемента физической системы, в котором запасается энергия, происходящего с частотой, вдвое больше собственной резонансной частоты системы. В электрическом колебательном контуре, есть два элемента, в которых запасается энергия и параметры которых можно изменять: емкость и индуктивность.
Рассмотрим пример с индуктивным параметрическим резонансом. Почему электроны начинают двигаться в проводах катушки, если меняется ее индуктивность? При изменении индуктивности катушки путем периодического введения сердечника, который не является магнитом, его движение не создает явление электромагнитной индукции, в данном случае. При этом движении, изменяются условия для запасаемой энергии, то есть величина индуктивности. Аналогично, при емкостном резонансе, механический приводом или другим методом, периодически меняется величина электрической емкости конденсатора, то есть емкости накопителя энергии.
Механическая аналогия данного процесса – периодическое изменение объема некоторой емкости для воды или воздуха. Вывод простой и очень важный: изменение объема емкости накопителя энергии уже приводит в движение среду, в которой всегда есть энергия. Затраты энергии на изменения «объема накопителя», в установившемся резонансном режиме, могут быть намного меньше, чем энергия, получаемая из преобразования этих колебаний среды.
Задача состоит, как писал Папалекси, в «возбуждении электрических колебаний в колебательных системах, в которых отсутствует какой-либо специальный источник тока, путем периодического изменения параметров, производимых механически. Способ этот позволяет, по-видимому, осуществлять новый тип генератора переменного тока, обладающего рядом довольно любопытных сторон. В случае параметрического возбуждения, пока система остается линейной, мы принципиально не имеем пределов для нарастания колебаний. Здесь, помимо новой возможности трансформировать механическую энергию в колебательную электрическую, намечается новый способ получения высоких напряжений». (Н.Д. Папалекси, Собрание трудов, 1948 год).
На начальном этапе проекта, в экспериментах Папалекси, было получены результаты на уровне 600–700 ватт в лампах нагрузки, при затратах мощности на создание вращения 2 кВт. Однако, надо понимать, что затраты на вращение – это конструктивный вопрос, в этих машинах нет торможения ротора при снятии мощности в цепи нагрузки.
На рис. 106 показана схема параметрического генератора с периодически изменяемой индуктивностью. На оси показан ротор, который входит в зазор катушек. При этом возникает периодическое изменение индуктивности и ток в катушках.
Рис. 106. Схема создания индуктивного параметрического резонансаПри емкостном способе возбуждения, все происходит аналогично, но мотор вращает пластины конденсатора, изменяя его емкость. При соответствующей частоте, в катушке, соединенной с данным конденсатором, появляются периодические колебания тока.
Существует и такой способ возбуждения параметрического резонанса, как внешние электрические колебания, показанный на рис. 107. Частота внешних колебаний тока должна быть вдвое выше частоты собственных колебаний контура. Из опыта работы Академика Папалекси, отмечено, что наиболее интересные перспективы открываются для емкостных параметрических резонаторов. Вращение ротора, периодически меняющего диэлектрическую проницаемость между пластинами конденсатора, создает условия параметрического резонанса. В той части цикла вращения, когда диэлектрик находится между пластинами, емкость конденсатора максимальная. Без диэлектрика – емкость минимальная.
Рис. 107. Возбуждение параметрического резонанса внешним токомДля повышения мощности и уменьшения потерь, Папалекси создавал вращение в вакууме, помещая всю конструкцию в герметичный корпус. На рис. 108 показана схема и статор емкостного параметрического резонатора.
Рис. 108. Схема и статор емкостного параметрического резонатораСовременные технологии позволяют изменять величину электрической емкости конденсатора не только механически, но и путем приложения к нему «управляющей разницы потенциалов». В этом смысле, мы получим устройство, в котором изменения потенциального электрического поля, создавая изменение электрической емкости, при выполнении условий параметрического резонанса (удвоенная частота), позволяют обеспечить электродвижущую силу, ток проводимости и мощность в полезной нагрузке. Можно сказать, «работает переменное потенциальное поле».
Академик Папалекси высказался оптимистично, но осторожно про эффективность таких преобразователей энергии: «К.П.Д. может быть сделан очень высоким на повышенных частотах. так как мощность пропорциональна частоте. Весьма выгодной стороной емкостного генератора является возможность осуществления весьма, можно сказать, почти предельно высоких к.п.д. (свыше 99 %)».
Проще было бы сказать так: «Эффективность систем с параметрическим резонансом может быть более 100 %», но это было невозможно в то время!
Современные разработки в данной области малоизвестны. Возможно, что проекты в данном направлении были остановлены по некоторым причинам. Перейдем к следующей главе, где рассмотрим различные устройства из области использования энергии постоянных магнитов.spaevgev.livejournal.com
Всё началось с того, что я наткнулся на информацию о генераторах свободной энергии на сайте http://pravdu.ru в разделе «СВОБОДНАЯ ЭНЕРГИЯ». Меня это заинтересовало. Оттуда я вышел на сайт http://www.free-energy-info.co.uk. Просмотрев информацию о различных типах устройств свободной энергии, которую собрал Патрик Дж. Келли, мне больше всего понравился ротовертер (ROTOVERTER (rotary-converter)) Гектора (Hector D Perez Torres), описанный во второй части документации с этого сайта. Он мне понравился, так как его просто изготовить. Я скачал эту часть (смотрите файл «01_Chapter2.pdf» в документах на моём сайте). Где-то в Интернете скачал перевод этой части, но он мне не понравился. Я подкорректировал перевод страниц 32-37 файла Chapter2.pdf (смотрите файл «01_Patrik_Kelli_CHast_2_str_32-37_pdf_RotoVerter.doc» с моими замечаниями в конце). Так как один двигатель ротовертера, описанного в 01_Chapter2.pdf, стоит в Америке $1500, то точную копию решил не делать.
На сайте http://valeralap.ucoz.ru в разделе «Схемотехника» нашёл и скачал информацию о замкнутом ротовертере, состоящем из асинхронного двигателя 2,2квт и автомобильного генератора на 24V. Смотрите файл «02_Rotovert_Valeralap.pdf» на моём сайте. Эта установка мне понравилась больше, чем у Патрика Келли (приближена к нашим реалиям).
На сайте http://www.skif.biz нашёл интересную информацию о моторе дяди Васи. Смотрите файл «00_Motor_Djadi_Vasi.doc», но с ним решил пока подождать.
На сайте http://companera.ru в разделе «VIDEO-SE» нашёл интересную информацию об устройствах свободной энергии (три части фильма «Чудеса свободной энергии»). К сожалению, третья часть этого фильма, самая интересная, потом была удалена. Видимо кто-то почувствовал в этом фильме угрозу для себя и принял меры.
Ниже, вкратце, то, что я понял из прочитанного и увиденного.
Ротовертер – это устройство, состоящее из двух сцепленных друг с другом валами асинхронных электродвигателей. Двигатель, на который подаётся электроэнергия, называется первичным движителем (Prime Mover). Двигатель, с которого снимается электроэнергия, называется генератором (Alternator). Это устройство, при определённых условиях, может работать в режиме сверхъединичности (КПД >1), то есть снимаемая с генератора мощность больше, чем подаваемая на первичный движитель. Если устройство потребляет электроэнергию и выдаёт её, то оно называется разомкнутым. Если устройство вращается само по себе и, вдобавок, выдаёт электроэнергию потребителю, то оно называется замкнутым. В замкнутом устройстве часть электроэнергии с выхода подаётся на вход, а оставшаяся идёт потребителю. Устройство начинает работать в режиме сверхьединичности, если в обмотках первичного движителя наступает резонанс. То есть при определённых условиях сопротивление обмоток резко падает. Следовательно, сила тока в обмотках, а значит и механическая мощность, выдаваемая двигателем, возрастает. Задача состоит в том, чтобы заставить работать первичный движитель в режиме резонанса. Эта задача может решаться по-разному: подбором подаваемого напряжения, переключением статорных обмоток, подключением дополнительных конденсаторов. Мотор дяди Васи – частный случай ротовертера.
А. Седой утверждает, что резонанс наступает, если на первичный движитель подаётся напряжение 60 или 120 вольт. В Chapter2.pdf утверждается, что резонанс наступает при подаче 95 вольт (четверти напряжения питания асинхронного двигателя). В «Ротоверт Valeralap.pdf» на двигатель подаётся 220 вольт. То есть резонанс может наступить при разных напряжениях.
У А. Седого и в Chapter2.pdf обмотки первичного движителя не переключались (было простое подключение трёхфазного двигателя в однофазную сеть), а в Ротоверт Valeralap.pdf переключались (подключение мощного трёхфазного двигателя в однофазную сеть). То есть резонанс может наступить при разных способах подключения двигателя.
В Chapter2.pdf никаких дополнительных конденсаторов нет, нужно только подобрать подходящий двигатель и рабочий конденсатор. А. Седой утверждает, что нужен один дополнительный конденсатор, но куда его подключить, определяется только экспериментальным путём. В Ротоверт Valeralap.pdf сверхъединичность достигается одним или двумя дополнительными конденсаторами и даны конкретные схемы их подключения и ёмкость. То есть резонанс может наступить при разных способах подключения конденсаторов.
Я решил проверить все варианты.
Для начала я решил изготовить разомкнутый ротовертер, состоящий из трёхкиловаттного асинхронного двигателя в качестве первичного движителя и автомобильного генератора на 12V в качестве генератора электроэнергии.
Я решил начать с изготовления макета ротовертера. То есть двигатель и сцепленный с ним генератор я разместил на доске, а всё остальное на куске ДСП подходящих размеров. Так быстрее.
Когда макет разомкнутого ротовертера заработает, если он, конечно, заработает, то есть на выходе генератора мощность будет больше, чем на входе асинхронного двигателя, то я замкну его по методу "Ротоверт Valeralap". То есть при включении макета автомобильный аккумулятор начнёт выдавать 12 вольт, которые преобразуются в 220 вольт переменного тока и подаются на асинхронный электродвигатель. Электродвигатель начинает вращаться и крутить автомобильный генератор. Генератор начинает выдавать 12 вольт большой мощности. Часть этой мощности будет подаваться назад, на преобразователь напряжения, и далее, на двигатель, а оставшаяся часть пойдёт на нагрузку. Аккумулятор можно будет при этом отключить. Когда и этот макет заработает, если он, конечно, заработает, попытаться изготовить макет, который будет выдавать 5квт электроэнергии. Здесь, придётся использовать более мощный двигатель и генератор. Если и он заработает, то изготовить замкнутую промышленную установку мощностью 5квт для обогрева и освещения дачи зимой. Потом можно будет поэкспериментировать с изменением величины и частоты подаваемого напряжения.
То есть всю свою работу по созданию генератора свободной энергии я решил разбить на четыре этапа:
Начал работы над макетом в начале 2012г. Я изготовил макет разомкнутого ротовертера и начал эксперименты с ним.
Внешний вид макета – на фотографии выше. В файле «00_Pervoe_vkljutchenie.zip» видео «Первое включение ротовертера» (исторический момент).
Рисовал схему, делал макет, сочинял описание макета и создавал сайт (vladimir-73-57.narod.ru) полгода, тратя на это 1 - 2 часа в день. Летом 2012г. начал эксперименты с ним, но быстро обнаружилось, что у этого макета полно недостатков и его надо переделывать. Всё, что я сумел проделать с этим макетом, я назвал «Эксперимент 1».
Описание макета для первого эксперимента – в файле «02_Rotoverter_Jeksperiment_1.doc».
Схема макета – в файле «03_Shema_Jeksperiment_1.pdf».
Описание первого эксперимента – в файле «04_Jeksperiment_1.doc».
После трёхмесячного перерыва (осенью 2012г) я начал переделывать макет и продолжать эксперименты. Учёба, занятие боевыми искусствами, ремонт в квартире дочери и строительство дома почти не оставляли времени на эксперименты. Ещё ведь надо таскаться на работу и отбывать там по 9 часов в день (включая перерыв на обед), пять дней в неделю. Да ещё жена постоянно чего–то хочет.
Рисовал схему, делал макет, сочинял описание макета и проводил эксперименты с ним почти год, тратя на это по 1 часу в день. При проведении экспериментов (осенью 2013г.) выяснилось, что и этот макет обладает рядом недостатков, и провести с ним все запланированные работы не получится. Проделал примерно половину запланированных работ. Получил кое–какие интересные результаты. Все работы, которые я проделал в этот период, я назвал «Эксперимент 2».
Описание макета для второго эксперимента – в файле «05_Rotoverter_Jeksperiment_2.doc».
Схема макета – в файле «04_Shema_Jeksperiment_2.pdf».
Описание проделанных работ – в файле «06_Jeksperiment_2.doc».
После чего устроил себе ещё один трёхмесячный перерыв. Времени на эксперименты не хватает, причины всё те же. К весне 2014г. я переделал макет ещё раз, тратя на это по 2 часа в день, и приступил к экспериментам с ним. Про первый и второй эксперимент можно не читать. Всё, что мне удалось сделать в этих экспериментах, я проделал ещё раз в третьем эксперименте. Но информацию о первых экспериментах решил не выкидывать, авось пригодится. Это я назвал «Эксперимент 3».
К маю 2014г. я проделал эксперименты с включением ротовертера по методу Патрика Келли и первому методу В. Лапутько. Результаты отрицательные. Решив, что и остальные методы включения двигателя приведут к отрицательному результату, я прекратил эксперименты. Летом где-то в Интернете нашёл книгу профессора Сапогина «Унитарная квантовая теория и новые источники энергии» (см. файл «20_Sapogin_Novye_istocniki_energii»). Я кое-что понимаю в математике и квантовой механике (моя специальность - «прикладная математика»). Поэтому я кое-что понял в этой книге. Это меня вдохновило. Цитаты из этой книги см. в файле «21_Sapogin_Citaty». Потом я нашёл в Интернете книгу А. Фролова «Новые источники энергии». (см. файл «22_Frolov_Novye_istocniki_energii»). Цитаты из этой книги в файле «23_Frolov_Citaty». Книга мне понравилась, правда в ней полно грамматических и прочих ошибок. Например, в главе про ротовертер параллельное включение перепутано с последовательным. Фролов считает, что для получения резонанса в ротовертере надо использовать электродвигатель мощностью более 10 кВт, желательно крановый, а также мощные резонансные конденсаторы. Я решил всё-таки закончить третий эксперимент, хотя и считаю, что резонанса не получу, чтобы летом 2015г. начать четвёртый эксперимент с мощным крановым двигателем. В январе 2015г. я продолжил третий эксперимент.
Описание макета для третьего эксперимента – в файле «09_Rotoverter_Jeksperiment_3.doc».
Схема макета – в файле «05_Shema_Jeksperiment_3.pdf».
Описание проделанных работ в файле «10_Jeksperiment_3.doc».
lugovoe73.nethouse.ru
Тема эта очень интересная по ней очень много всяких устройств и она очень противоречива. Познакомившись с работой Мандельштама и Папалекси о параметрическом резонансе, стал глубже вникать в эту проблему.
Из 27 двигателей попался только один очень старой конструкции, на нем только удалось рассмотреть, что он 7,5 киловатт, обороты путем замера оказались почти 3000об/мин. Сопротивление обмоток 1,3ом число полюсов статора 36, ротора 34 (индуктивность не меряю принципиально - с расчетом резонанс не сходится). Единственный недостаток этого двигателя в се таки скошенные магнитные полюса ротора. Запускаю двигатель по схеме ротовертера или классической, с фазосдвигающим конденсатором. Рабочую емкость настраиваю в резонанс. Напряжение подбираю рабочим конденсатором до 380вольт. Останавливаю, от мощного звукового генератора по всем правилам снятия АЧХ, снимаю характеристику, и резонанс приходится на частоту выше 120 герц. Вынимаю ротор частота еще герц на двадцать выше. Если при снятии АЧХ произвести подстройку конденсаторами на 50 герц и включить, то он довольно быстро сгорит. Если запитать через латр, постепенно снижая напряжение, то он будет вращаться даже при 30 вольтах. Но на синусе резонансных обмоток, на вершине синуса, есть прогиб осциллограммы, один в один как у феррорезонансных стабилизаторов. Это убедило меня в том, что резонансные обмотки с рабочим конденсатором не работают на основной частоте, а только настраиваются на гармонику кратную ей. Возникает закономерный вопрос - а что собственно интересного, нового в моем повествовании. А всего то искал условие возникновения параметрического резонанса.
Так какое соотношение искал в асинхронных двигателях? Первое, что удалось понять, что рассматривать в работе двигателя нужно всего две обмотки, которые работают в резонансе. Третья применяется для нагрузок потребителей.
Разгонять можно двигатель любым способом. По достижению им номинальных оборотов, одна обмотка путем переключения должна быть электрически отсоединена.
Применял для разгона классическую схему - соединение звездой, две обмотки в резонансе через фазосдвигающую емкость. После достижения оборотов, нужно на ходу быстро перекинуть выводы одной обмотки местами. Двигатель еще не отсоединен от сети, до перекидки обмоток, резонансное напряжение должно быть подобранно не ниже 380вольт. После перекидки полярности, двигатель не меняя внешне не чего, продолжает также работать, но замер резонанса показывает, что напряжение упало почти до 170 вольт.
Подобрав емкость нужно вернуть первоначальное напряжение, то есть 380 вольт, емкость увеличится, примерно в три-четыре раза. Вот тут и начинается весь фокус - если инерционная масса достаточна, конденсаторы имеют хорошую добротность малую утечку. Надо позаботится о наличие маховика, возможно поняв все нюансы, можно от него избавится, но на начальном этапе лучше перестраховаться, чтоб выбег был с массой несколько десятков минут. В своей конструкций использовал пилораму заменив пилу на большого размера отрезные круги 4-5 штук стянув их планшайбой. Даже без эффекта крутится очень долго!…
Качественная обмотка двигателя, обладающая хорошей добротностью, правильно выбрано соотношение статорных и роторных полюсов. То двигатель переходит в режим параметрической генерации, на синусоидальной обмотке возникает плоскость, точно такая, как у феррорезонансных стабилизаторов. И можно смело отсоединять от сети, если все параметры двигателя удачны он, как бы чуть на слух ускоряется, и продолжает работать, при этом незначительно греется. Можно потихоньку пробовать нагружать. Конденсаторы, для резонанса, нужно набирать из небольших - микрофарады по две. Их несколько суток желательно продержать в тепле, после зарядить от источника вольт на 220 и оставить, на другой день вольтметром с высокоомным входом промерять и выбрать удерживающие максимально большое напряжение. Провода для спайки конденсаторов и подводу к двигателю лучше сделать из самодельного литцендрата. Литцендрат применяю очень давно, когда еще занимался звукотехникой у него очень низкое волновое сопротивление. При передачи импульсных сигналов, повышении добротности колебательных систем, выполняю не задумываясь для меня это правило. Но можно и простым медным проводом но желательно толстым мм 2,5- 3 Литцендрат можно набрать из провода марки ПЭЛ –0,2 жилок 8-12. Все же, самое главное, это сам двигатель мне так и не удалось найти такой, какой именно вытекает из теоретических рассуждений, все современные двигатели имеют косые полюса на роторе маленький диаметр, а нужно большого диаметра ротор и прямые магнитные полюса.
Такие двигателя, сданы давно на металлолом. C соотношение, двух роторных полюсов, сдвинутых на сто двадцать градусов, относительно статора, должно выполняться строго.
Если верхний полностью совмещен, то левый полюс только собирается входить в статорный полюс. Это обмотки, работающие в резонансе, правая обмотка для нагрузки и ее положение не имеет значения. Эта схема имеет очень интересные свойства для исследований. Преимущества ее что она почти в полной мере использует резонанс питаясь от сети всего через одну обмотку. Две обмотки с резонансной емкостью также вырабатывают магнитный поток, участвующий в работе. Что позволяет снять повышенную механическую мощность. Мной переделаны все станки на этот режим токарный, фрезерный, сверлильный, наждак, циркулярку, все прекрасно работает от однофазной сети. Собираюсь переделать компрессор. Все оборудование как бы работает на полную мощность и ощущение, что от трехфазной сети. В схеме применяются для пуска электролиты в неполярном включений, а рабочая настроенная в резонанс типа МБГЧ не менее 600в.
www.junradio.com