Изобретение относится к дизелестроению. Роторно-поршневой дизельный двигатель содержит раму, цилиндр, рубашку охлаждения, крышки, вал, ротационную воздуходувку, воздушный фильтр, маховик, системы питания, охлаждения, смазки и запуска, механизмы управления. Цилиндр размещен горизонтально и закрыт крышками, имеющими соосные выпускные и впускные окна, связанные с выпускными трубами и ротационной воздуходувкой. Внутрь цилиндра вставлен Z-образный ротор с элементами уплотнения, выполненный заодно с валом, концы которого пропущены в отверстия крышек. На противоположных концах ротора выполнено по два выступа в форме треугольников, обращенных своими вершинами в сторону, противоположную вращению ротора. На обеих противоположных сторонах ротора установлены с возможностью радиального перемещения поршни, выполненные в форме сегментов, повернутых сферическими поверхностями к внутренней поверхности цилиндра. Каждый поршень имеет выступ и наклонную направляющую, входящие в паз и наклонный канал ротора. Поршни с ротором образуют две камеры сгорания, имеющие форсунки. На свободных концах вала закреплены маховик, ротор воздуходувки и ведущие шестерни, входящие в зацепление с шестернями привода насоса высокого давления, топливного, масляного и водяного насосов. Шестерня стартера взаимодействует с зубчатым венцом маховика. Техническим результатом является повышение КПД, упрощение конструкции, уменьшение веса, повышение мощности при меньших размерах и уменьшение вибрации двигателя. 19 ил.
Изобретение относится к области машиностроения и может найти применение в качестве дизельного двигателя.
Известен четырехтактный дизельный двигатель, содержащий фундаментальную раму, блок цилиндров с форсунками и клапанами, кривошипно-шатунный механизм с поршнями, вставленными в цилиндры, маховик, системы: питания, охлаждения, смазки и запуска, механизмы управления/С.Н.Прасолов, М.Б.Амитин, Устройство подводных лодок, М., Воениздат, 1973, с.232-234, рис.96/.
Недостатками четырехтактного дизельного двигателя являются: большой вес, большой расход топлива, тепловые потери, потери на трение в кривошипно-шатунном механизме, вибрация при работе, трудности запуска при отрицательных температурах воздуха, сложность конструкции.
Указанные недостатки обусловлены конструкцией двигателя, а также наличием кривошипно-шатунного механизма, четырехтактным режимом работы, использованием топлива с высокой температурой воспламенения.
Известен также двухтактный дизельный двигатель, содержащий блок цилиндров, блок-картерную фундаментальную раму, поддон, крышку цилиндров с форсунками и клапанами, коленчатый вал, шатуны, поршни, вставленные в цилиндры, имеющие продувочные окна, ротационную воздуходувку, маховик, системы: питания, охлаждения, смазки и запуска, механизмы управления /там же, с.236-241, рис.99/.
Двухтактный дизельный двигатель, как наиболее близкий по технической сущности и достигаемому полезному результату, принят за прототип.
Недостатки двухтактного дизельного двигателя, принятого за прототип, те же.
Указанные недостатки обусловлены конструкцией двигателя.
Целью настоящего изобретения является повышение технических характеристик дизельного двигателя.
Указанная цель согласно изобретению обеспечивается тем, что блок цилиндров, блок-картерная фундаментальная рама, поддон, крышка цилиндров с форсунками и клапанами, коленчатый вал, шатуны, поршни и цилиндры с продувочными окнами заменены цилиндром, выполненным горизонтальным заодно с фундаментальной рамой, закрытым передней и задней крышками, имеющими соответственно выпускные и впускные продувочные окна, расположенные соосно друг другу, первые из которых соединены с выпускными трубами, а вторые с ротационной воздуходувкой и воздушным фильтром, Z-образным ротором с элементами уплотнения, вставленным в цилиндр и выполненным заодно с валом, концы которого пропущены в отверстия передней и задней крышек, причем на противоположных концах ротора выполнено по два выступа в форме треугольников, обращенных своими вершинами в сторону, противоположную вращению ротора, двумя поршнями с элементами уплотнения, установленными по одному на противоположных сторонах ротора, каждый из которых выполнен в форме сегмента, обращенного своей сферической поверхностью к внутренней поверхности цилиндра, причем оба поршня установлены с возможностью вращения вместе с ротором и радиального перемещения, причем ротор и поршни размещены в поперечной плоскости относительно вала, кроме того, каждый поршень имеет выступ и наклонную направляющую, входящие соответственно в паз и наклонный канал ротора, а на задней поверхности каждого поршня закреплен палец, входящий в профилированный паз, выполненный на внутренней поверхности задней крышки, причем сферические и боковые поверхности поршней, зубчатые поверхности выступов ротора и внутренняя поверхность цилиндра образуют две камеры сгорания, имеющие форсунки, соединенные с системой питания, кроме того, на свободных концах вала установлены маховик и ротор ротационной воздуходувки, закреплены ведущие шестерни, входящие в зацепление с ведомыми шестернями привода насоса высокого давления, топливного масляного и водяного насосов, а на передней крышке закреплен стартер, шестерня которого взаимодействует с зубчатым венцом маховика.
Сущность изобретения поясняется чертежами, где на фигуре 1 изображен общий вид роторно-поршневого дизельного двигателя, на фигуре 2 - вид слева на роторно-поршневой дизельный двигатель, на фигуре 3 - вид справа на роторно-поршневой дизельный двигатель, на фигуре 4 - кинематическая схема двигателя, на фигуре 5 - поперечный разрез роторно-поршневого дизельного двигателя, на фигуре 6 - общий вид ротора, на фигуре 7 - вид на ротор слева, на фигуре 8 - вид на ротор сверху, на фигуре 9 - общий вид поршня, на фигуре 10 - вид на поршень слева, на фигуре 11 - вид на поршень сверху с частичным разрезом, на фигуре 12 - схема системы питания роторно-поршневого двигателя, на фигуре 13 - вид спереди на уплотнительные элементы ротора или поршня, на фигуре 14 - вид сзади на уплотнительные элементы, на фигуре 15 - вид сверху на уплотнительные элементы, на фигурах 16, 17, 18, 19 - схема работы роторно-поршневого двигателя.
Роторно-поршневой дизельный двигатель содержит цилиндр 1 с рубашкой охлаждения 2, размещенный горизонтально и выполненный заодно с фундаментальной рамой 3. Цилиндр закрыт передней 4 и задней 5 крышками, имеющими соответственно выпускные 6 и впускные 7 продувочные окна, первые из которых соединены с выпускными трубами 8, а вторые соединены с выпускными трубами 9 ротационной воздуходувки 10, впускная труба 11 которой связана с воздушным фильтром 12. Внутрь цилиндра вставлен
Работа роторно-поршневого двигателя
После проверки исправности роторно-поршневой дизельный двигатель запускается стартером 38, шестерня 37 которого входит в зацепление с зубчатым венцом маховика 36 и начинает вращать вал 17, после чего работает следующим образом. В исходном положении (фиг.18) ротор 13 занимает вертикальное положение. Поршни 13 сдвинуты до конца к ротору 13. Впускные окна 7 и выпускные окна 6 открыты. Воздух через воздушный фильтр 12 засасывается из атмосферы ротационной воздуходувкой 10 и через впускные окна 7 подается во впускные камеры 24, где он вытесняет отработанные газы через выпускные окна 6 и выпускные трубы 8 в атмосферу, заполняя впускные камеры 24 чистым воздухом. Далее ротор 13 поворачивается в направлении, показанном стрелкой (фиг.19). При этом впускные 7 и выпускные 6 окна закрываются, чистый воздух перемещается в камеру сгорания 25. Одновременно с этим воздух начинает сжиматься поршнями 18, которые начинают перемещаться в сторону от оси вращения ротора 13 за счет перемещения пальцев 26 по профилированному пазу 27. За 10-15 градусов поворота вала 17 через форсунки 29 в камеры сгорания 25 насосом высокого давления 33 впрыскивается топливо. Как только ротор 13 займет положение, показанное на фигуре 16, топливо воспламеняется и образовавшиеся газы производят давление на сферические поверхности и торцовые участки поршней 18, а также на площадки выступов 19 ротора 13. При этом силы F и F1 создают пару сил и приводят ротор 13 во вращение, силы F 2 и F3, действующие на сферические поверхности поршней не мешают вращению ротора потому, что направление действия этих сил проходит через центр вращения и не создает пары сил (на фигуре 16 показано пунктиром). Силы F4 и F 5 в начале рабочего хода будут уравновешивать друг друга потому, что площади, на которые они действуют, равны. Но при повороте ротора 13 поршни 18 станут приближаться к ротору и сила F5 станет уменьшаться, так как площадь, на которую она действует, уменьшается. С другой стороны, сила F4 будет не уравновешена и станет увеличивать давление газов на ротор, повышая крутящий момент. Достигнув положения, показанного на фигуре 17, ротор 13 и поршни 18 станут открывать впускные 7 и выпускные 6 окна, и процесс начнется сначала. Таким образом за один оборот вала 17 будет происходить четыре рабочих хода. Регулирование мощности и частоты вращения осуществляется путем изменения величины подачи топлива за счет ручки 34.
Положительный эффект: более высокий КПД, большая мощность и крутящий момент при меньших размерах, упрощение конструкции, уменьшение веса двигателя, снижение вибрации из-за отсутствия неуравновешенных вращающихся масс.
Роторно-поршневой дизельный двигатель, содержащий фундаментальную раму, цилиндр с рубашкой охлаждения, крышки цилиндра, форсунки, вал, поршни, вставленные в цилиндр, ротационную воздуходувку, маховик, системы: питания, охлаждения, смазки и запуска, механизмы управления, отличающийся тем, что цилиндр размещен горизонтально, выполнен заодно с фундаментальной рамой и закрыт передней и задней крышками, имеющими соответственно выпускные и впускные продувочные окна, расположенные соосно друг другу, первые из которых соединены с выпускными трубами, а вторые с ротационной воздуходувкой и воздушным фильтром, причем внутрь цилиндра вставлен Z-образный ротор с элементами уплотнения, выполненный заодно с валом, концы которого пропущены в отверстия передней и задней крышек, причем на противоположных концах ротора выполнено по два выступа в форме треугольников, обращенных своими вершинами в сторону, противоположную вращению ротора, кроме того, на противоположных сторонах ротора установлено по одному поршню с элементами уплотнения, каждый из которых выполнен в форме сегмента, обращенного своей сферической поверхностью к внутренней поверхности цилиндра, причем оба поршня установлены с возможностью вращения вместе с ротором и радиального перемещения, причем ротор и поршни размещены в поперечной плоскости относительно вала, кроме того, каждый поршень имеет выступ и наклонную направляющую, входящие соответственно в паз и наклонный канал ротора, а на задней поверхности каждого поршня закреплен палец, входящий в профилированный паз, выполненный на внутренней поверхности задней крышки, причем сферические и боковые поверхности поршней, зубчатые поверхности ротора и внутренняя поверхность цилиндра образуют две камеры сгорания, имеющие форсунки, соединенные с системой питания, кроме того, на свободных концах вала установлены маховик и ротор ротационной воздуходувки, закреплены ведущие шестерни, входящие в зацепление с ведомыми шестернями привода насоса высокого давления, топливного, масляного и водяного насосов, а на передней крышке закреплен стартер, шестерня которого взаимодействует с зубчатым венцом маховика.
www.freepatent.ru
(51) МПК НАЦИОНАЛЬНЫЙ ЦЕНТР ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ ДИЗЕЛЬНЫЙ РОТОРНЫЙ ДВИГАТЕЛЬ С ВРАЩАЮЩИМИСЯ ПОРШНЯМИ(71) Заявитель Галковский Василий Петрович(72) Автор Галковский Василий Петрович(73) Патентообладатель Галковский Василий Петрович(57) Дизельный роторный двигатель внутреннего сгорания с вращающимися поршнями,отличающийся тем, что имеет корпус цилиндрической формы, разделенный на две части,внутри которого помещаются два ротора с поршнями, жестко насаженные на вал, с возможностью вращения, вынесенную камеру сгорания с двумя клапанами и форсункой, два перекрывающих устройства, два отверстия для возможного всасывания воздуха и выталкивания отработанных газов в атмосферу.(56) 1. Политехнический словарь. - 2-е изд. - 1980. - С. 71. 2. Двухтактные дизельные двигатели // Политехнический словарь. - 2-е изд. - 1980. С. 139. 90942013.04.30 Со времени изобретения первого двигателя внутреннего сгорания и до настоящего времени конструкция наиболее распространенных существующих двигателей не изменилась. Они имеют цилиндр, поршень, шатун, коленвал, маховик и т.д. Наиболее распространенные ДВС работают по четырехтактному циклу всасывание горючей смеси или воздуха, сжатие, рабочий ход и выталкивание отработанных газов. На протяжении десятилетий идет борьба за повышение КПД ДВС. Если первый двигатель имел КПД 5 , то в настоящее время новейшие конструкции имеют 30 , а дизели - до 40 . Конструкция данных двигателей не позволяет максимально использовать работу расширяющихся газов. Вращающий моментпри этом изменяется от 0 до максимального и опять до 0 при рабочем ходе. Предлагаемый роторный дизельный двигатель внутреннего сгорания с вращающимися поршнями по конструкции отличается от существующих, которые мне известны. Наиболее близок к нему карбюраторный двигатель Ванкеля, который был построен в 1957 году 1, у него также вращение ротора осуществляется по эпитрохоиде постоянно в одну сторону. В предлагаемом ДВС, в отличие от двигателя Ванкеля, поршни вращаются по кругу. При процессе сжатия используется почти все пространство между цилиндром и ротором. У ДВС Ванкеля только 1/3. Это значит, что предлагаемый ДВС может создать давление в 3 раза больше. У ДВС Ванкеля лопатки вращаются по всему объему, в предлагаемом вращаются не лопатки, а поршни в пространстве между поверхностью цилиндра и внешней поверхностью ротора. По осуществлению рабочего процесса за 2 такта наиболее близки к предлагаемому 2 тактные дизеля. В предлагаемом двигателе в отличие от 2 тактного такой цикл осуществляется за счет работы двух поршней, один из которых за полный оборот вала передней частью поршня сжимает воздух и подает в камеру сгорания, а задней засасывает его в рабочий объем. Второй поршень совершает рабочий ход и одновременно выталкивает отработанные газы от предыдущего хода 2. По рабочим процессам предлагаемый двигатель наиболее подходит к 4-тактному с вынесенной камерой сгорания. Работа расширяющихся газов используется для создания вращающего момента, однако в предлагаемом двигателе с вращающимися поршнями она будет использована более эффективно за счет конструкции. Предлагаемая модель дизельного роторного ДВС с вращающимися поршнями упрощает конструкцию, т.к. не имеет шатунов, коленвала, цилиндров, меньше подшипников,клапанов и т.д. Максимальный вращающий момент и увеличение длины пути поршня во время рабочего хода в 1,5 раза повысит его КПД на 50 независимо от того, будет он карбюраторный или дизельный. Так как все 4 такта происходят за один оборот вала, то снижение веса на единицу мощности ожидается в 2-3 раза. Для примера, сравним два двигателя предлагаемый и существующий 4-тактный с 4 поршнями. Площади сечения поршней возьмем одинаковыми 12, давление газа при рабочем ходе одинаковое 12. Радиус ротора и кривошипа в 4-цилиндровом одинаковы 12. Работа, совершенная роторным двигателем с 2 поршнями А 12 П 111. Работа, совершенная 4-тактным двигателем с 4 поршнями 242222 П 11,572 2 4 2 22- коэффициент использования объема рабочего пространства в предлагаемом двигателе. У роторного двигателя с вращающимися поршнями расширяющиеся газы гонят рабочий поршень по кругу. Это создает максимальный вращающий момент за весь оборот вала. В 4-тактном ДВС вращающий момент изменяется за пол-оборота от 0 до максимального и опять до 0. Технической задачей полезной модели является создание дизельного ДВС с более высоким КПД в 1,4-1,5 раза, наиболее простого по конструкции для его реализации. Враще 2 90942013.04.30 ние поршней по кругу в одну сторону создает за все время рабочего такта максимальный вращающий момент и воздействие расширяющихся газов на поршень увеличивается в 1,5 раза. Решение технической задачи достигается тем, что предлагаемый дизельный двигатель имеет корпус цилиндрической формы, разделенный на две части, внутри которого находятся два ротора с поршнями, жестко насаженные на вал, с возможностью вращения,вынесенную камеру сгорания с двумя клапанами и форсункой, два перекрывающих устройства, два отверстия для возможного всасывания воздуха и выталкивания отработанных газов в атмосферу. На фиг. 1 изображен продольный разрез дизельного роторного двигателя внутреннего сгорания с вращающимися поршнями со следующими деталями 1. Корпус двигателя. 2. Ротор двигателя. 3. Вал. 4. Ротор компрессора. 5. Клапан двигателя в камере сгорания. 6. Камера сгорания. 7. Форсунка. 8. Клапан компрессора. 9. Отверстие в камере сгорания компрессора. 10. Отверстие в камере сгорания для пропуска газов. На фиг. 2 изображен поперечный разрез двигателя по . 4. Ротор компрессора. 9. Отверстие в камеру сгорания с клапаном. 11. Перекрывающее устройство. 13. Отверстие постоянно открытое. 15. Поршень компрессора. На фиг. 3 изображен разрез двигателя по . 2. Ротор двигателя. 10. Отверстие в камеру сгорания. 12. Перекрывающее устройство. 14. Отверстие в атмосферу. 16. Поршень двигателя. На фиг. 1 изображен продольный разрез предлагаемого дизельного двигателя внутреннего сгорания с вращающимися поршнями. Корпус 1 выполнен в виде цилиндра, который разделен на две части круговой перегородкой с подшипниками для вала. Внутри корпуса имеется ротор 2 двигателя и ротор 4 компрессора. Роторный двигатель имеет вынесенную камеру сгорания 6, внутри которой находится отверстие с клапаном 5, отверстие 8 с клапаном 9 и форсунка 7. Роторы 2 и 4 жестко насажены на вал 3. В корпусе имеются перекрывающие устройства 11 компрессора и двигателя 12 (фиг. 2 и 3). За перекрывающим устройством 11 (фиг. 2) имеется постоянно открытое отверстие 13 и отверстие 14 перед перекрывающим устройством 12 (фиг. 3). Ротор компрессора 4 имеет поршень 15 (фиг. 2), а ротор двигателя 2 имеет поршень 16 (фиг. 3). Внутренняя поверхность корпуса 1 (фиг. 1) поршней 15 и 16 роторов 2 и 4, соприкасающихся с корпусом и перекрывающими устройствами 11, 12, должны быть тщательно отрегулированы и подогнаны, чтобы не пропускать воздушно-топливную смесь. При движении поршня 15 по стрелке фиг. 2 воздух перед поршнем сжимается т.к. перекрывающее устройство 11 (фиг. 2) перекрывает воздух, а сзади поршня 15 засасывается очередная порция воздуха, так как там создается разрежение, через отверстие 13 (фиг. 2). При достижении необходимого давления клапан 8 фиг. 1 открывается и через отверстие 9 (фиг. 2) воздух заполняет камеру сгорания 6 (фиг. 1). Клапан 5 (фиг. 1) в это время закрыт. При 3 90942013.04.30 этом насосом высокого давления через форсунку 7 (фиг. 1) в камеру сгорания подается порция топлива, начинается процесс горения и расширения газов. Во время подачи топлива клапан 8 закрывает отверстие 9 (фиг. 1), клапан 5 (фиг. 1) открывается, поршень 16(фиг. 3), двигаясь по стрелке, принимает положение за отверстием 10 (фиг. 3) и сжатые газы давят на поршень 16 и перекрывающее устройство 12 (фиг. 3). Совершается рабочий ход до отверстия 14 (фиг. 3). В это же время отработанные газы выталкиваются в атмосферу. В предлагаемой конструкции дизельного роторного двигателя с вращающимися поршнями все четыре цикла совершаются в полном объеме за один оборот вала. Национальный центр интеллектуальной собственности. 220034, г. Минск, ул. Козлова, 20. 4
<a href="http://bypatents.com/4-u9094-dizelnyjj-rotornyjj-dvigatel-s-vrashhayushhimisya-porshnyami.html" rel="bookmark" title="База патентов Беларуси">Дизельный роторный двигатель с вращающимися поршнями</a>
bypatents.com
Изобретение относится к дизелестроению. Роторно-поршневой дизельный двигатель содержит раму, цилиндр, рубашку охлаждения, крышки, вал, ротационную воздуходувку, воздушный фильтр, маховик, системы питания, охлаждения, смазки и запуска, механизмы управления. Цилиндр размещен горизонтально и закрыт крышками, имеющими соосные выпускные и впускные окна, связанные с выпускными трубами и ротационной воздуходувкой. Внутрь цилиндра вставлен Z-образный ротор с элементами уплотнения, выполненный заодно с валом, концы которого пропущены в отверстия крышек. На противоположных концах ротора выполнено по два выступа в форме треугольников, обращенных своими вершинами в сторону, противоположную вращению ротора. На обеих противоположных сторонах ротора установлены с возможностью радиального перемещения поршни, выполненные в форме сегментов, повернутых сферическими поверхностями к внутренней поверхности цилиндра. Каждый поршень имеет выступ и наклонную направляющую, входящие в паз и наклонный канал ротора. Поршни с ротором образуют две камеры сгорания, имеющие форсунки. На свободных концах вала закреплены маховик, ротор воздуходувки и ведущие шестерни, входящие в зацепление с шестернями привода насоса высокого давления, топливного, масляного и водяного насосов. Шестерня стартера взаимодействует с зубчатым венцом маховика. Техническим результатом является повышение КПД, упрощение конструкции, уменьшение веса, повышение мощности при меньших размерах и уменьшение вибрации двигателя. 19 ил.
Изобретение относится к области машиностроения и может найти применение в качестве дизельного двигателя.
Известен четырехтактный дизельный двигатель, содержащий фундаментальную раму, блок цилиндров с форсунками и клапанами, кривошипно-шатунный механизм с поршнями, вставленными в цилиндры, маховик, системы: питания, охлаждения, смазки и запуска, механизмы управления/С.Н.Прасолов, М.Б.Амитин, Устройство подводных лодок, М., Воениздат, 1973, с.232-234, рис.96/.
Недостатками четырехтактного дизельного двигателя являются: большой вес, большой расход топлива, тепловые потери, потери на трение в кривошипно-шатунном механизме, вибрация при работе, трудности запуска при отрицательных температурах воздуха, сложность конструкции.
Указанные недостатки обусловлены конструкцией двигателя, а также наличием кривошипно-шатунного механизма, четырехтактным режимом работы, использованием топлива с высокой температурой воспламенения.
Известен также двухтактный дизельный двигатель, содержащий блок цилиндров, блок-картерную фундаментальную раму, поддон, крышку цилиндров с форсунками и клапанами, коленчатый вал, шатуны, поршни, вставленные в цилиндры, имеющие продувочные окна, ротационную воздуходувку, маховик, системы: питания, охлаждения, смазки и запуска, механизмы управления /там же, с.236-241, рис.99/.
Двухтактный дизельный двигатель, как наиболее близкий по технической сущности и достигаемому полезному результату, принят за прототип.
Недостатки двухтактного дизельного двигателя, принятого за прототип, те же.
Указанные недостатки обусловлены конструкцией двигателя.
Целью настоящего изобретения является повышение технических характеристик дизельного двигателя.
Указанная цель согласно изобретению обеспечивается тем, что блок цилиндров, блок-картерная фундаментальная рама, поддон, крышка цилиндров с форсунками и клапанами, коленчатый вал, шатуны, поршни и цилиндры с продувочными окнами заменены цилиндром, выполненным горизонтальным заодно с фундаментальной рамой, закрытым передней и задней крышками, имеющими соответственно выпускные и впускные продувочные окна, расположенные соосно друг другу, первые из которых соединены с выпускными трубами, а вторые с ротационной воздуходувкой и воздушным фильтром, Z-образным ротором с элементами уплотнения, вставленным в цилиндр и выполненным заодно с валом, концы которого пропущены в отверстия передней и задней крышек, причем на противоположных концах ротора выполнено по два выступа в форме треугольников, обращенных своими вершинами в сторону, противоположную вращению ротора, двумя поршнями с элементами уплотнения, установленными по одному на противоположных сторонах ротора, каждый из которых выполнен в форме сегмента, обращенного своей сферической поверхностью к внутренней поверхности цилиндра, причем оба поршня установлены с возможностью вращения вместе с ротором и радиального перемещения, причем ротор и поршни размещены в поперечной плоскости относительно вала, кроме того, каждый поршень имеет выступ и наклонную направляющую, входящие соответственно в паз и наклонный канал ротора, а на задней поверхности каждого поршня закреплен палец, входящий в профилированный паз, выполненный на внутренней поверхности задней крышки, причем сферические и боковые поверхности поршней, зубчатые поверхности выступов ротора и внутренняя поверхность цилиндра образуют две камеры сгорания, имеющие форсунки, соединенные с системой питания, кроме того, на свободных концах вала установлены маховик и ротор ротационной воздуходувки, закреплены ведущие шестерни, входящие в зацепление с ведомыми шестернями привода насоса высокого давления, топливного масляного и водяного насосов, а на передней крышке закреплен стартер, шестерня которого взаимодействует с зубчатым венцом маховика.
Сущность изобретения поясняется чертежами, где на фигуре 1 изображен общий вид роторно-поршневого дизельного двигателя, на фигуре 2 - вид слева на роторно-поршневой дизельный двигатель, на фигуре 3 - вид справа на роторно-поршневой дизельный двигатель, на фигуре 4 - кинематическая схема двигателя, на фигуре 5 - поперечный разрез роторно-поршневого дизельного двигателя, на фигуре 6 - общий вид ротора, на фигуре 7 - вид на ротор слева, на фигуре 8 - вид на ротор сверху, на фигуре 9 - общий вид поршня, на фигуре 10 - вид на поршень слева, на фигуре 11 - вид на поршень сверху с частичным разрезом, на фигуре 12 - схема системы питания роторно-поршневого двигателя, на фигуре 13 - вид спереди на уплотнительные элементы ротора или поршня, на фигуре 14 - вид сзади на уплотнительные элементы, на фигуре 15 - вид сверху на уплотнительные элементы, на фигурах 16, 17, 18, 19 - схема работы роторно-поршневого двигателя.
Роторно-поршневой дизельный двигатель содержит цилиндр 1 с рубашкой охлаждения 2, размещенный горизонтально и выполненный заодно с фундаментальной рамой 3. Цилиндр закрыт передней 4 и задней 5 крышками, имеющими соответственно выпускные 6 и впускные 7 продувочные окна, первые из которых соединены с выпускными трубами 8, а вторые соединены с выпускными трубами 9 ротационной воздуходувки 10, впускная труба 11 которой связана с воздушным фильтром 12. Внутрь цилиндра вставлен Ζ-образный ротор 13 с элементами уплотнения, представляющими собой Г-образные пластины 14, установленные в пазах 15, и прижимаемые пружинами 16. Ротор выполнен заодно с валом 17, концы которого пропущены в отверстия передней и задней крышек. На обеих противоположных сторонах ротора установлены поршни 18, а на противоположных концах выполнено по два выступа 19 в форме треугольников, обращенных своими вершинами в сторону, противоположную вращению ротора. Поршни выполнены в форме сегментов, обращенных сферическими поверхностями к внутренней поверхности цилиндра и установленных с возможностью вращения вместе с ротором и одновременного перемещения в радиальном направлении. Каждый поршень имеет выступ 20 для лучшего уплотнения и наклонную направляющую 21, установленную под углом α к основанию поршня, равным 68 градусам, входящие соответственно в паз 22 и наклонный канал 23 ротора. В зависимости от положения ротора и поршней в цилиндре образуются две продувочные камеры 24 и две камеры сгорания 25. На задней боковой стороне каждого поршня закреплен палец 26, входящий в профилированный паз 27, выполненный на внутренней поверхности задней крышки цилиндра. Чтобы при движении поршней между их основаниями и сторонами ротора не возникало разрежения или повышенного давления, на задней крышке цилиндра выполнены каналы 28, сообщенные с атмосферой трубопроводом, не показанном на чертежах. Камеры сгорания имеют форсунки29, соединенные с системой питания, включающей в себя: топливный бак 30, топливный насос 31, топливный фильтр 32 и насос высокого давления 33 с ручкой 34 управления подачей топлива. Все узлы системы питания соединены между собой трубопроводами 35. Роторно-поршневой дизельный двигатель имеет стандартные системы запуска, охлаждения и смазки. На свободных концах вала установлены: маховик 36, зубчатый венец которого взаимодействует с шестерней 37 стартера 38, ротор 39 ротационной воздуходувки, ведущие шестерни 40,41, 42, входящие в зацепление с шестернями 43 привода насоса высокого давления, топливного, масляного 44, водяного 45 насосов и генератора электрического тока 46.
Работа роторно-поршневого двигателя
После проверки исправности роторно-поршневой дизельный двигатель запускается стартером 38, шестерня 37 которого входит в зацепление с зубчатым венцом маховика 36 и начинает вращать вал 17, после чего работает следующим образом. В исходном положении (фиг.18) ротор 13 занимает вертикальное положение. Поршни 13 сдвинуты до конца к ротору 13. Впускные окна 7 и выпускные окна 6 открыты. Воздух через воздушный фильтр 12 засасывается из атмосферы ротационной воздуходувкой 10 и через впускные окна 7 подается во впускные камеры 24, где он вытесняет отработанные газы через выпускные окна 6 и выпускные трубы 8 в атмосферу, заполняя впускные камеры 24 чистым воздухом. Далее ротор 13 поворачивается в направлении, показанном стрелкой (фиг.19). При этом впускные 7 и выпускные 6 окна закрываются, чистый воздух перемещается в камеру сгорания 25. Одновременно с этим воздух начинает сжиматься поршнями 18, которые начинают перемещаться в сторону от оси вращения ротора 13 за счет перемещения пальцев 26 по профилированному пазу 27. За 10-15 градусов поворота вала 17 через форсунки 29 в камеры сгорания 25 насосом высокого давления 33 впрыскивается топливо. Как только ротор 13 займет положение, показанное на фигуре 16, топливо воспламеняется и образовавшиеся газы производят давление на сферические поверхности и торцовые участки поршней 18, а также на площадки выступов 19 ротора 13. При этом силы F и F1 создают пару сил и приводят ротор 13 во вращение, силы F2 и F3, действующие на сферические поверхности поршней не мешают вращению ротора потому, что направление действия этих сил проходит через центр вращения и не создает пары сил (на фигуре 16 показано пунктиром). Силы F4 и F5 в начале рабочего хода будут уравновешивать друг друга потому, что площади, на которые они действуют, равны. Но при повороте ротора 13 поршни 18 станут приближаться к ротору и сила F5 станет уменьшаться, так как площадь, на которую она действует, уменьшается. С другой стороны, сила F4 будет не уравновешена и станет увеличивать давление газов на ротор, повышая крутящий момент. Достигнув положения, показанного на фигуре 17, ротор 13 и поршни 18 станут открывать впускные 7 и выпускные 6 окна, и процесс начнется сначала. Таким образом за один оборот вала 17 будет происходить четыре рабочих хода. Регулирование мощности и частоты вращения осуществляется путем изменения величины подачи топлива за счет ручки 34.
Положительный эффект: более высокий КПД, большая мощность и крутящий момент при меньших размерах, упрощение конструкции, уменьшение веса двигателя, снижение вибрации из-за отсутствия неуравновешенных вращающихся масс.
Роторно-поршневой дизельный двигатель, содержащий фундаментальную раму, цилиндр с рубашкой охлаждения, крышки цилиндра, форсунки, вал, поршни, вставленные в цилиндр, ротационную воздуходувку, маховик, системы: питания, охлаждения, смазки и запуска, механизмы управления, отличающийся тем, что цилиндр размещен горизонтально, выполнен заодно с фундаментальной рамой и закрыт передней и задней крышками, имеющими соответственно выпускные и впускные продувочные окна, расположенные соосно друг другу, первые из которых соединены с выпускными трубами, а вторые с ротационной воздуходувкой и воздушным фильтром, причем внутрь цилиндра вставлен Z-образный ротор с элементами уплотнения, выполненный заодно с валом, концы которого пропущены в отверстия передней и задней крышек, причем на противоположных концах ротора выполнено по два выступа в форме треугольников, обращенных своими вершинами в сторону, противоположную вращению ротора, кроме того, на противоположных сторонах ротора установлено по одному поршню с элементами уплотнения, каждый из которых выполнен в форме сегмента, обращенного своей сферической поверхностью к внутренней поверхности цилиндра, причем оба поршня установлены с возможностью вращения вместе с ротором и радиального перемещения, причем ротор и поршни размещены в поперечной плоскости относительно вала, кроме того, каждый поршень имеет выступ и наклонную направляющую, входящие соответственно в паз и наклонный канал ротора, а на задней поверхности каждого поршня закреплен палец, входящий в профилированный паз, выполненный на внутренней поверхности задней крышки, причем сферические и боковые поверхности поршней, зубчатые поверхности ротора и внутренняя поверхность цилиндра образуют две камеры сгорания, имеющие форсунки, соединенные с системой питания, кроме того, на свободных концах вала установлены маховик и ротор ротационной воздуходувки, закреплены ведущие шестерни, входящие в зацепление с ведомыми шестернями привода насоса высокого давления, топливного, масляного и водяного насосов, а на передней крышке закреплен стартер, шестерня которого взаимодействует с зубчатым венцом маховика.
www.findpatent.ru
Механизм работы Роторного Дизельного Мотора:
Роторный Дизельный двигатель (РДД) работает последующим образом (описываемые ниже процессы происходят сразу в 2-ух рабочих полостях. Фиг1.):
При вращении ротора 3 поршень 4, делая поворот на пальце 5 от воздействия центробежной силы, своим наконечником 8 скользит по внутренней поверхности корпуса 1, хвостовиком всегда оставаясь в пазу ротора, и так разделяет рабочую полость 2 на подпоршневое и надпоршневое место. В момент прохождения наконечником поршня 8 выпускного окна 6 камеры сгорания 9, клапан 7 открывает окно 6, и газы от спаленной консистенции под огромным давлением поступают в надпоршневое место, толкают поршень 4, создавая вращающий момент на роторе, другими словами совершая "рабочий ход."Во время рабочего хода в подпоршневом пространстве осуществляется сжатие свежайшего заряда воздуха, набранного в рабочую полость в прошлом цикле. Тогда, когда давление сжимаемого заряда превзойдет давление в надпоршневом пространстве и камере сгорания, автоматом раскрывается впускной клапан 10 и заряд заполняет камеру сгорания 9. Сразу с открытием клапана 10 (либо незначительно ранее) выпускной клапан 7 принудительно запирается. При прохождении наконечником поршня зоны впускного окна 11 камеры сгорания 9, клапан 10 от возникающего перепада давления (и под воздействием пружины клапана) автоматом запирается, герметизируя окно, при всем этом выступающая часть клапана заходит в полость окна, понижая объём «мёртвой зоны». В это время клапан 12 открывает выхлопное окно 13, и переработанные газы с остаточным давлением около 5 атмосфер поступают на лопасти турбины наддува, устанавливаемой в подшипниках на выходном валу.
Таким макаром, за пол-оборота ротора каждый поршень выполнил такт «рабочий ход» и такт «сжатие заряда».
Продолжая вращение, поршень перебегает в последующую рабочую полость и собственной внутренней поверхностью теснит выхлопные газы, давление которых к этому времени понижается до атмосферного, при всем этом в момент прохождения наконечником зоны впускного окна 15, раскрывается клапан 14 и рабочая полость заполняется зарядом свежайшего воздуха поступающего из турбины наддува. При прохождении наконечником зоны выхлопного окна 13 оно запирается клапаном 12, а впускной клапан 14 закрывает окно 15 в зоне выхода наконечника из рабочей полости. Момент впрыска горючего через форсунку 16 находится в зависимости от скорости вращения ротора и рассчитывается так, чтоб к моменту подхода наконечника к выпускному окну 6 камеры сгорания9 всё горючее успело сгореть, и давление газов было наибольшим. Дальше наконечник снова перемещается в последующую рабочую полость и описанный чуть повыше цикл повторяется.
Таким макаром, за 2-ые пол-оборота ротора каждый поршень выполнил такт «выброс» отработанных газов и такт «всасывание» свежайшего заряда.
На Фиг.1 не показана система управления клапанами, охлаждающая система мотора, турбина наддува и т. д. чтоб не загромождать чертёж.
ctirling.ru
Изобретение относится к двигателестроению, в частности к роторным двигателям внутреннего сгорания. Изобретение направлено на повышение кпд, мощности, надежности и экологической чистоты двигателя. Роторный дизельный двигатель внутреннего сгорания содержит неподвижный корпус с двумя диаметрально симметричными профилированными рабочими полостями, выходной вал, жестко связанный с цилиндрическим ротором, имеющим два профильных паза, в которых на осях, параллельных оси вращения ротора, закреплены поршни, совершающие качающие движения, две торцевые крышки, в одной из которых выполнены два окна, сопряженных с началом каждой рабочей полости для всасывания заряда воздуха, и два окна, сопряженных с концом каждой рабочей полости для выхлопа отработанных газов. Две камеры сгорания, каждая из которых имеет вид двух сопряженных цилиндрических полостей, расположены в корпусе двигателя параллельно оси вращения ротора так, что каждое из их впускных окон прямоугольной формы сопряжено с концом одной рабочей полости, а каждое из их выпускных окон сопряжено с началом другой рабочей полости. Каждое впускное окно со стороны камеры сгорания закрывается клапаном, имеющим форму изогнутой пластины, которая своей цилиндрической поверхностью сопрягается без зазора с цилиндрической поверхностью камеры сгорания вокруг окна, а своей выступающей частью входит с зазором в полость окна путем поворота на оси, параллельной оси цилиндрической полости камеры сгорания и смещенной к ее стенке. Каждое выпускное окно перекрывается клапаном, имеющим вид двух диаметрально симметричных сегментов цилиндра, снабженных уплотнительными элементами, конструкция которых обеспечивает сопряжение без зазора с поверхностью камеры сгорания, путем поворота на оси вращения, совмещенной с осью цилиндрической части камеры сгорания, в которой он расположен. 1 з.п. ф-лы, 4 ил.
Изобретение относится к двигателестроению, в частности к двигателям внутреннего сгорания роторного типа.
Известен роторный двигатель, содержащий корпус с профилированной рабочей поверхностью, торцевые крышки, выходной вал, цилиндрический ротор с пазами, в которых на осях установлены поршни, контактирующие с поверхностью корпуса и образующие надпоршневые и подпоршневые объемы, причем камеры сгорания находятся внутри поршней и снабжены перепускным клапаном с обратным клапаном, систему газообмена с окнами в торцевой крышке и свечами зажигания с возможностью сообщения окон с подпоршневыми объемами, а свечей - с камерами сгорания (а.с. СССР №1017803, опубл. 15.05.1983 г.).
Недостатками этого двигателя являются невысокий кпд, сложность конструкции, ненадежность в работе. Причинами являются небольшая степень сжатия заряда, низкая технологичность конструкции из-за наличия внутренних полостей и расположения в них сборных элементов, наличия пружин в зоне с высокой температурой.
Известен роторный двигатель, содержащий корпус с профилированной рабочей поверхностью, цилиндрический ротор, установленный на валу и снабженный качающимися поршнями, в которых расположены камеры сгорания с подпружиненными обратными клапанами. Торцевые крышки имеют впускные отверстия с диффузорами, через которые воздух попадает в подпоршневое пространство, и выпускные отверстия для отработанных газов (патент РФ №2068106, опубл. 20.10.1996 г. - прототип).
Двигатель работает таким образом, что при вращении ротора всасывание заряда происходит в подпоршневое пространство при выходе поршня из паза ротора, сжатие и перепуск заряда в камеру сгорания - при входе поршня в паз ротора, затем его воспламенение, после чего при выходе поршня из паза ротора происходит рабочий ход.
Недостатками этого двигателя являются отсутствие клапана, закрывающего впускное отверстие, что приведет к выталкиванию заряда обратно вместо его сжатия, отсутствие внешнего воспламенения, без которого двигатель не будет работать, так как получаемая в нем степень сжатия заряда недостаточна для его самовоспламенения, сложность конструкции и ее нетехнологичность из-за наличия в роторе и поршнях внутренних полостей и расположенных в них деталей, а также наличия пружины в камере сгорания.
Техническим результатом данного изобретения является увеличение кпд и снижение уровня токсических веществ в выхлопных газах, повышение надежности работы и улучшение технологичности конструкции, увеличение моторесурса.
Этот результат достигается тем, что в роторном дизельном двигателе внутреннего сгорания, содержащем неподвижный корпус с двумя диаметрально симметричными профилированными рабочими полостями, выходной вал, жестко связанный с цилиндрическим ротором, имеющим два профильных паза, в которых на осях, параллельных оси вращения ротора, закреплены поршни, совершающие качающие движения, две торцевые крышки, в одной из которых выполнены два окна, сопряженных с началом каждой рабочей полости для всасывания заряда воздуха, и два окна, сопряженных с концом каждой рабочей полости для выхлопа отработанных газов, две камеры сгорания, каждая из которых имеет вид двух сопряженных цилиндрических полостей, расположены в корпусе двигателя параллельно оси вращения ротора так, что каждое из их впускных окон прямоугольной формы сопряжено с концом одной рабочей полости, а каждое из их выпускных окон сопряжено с началом другой рабочей полости, причем каждое впускное окно со стороны камеры сгорания закрывается клапаном, имеющим форму изогнутой пластины, которая своей цилиндрической поверхностью сопрягается без зазора с цилиндрической поверхностью камеры сгорания вокруг окна, а своей выступающей частью входит с зазором в полость окна путем поворота на оси, параллельной оси цилиндрической полости камеры сгорания и смещенной к ее стенке, а каждое выпускное окно перекрывается клапаном, имеющим вид двух диаметрально симметричных сегментов цилиндра, снабженных уплотнительными элементами, конструкция которых обеспечивает сопряжение без зазора с поверхностью камеры сгорания путем поворота на оси вращения, совмещенной с осью цилиндрической части камеры сгорания, в которой он расположен.
Может иметься механизм изменения степени сжатия, состоящий из болвана, вводимого в камеру сгорания, и привода для его введения.
Конструкцией двигателя обеспечивается высокая геометрическая степень сжатия заряда воздуха и возможность ее изменения во время работы путем уменьшения объема камеры сгорания введением в нее конструктивного элемента - "болвана" с помощью специального привода. Геометрическая форма болвана может быть любой, а направление введения либо вдоль оси клапана со стороны крышки, либо перпендикулярно оси в подклапанное пространство через корпус двигателя. Расчетная геометрическая степень сжатия заряда воздуха (без учета повышения давления турбиной наддува) составляет 15,7, а при полностью введенном в камеру сгорания болване - 23 и может быть изменена на стадии проектирования. При введенном болване двигатель гарантированно запускается и в дальнейшем надежно работает в различных вариантах (с турбиной или без турбины, с болваном или без него) в зависимости от необходимой мощности или в случае поломки. Расчет показал, что крутящий момент двигателя на 40% превышает крутящий момент кривошипно-шатунного двигателя применительно к одному поршню при равных условиях (одинаковый объем рабочей камеры, одна степень сжатия, один тип горючего) за один рабочий ход. Остаточное давление выхлопных газов используется для вращения турбины наддува, сидящей на валу в подшипниках и не использующей его энергию. Сгорание топлива происходит наиболее полно, так как осуществляется в камере постоянного объема, при этом обеспечивается необходимое время для его полного сгорания и необходимый коэффициент избытка воздуха. Потери тепла в камере сгорания и связанное с ними снижение давления будут меньшими, чем в даже наиболее распространенных двигателях с кривошипно-шатунным механизмом, так как соотношение объема камеры и ее площади поверхности является лучшим. Выходной вал с ротором не испытывают радиальных нагрузок от давления газов, так как синхронная работа двух поршней их взаимно нейтрализует. Это позволяет применить подшипники качения, что снижает силу трения в посадочных узлах. Для снижения трения смазка подведена непосредственно в зону контакта поршней с корпусом и ротора с корпусом, одновременно осуществляя их охлаждение. Важное отличие двигателя от аналогов состоит в том, что он работает в дизельном режиме с внутренним смесеобразованием при впрыске топлива непосредственно в камеру сгорания.
Сущность изобретения поясняется чертежами, где на фиг.1 показан разрез двигателя, на фиг.2 - впускной клапан камеры сгорания в разрезе, на фиг.3 - выпускной клапан камеры сгорания в разрезе, на фиг.4 показан поршень.
Сущность изобретения: роторный двигатель внутреннего сгорания содержит неподвижный корпус 1, имеющий две профилированные рабочие полости 2, две камеры сгорания 9, выполненные в теле корпуса и расположенные диаметрально симметрично между рабочими полостями, и снабженный каналами 17 для охлаждающей жидкости. Цилиндрический ротор 3 с жестко связанным с ним выходным валом. Ротор имеет два профилированных паза, в которых расположены поршни 4, связанные с ротором пальцами 5 и имеющие возможность совершать качательные движения во время вращения ротора, при этом всегда находясь в контакте с корпусом 1 своими наконечниками 8. Ротор и поршни имеют каналы 19 для подвода смазки. Камеры сгорания имеют впускные 11 и выпускные 6 окна, соединяющиеся с рабочими полостями и перекрываемые клапанами, а также форсунки 16 для подачи топлива. В одной из двух торцевых крышек выполнены окна с клапанами для всасывания заряда воздуха и выпуска отработанных газов и отверстия для введения в камеры сгорания болванов 18. Турбина наддува приводится во вращение энергией выхлопных газов.
Двигатель работает следующим образом (описываемые ниже процессы происходят одновременно в двух рабочих полостях). При вращении ротора 3 поршень 4, поворачиваясь на пальце 5 от воздействия центробежной силы, своим наконечником 8 скользит по внутренней поверхности корпуса 1, хвостовиком всегда оставаясь в пазу ротора, и так делит рабочую полость на подпоршневое и надпоршневое пространства. В момент прохождения наконечником поршня 8 выпускного окна 6 камеры сгорания 9 клапан 7 открывает окно 6, и газы от сгоревшей смеси под большим давлением поступают в надпоршневое пространство, толкают поршень 4, создавая крутящий момент на роторе, то есть совершая рабочий ход. Во время рабочего хода в подпоршневом пространстве осуществляется сжатие свежего заряда воздуха, набранного в рабочую полость в предыдущем цикле. В тот момент, когда давление сжимаемого заряда превысит давление в надпоршневом пространстве и камере сгорания, автоматически открывается впускной клапан 10, и заряд заполняет камеру сгорания 9. Одновременно с открытием клапана 10 выпускной клапан 7 принудительно закрывается, и во время его закрытия происходит частичная продувка камеры сгорания от выхлопных газов. При прохождении наконечником поршня 8 зоны впускного окна 11 камеры сгорания 9 клапан 10 от возникающего перепада давления автоматически закрывается, герметизируя окно, при этом выступающая часть клапана входит в полость окна, уменьшая объем «мертвой зоны». В это же время клапанами 12 открываются выхлопные окна 13, и отработанные газы с остаточным давлением около пяти атмосфер поступают на лопасти турбины наддува, установленной в подшипниках на выходном валу. Таким образом, за пол-оборота ротора каждый поршень осуществил такт рабочего хода и такт сжатия заряда воздуха. Продолжая движение, поршень переходит в следующую рабочую полость, где своей внутренней поверхностью вытесняет выхлопные газы, давление которых к этому времени снижается до атмосферного, при этом в момент прохождения наконечником 8 зоны впускного окна 15 открывается клапан 14, и рабочая полость заполняется зарядом свежего воздуха, поступающего из турбины наддува. При прохождении наконечником 8 зоны расположения выхлопного окна 13 оно закрывается клапаном 12, а впускной клапан 14 закрывается в зоне выхода наконечника 8 из рабочей полости. В это же время происходит впрыск топлива через форсунку 16, точный момент впрыска зависит от скорости вращения ротора и рассчитывается так, чтобы к моменту подхода наконечника 8 к выпускному окну 6 камеры сгорания 9 все топливо успело сгореть и давление газов было максимальным. Далее наконечник 8 опять перемещается в следующую рабочую полость, и описанный цикл повторяется.
Таким образом, за вторые пол-оборота ротора каждый поршень осуществил такт выхлопа отработанных газов и такт всасывания свежего заряда. Введение болвана 18 в камеру сгорания 9 осуществляется своим приводом и не зависит от фазы цикла.
1. Роторный дизельный двигатель внутреннего сгорания, содержащий неподвижный корпус с двумя диаметрально симметричными профилированными рабочими полостями, выходной вал, жестко связанный с цилиндрическим ротором, имеющим два профильных паза, в которых на осях, параллельных оси вращения ротора, закреплены поршни, совершающие качающие движения, две торцевые крышки, в одной из которых выполнены два окна, сопряженных с началом каждой рабочей полости для всасывания заряда воздуха, и два окна, сопряженных с концом каждой рабочей полости для выхлопа отработанных газов, отличающийся тем, что две камеры сгорания, каждая из которых имеет вид двух сопряженных цилиндрических полостей, расположены в корпусе двигателя параллельно оси вращения ротора так, что каждое из их впускных окон прямоугольной формы сопряжено с концом одной рабочей полости, а каждое из их выпускных окон сопряжено с началом другой рабочей полости, причем каждое впускное окно со стороны камеры сгорания закрывается клапаном, имеющим форму изогнутой пластины, которая своей цилиндрической поверхностью сопрягается без зазора с цилиндрической поверхностью камеры сгорания вокруг окна, а своей выступающей частью входит с зазором в полость окна путем поворота на оси, параллельной оси цилиндрической полости камеры сгорания и смещенной к ее стенке, а каждое выпускное окно перекрывается клапаном, имеющим вид двух диаметрально симметричных сегментов цилиндра, снабженных уплотнительными элементами, конструкция которых обеспечивает сопряжение без зазора с поверхностью камеры сгорания путем поворота на оси вращения, совмещенной с осью цилиндрической части камеры сгорания, в которой он расположен.
2. Двигатель по п.1, отличающийся тем, что имеется механизм изменения степени сжатия, состоящий из болвана, вводимого в камеру сгораниями, и привода для его введения.
bankpatentov.ru
Страница 1 из 2
«…Эй, ямщик, поворачивай к черту!Новой дорогой поедем домой!...»Г.Сукачев. «Дорожная»
В первй части , размещенной здесь, я попытался рассмотреть основные принципы работы и классификационные признаки тепловых двигателей вообще, и двигателей внутреннего сгорания в частности, поскольку в современном нам мире именно ДВС во всех его проявлениях является основой, «рабочей лошадкой» любой мобильной техники – от и до.
Соответственно, наличие на инженерном мобильном сооружении – не важно, танк ли это, автомобиль или что-то другое – более совершенного, чем у супостата, двигателя позволяет конструкторам получить преимущество в одном из решающих факторов простого с виду уравнения «вооружение/подвижность/защищенность».
В части 1. выведены несколько направлений, позволяющих в частности повысить агрегатную мощность поршневых ДВС. Это:1 Увеличение рабочего объема двигателя. 2 Увеличение степени сжатия. 3 Уменьшение механических потерь. 4 Оптимизация процессов горения смеси. 5 Увеличение наполнения цилиндров.
Но поршневые ДВС – это не предел совершенства, хотя за многие десятилетия основы их конструирования вылизаны, поставлены на серьезнейшую научно-техническую основу и проверены опытом. Однако, поршневые двигатели практически достигли вершины своего совершенства, и дальнейшее их развитие уже не может дать того качественного, скачкообразного эффекта, который позволил бы получить решающее, качественное преимущество. Как классический пример, можно привести замену поршневых ДВС в авиации на двигатели реактивные, в конечном итоге изменившую лицо авиатехники кардинально и позволившую выйти на качественно новые уровни и горизонты развития. Казалось бы, с наземной техникой все должно быть еще проще – земля не воздух, нет такой категорической жесткости условий и требований, как в авиации.Казалось бы…
По словам Аганова,статья которого и послужила своеобразным «детонатором» к этому материалу, «…Ведущими в этой области являются США и Германия. Большая работа по разработке и совершенствованию двигателей проводится и в Великобритании.». Что ж. Попробуем посмотреть внимательно.
В настоящее время реально существуют несколько типов ДВС, могущих составлять друг другу конкуренцию – это:Классические ДВС - это все разновидности кривошипно-шатунных двигателей.Газотурбинные ДВСРоторно-поршневые и роторные ДВС.
Среди конструкторов-двигателистов идёт конкурентная борьба за каждую долю процента в улучшении технических характеристик двигателей, но надо признать, что предел совершенства ДВС практически достигнут, рост качественных показателей прекратился, конструкторы толкают двигателестроение на экстенсивный путь развития. А именно на производство высокооборотных турбированных ДВС, а среди них лучшим считают тот, который "сожжёт больше топлива в единицу времени" для увеличения показателя мощности в ущерб КПД. Результатом такого "развития" будет комплекс эксплуатационных и технико-экономических проблем.
Роторный дизельный двигатель задумывался прежде всего для получения большего КПД термодинамического цикла, то есть качественного показателя, и уже на его основе получения лучших технических и экономических характеристик. Иными словами целью являлось создание двигателя, производящего больше полезной работы при сжигании равного количества топлива в сравнении с другими ДВС. И вот этот важнейший показатель у РДД почти на 40% выше, к тому же благодаря своим конструктивным особенностям работает двигатель на оборотах в два с лишним раза меньших, чем у кривошипно-шатунных двигателей.
Таким образом, преимущества роторного дизельного двигателя внутреннего сгорания перед применяемым в настоящее время кривошипно-шатунным двигателем являются настолько очевидными, что позволяют предположить занятие им в скором времени доминирующего положения среди двигателей этого класса.
Здесь стоит напомнить, что еще лет 25–30 назад Советский Союз лидировал в области создания двигателей. Безусловно, это происходило благодаря большому перекосу в области финансирования военной техники. Неудивительно, что до сих пор некоторые образцы двигателей для самолетов, вертолетов и танков считаются если не самыми лучшими в мире, то по крайней мере не уступают мировым аналогам.
Далее последовал распад СССР и разрушение десятилетиями наработанных между предприятиями связей. Да и сами предприятия оказались по разные стороны новых границ. Конечно, в нулевые годы в стране наметился экономический рост, некоторые предприятия общего машиностроения получили определенные возможности развития и роста, однако в области двигателестроения ситуация осталась весьма сложной. Это связано с тем, что создание современного образца двигателя (будь то поршневой ДВС или ГТД) требует серьезных вложений в НИОКР, в технологическое оборудование, в создание новых материалов. Все это в совокупности приводит к увеличению сроков окупаемости проекта. А собственники предприятий – многие из них, безусловно, хорошие экономисты – не готовы вкладывать деньги в проекты, срок окупаемости которых более чем 2,5 года. Окупить создание современного двигателя за такой срок – нереально. С другой стороны, сейчас в мире проекты по разработке наукоемкой продукции наиболее интересны для инвесторов, так как именно подобные проекты при относительно невысоких рисках имеют максимальную добавленную стоимость. Как и всегда, задача государства как регулятора процессов, протекающих в экономике, – создать эти условия для собственников и инвесторов, чтобы заниматься разработкой такой наукоемкой продукцией, как современный двигатель.
Но вернусь «к заклёпкам». Первый двигатель внутреннего сгорания изобретен в 1765 году. Вначале без сжатия смеси перед зажиганием, потом с сжатием, после чего конструкция ДВС практически не менялась. Причем КПД тоже остался на почти таком же уровне (максимальный теоретический уровень КПД 70%, реально же в четырехтактных не более 35%-42%, а в дизелях 41%-52%).
Основным параметром любого двигателя является удельная мощность, т.е. сколько килограмм массы двигателя соответствует каждому киловатту (кВт) выдаваемой им мощности. Например, для четырехтактных (обычный автомобильный двигатель) удельная мощность не более 1кВт/кг (1 л.с. равняется 736 Вт), т.е. для того чтобы получить мощность 20 л.с., сам двигатель будет весить не менее 20 кг. Естественно, с повышением степени форсировки удельная мощность будет возрастать, но до определенного предела, увеличивая при этом напряженность агрегата со всеми вытекающими последствиями.
Наименьшей удельной мощностью (т.е. для создания мощности 20 л.с. такие двигатели окажутся самыми тяжелыми) обладают четырехтактные двигатели - около 1 кВт/кг, двухтактные , очень грубо говоря, в 2 раза лучше - до 2 кВт/кг (т.к. каждый второй ход поршня является "рабочим", в отличие от четырехтактных, где только каждый четвертый), но из-за конструктивных особенностей (худший режим процесса сгорания, меньшая степень сжатия и т.д.) двухтактники потребляют больше топлива. Т.е. двухтактный двигатель мощностью 20 л.с. в 2 раза легче четырехтактного такой же мощности, но топлива потребляет немного больше. Еще лучше по показателю масса/мощность роторно-поршневой двигатель (двигатель Ванкеля), но у него ресурс довольно мал, топлива потребляет больше четырехтактника (а вот меньше или больше двухтактного, зависит от многих факторов – схемы продувки, коэффициента зарада, наличия надувочного ресивера, степеней ГТН и проч), да к тому же сам является четырехтактным с не самой оптимальной камерой сгорания. Ну и самыми лучшими являются газотурбинные двигатели (ГТД). На каждый килограмм массы двигателя они выдают до 6 кВт, т.е. двигатель мощностью 20 л.с. будет весить всего 3.3 кг (вместо 20 кг для четырехтактного!). Но эти двигатели имеют свои врожденные пороки и недостатки – от наименьшего ресурса до наихудшей экономичности.
Таким образом, самый перспективный двигатель - это двигатель, использующий силу давления расширяющегося газа до полного его расширения (при этом предварительно топливная смесь сжимается перед зажиганием), а не тот что использует давление струи газа на лопасти турбины, пусть даже и с ротором активно-реактивного типа (турбина Парсонса с дополнительным расширением газов в аппарате лопаток ротора). Следовательно, наиболее перспективным ДВС на обозримое будущее для наземной боевой техники можно считать именно многотопливный РДД, выполненный на принципах роторно-поршневого двигателя Ванкеля, на котором остановлюсь чуть подробнее.
Роторно-поршневой двигатель Ванкеля изобретен в 1957 году. Это четырехтактный двигатель (только каждый четвертый ход "рабочий"), в котором ротор, напоминающий треугольник, вращается через планетарную передачу, попеременно увеличивающий и уменьшающий объем камеры между ротором и стенками (статором). Достоинства: более простая конструкция (требует на 35..40% меньше деталей, чем обычный двигатель), почти в 2 раза меньший вес при одинаковой мощности, более компактный, практически без вибраций. Недостатки: малый ресурс из-за плохих материалов уплотнения, больше расход топлива, непростое вращательное движение (сам Ванкель был недоволен планетарной концепцией и до конца жизни искал более простой вариант).
За рубежом некоторые фирмы оснащали серийный машины роторно-поршневым двигателем, у нас ВАЗ выпускал двигатели Ванкеля мощностью 40 л.с. и оснащал им некоторые модели "классики", а в конце 90-х пустил в предсерию роторный дизельный двигатель эффективной мощностью в 247 КВт с керамическими составляющими элементов уплотнений, но по вполне понятным любому россиянину причинам проект был похоронен, а сам выпуск двигателей прекращен.
А вот еще одна отечественная разработка, имеющая место быть в металле, разработка инженера В.И.Соколова, выполненная фирмой «Двигатель» под девизом Тепловой двигатель с круговым поступательным движением кольцевого поршня".
Кроме того, одновременно с Ванкелем другой инженер, Баландин, предложил свою версию "Бесшатунника", в котором улучшились условия работы поршня, резко увеличился ресурс пары трения "поршневое кольцо - гильза цилиндра", но при этом слабым местом с точки зрения надежности оказался механизм преобразования линейного движения во вращательное.
Говоря об отечественных разработках в области перспективных ДВС невозможно не говорить о роторном двигателе НЕПРЕРЫВНОГО ГОРЕНИЯ того же Баландина, построенного под девизом «Демиург №1» в 1998-м году.
В этом двигателе камеры сжатия, сгорания и расширения рабочей смеси разнесены в пространстве, а процессы сжатия, сгорания и расширения совмещены во времени, что обеспечивает непрерывность сжигания рабочей смеси и, соответственно, дает возможность повысить удельную мощность.В рабочей модели двигателя массой 4 кг мощность на рабочем режиме составляет 23 кВт. Это на уровне лучших ТРД, при этом расход топливной смеси ориентировочно 57 г/сек. Однако, наиболее перспективным и реалистичным образцом роторного ДВС является двигатель, спроектированный и построенный в Новосибирске конструкторским коллективом под руководством Е.Горлова, А.Коньшинова и В.Спичкина. Двигатель позиционируется, как «Роторно-Винтовой ДВС», испытания его прошли настолько успешно, что после краткой публикации в журнале «Двигатель» от 2000-го года, информация об этой разработке практически полностью исчезла из открытых источников, что подтверждает его работоспособность и перспективность.
В данной конструкции процесс сжатия смеси (воздуха или смеси воздуха и топлива) и сгорания происходит в подобии турбины, выполненной из элементов со сложной вогнутой конической сферовинтовой поверхностью. В такой турбине небольшие замкнутые объемы перемещаются вдоль оси двигателя слева направо. В левой части при перемещении этих объемов они уменьшаются (происходит сжатие топливной смеси), в центре топливо поджигается, и дальше движется направо по расширяющимся объемам.
Преимущество такого двигателя перед ТРД в том, что в сжимающихся/расширяющихся изолированных объема можно "снять" больше энергии с топлива, чем в случае "удара" сильной струи раскаленного газа в обычную турбину. Кроме того, доступна меньшая частота оборотов вала, а следовательно, уменьшаются потери на редукторе (по сравнению с ТРД, где турбина может вращаться с частотой вплоть до 100000 об/мин и более, а на выходе необходимо 500...3000 об/мин).
К достоинствам. конструкции винтового ДВС перед осепоршневым следует отнести следующие: отсутствие трения скольжения; теоретически неограниченную степень сжатия компрессора и, соответственно, степень расширения турбины; широкий рабочий диапазон оборотов двигателя, возможность работы при высокой частоте вращения; простоту конструкции; отсутствие несбалансированных масс, низкий уровень шума; небольшие массу и габариты; возможность работы на любых видах жидких и газообразных топлив; возможность введения в зону горения реагентов для улучшения характеристик; высокую удельную мощность и коэффициент полезного действия двигателя.
Проведенные расчеты показали, что шестикамерный ДВС со степенью сжатия-расширения 20, при работе на смеси метан-воздух развивает мощность до 125 кВт при частоте вращения выходного вала 7000 об/мин. При этом его длина составляет 460 мм, максимальный диаметр по турбине - 199 мм, а к.п.д. лежит в пределах 60…70 %. Недостатком является сложность технологии изготовления элементов (из-за материала и требуемой точности).
ПерваяПредыдущая 1 2 Следующая > Последняя >>www.dogswar.ru
Он открыл в городе Гейдельберге собственную мастерскую, а в 1927 году появились на свет чертежи «машины с вращающимися поршнями» (на немецком языке сокращенно DKM). Первый патент DRP 507584 Феликс Ванкель получил в 1929 году, а в 1934 году подал заявку на двигатель DKM. Правда, патент он получил через два года. Тогда же, в 1936 году, Ванкель обосновывается в Линдау, где размещает свою лабораторию.Феликс ВанкельПотом перспективного конструктора заметила власть, и работы над DKM пришлось оставить. Ванкель работал на BMW, Daimler и DVL, основные авиамоторостроительные предприятия фашистской Германии. Так что не удивительно, что до наступления 1946 года Ванкелю пришлось сидеть в тюрьме, как пособнику режима. Лабораторию в Линдау вывезли французы, и Феликс попросту остался ни с чем.
Лишь в 1951 году Ванкель устраивается на работу в мотоциклетную фирму – уже широко известный тогда NSU. Восстанавливая лабораторию, он заинтересовал Вальтера Фройде, конструктора гоночных мотоциклов своими конструкциями. Вместе Ванкель и Фройде продавили проект в руководстве, и разработка двигателя резко ускорилась. 1 февраля 1957 года заработал первый роторный двигатель DKM-54. Он работал на метаноле, но к июню проработавший 100 часов на стенде двигатель перевели на бензин.
Принципы работы роторного двигателяЦикл двигателя Ванкеля Но тут Фройде предложил новую концепцию роторного двигателя! В двигателе Ванкеля (DKM) ротор вращался вокруг неподвижного вала вместе с камерой сгорания, чем обеспечивалось отсутствие вибраций. Вальтер решил камеру сгорания зафиксировать, а ротор пусть будет приводить в движение вал, то есть использовать принцип двойственности вращения для роторного двигателя. Такой тип роторного двигателя получил обозначение KKM. Принцип двойственности вращения сам Ванкель запатентовал в 1954, но он всё-таки использовал принцип DKM. Надо сказать, что Ванкелю идея такой инверсии не нравилась, но он ничего не мог поделать – у двигателя его любимого типа DKM обслуживание было трудоёмким, чтобы сменить свечи, требовалась разборка мотора. Так что двигатель типа KKM имел гораздо больше перспектив. Его первый образец закрутился 7 июля 1958 года (правда, на нем ещё в роторе стояли свечи, как на DKM). Впоследствии свечи перенесли на корпус двигателя, и он обрёл свой облик, принципиально не менявшийся до наших дней. Теперь по этой схеме устроены все роторные двигатели. Иногда их называют «ванкелями», в честь разработчика.
В таком двигателе роль поршня играет сам ротор. Цилиндром служит статор, имеющий форму эпитрохоиды, и когда уплотнения ротора двигаются по поверхности статора, образуются камеры, в которых происходит процесс сгорания топлива. За один оборот ротора такой процесс происходит трижды, а благодаря сочетанию форм ротора и статора число тактов такое же, как у обычного ДВС: впуск, сжатие, рабочий ход и выпуск. Анимацию работы роторного двигателя можно посмотреть здесь.
У роторного двигателя нет системы газораспределения – за газораспределительный механизм работает ротор. Он сам открывает и закрывает окна в нужный момент. Еще ему не нужны балансирные валы, двухсекционный двигатель по уровню вибраций можно сравнить с многоцилиндровыми ДВС. Так что идея роторного двигателя в конце пятидесятых казалась ступенькой для автомобилестроения в светлое будущее. Вот повтор видео работы двигателя, которое было в другой статье о роторном двигателе.В серию!
NSU Spider Послевоенная Германия начинала потихоньку богатеть, и автомобили расходились всё лучше и лучше. Фирма NSU работала на этом фронте, и ключевым моментом её модельной гаммы должны были быть двигатели Ванкеля. Уже с 1958 года шли работы по созданию автомобиля с роторным двигателем, и в 1960 году он был показан публике на конференции немецких конструкторов в Мюнхене. Машина под названием NSU Spider оснащалась двигателем Ванкеля, развивавшим 54 л.с. Многие усмехнутся, но для маленького спайдера это было в самый раз – он разгонялся до 150 км/ч. Spider производился с 1964 по 1967 год.NSU Ro-80 Главным автомобилем, принёсшим известность Ванкелю, стал NSU Ro-80, представленный в 1967 году. Уже в его названии зашифрованы претензии на лидерство: «Ro» – это значит «роторный», а 80… Что-то вроде «автомобиль 80х годов». Машина установила новые правила экстерьера седанов: чистые линии, большая степень остекления, багажник выше капота… Влияние дизайна Ro-80 чувствуется в Audi 100. Благодаря малым размерам роторного двигателя переднюю часть машины удалось понизить и сузить, поэтому коэффициент аэродинамического сопротивления по сравнению с одноклассниками снизился на 25%. Оснащался седан двухсекционным двигателем Ванкеля рабочим объёмом 2 x 497,5 см3. Двигатель развивал мощность 115 л.с., разгоняя новинку до 180 км/ч, а 100 км/ч с места достигались через 12,8 секунды. Успех был колоссальный. Ro80 тут же получил титул «Автомобиль 1967 года», роторный двигатель стал популярной темой на автовыставках. Множество автопроизводителей закупило лицензии на производство двигателей Ванкеля, но… До серийного производства дело обычно не доходило. Тема оказалась не настолько проста, как казалась. И виной всему…
Врождённые недостатки
У перспективнейшей схемы есть серьёзные недостатки, справиться с которыми обойдётся дорого и трудно. Камера сгорания у роторного двигателя вытянутой формы, словно серпик молодой луны. Естественно, тепловые потери на большей, чем в обычном цилиндре, площади приводят к высокой теплонагруженности двигателя и меньшему КПД. В такой камере сгорания и эффективного перемешивания рабочей смеси не происходит, а тогда – плохая экономичность и экологичность.
С точки зрения технолога, роторный двигатель далеко не подарок. В отличие от обычных поршневых двигателей, у которых процесс сгорания топлива происходит попеременно в разных цилиндрах, а в промежутках камера сгорания охлаждается на такте впуска рабочей смесью, роторный двигатель имеет только одну камеру сгорания, работающую постоянно. Поэтому ротор должен быть стойким к температурным изменениям, когда нагревшуюся поверхность начинает охлаждать рабочая смесь через такт.
Еще одна проблема – уплотнения. В поршневом ДВС кольца работают под одним и тем же рабочим углом. В роторном двигателе, когда ротор скользит углами по поверхности статора, уплотнениям приходится работать под разными углами. Естественно, трение приходится уменьшать, впрыскивая масло прямо в коллектор. Экологичность ещё больше страдает… Ну и для заметки: роторный двигатель просто не может работать на солярке. Он не вынесет таких нагрузок, какие свойственны дизелю.
Машины с двигателем ВанкеляNSU Ro-80 С самого начала работ над роторным двигателем фирма NSU не делала из этого тайны. Любая автофирма могла купить лицензию на производство нового мотора, и покупатели сразу нашлись. Daimler Benz, GM, Mazda, Citroen, Toyota… Многие из них хотели получить дешёвый и мощный двигатель, но, сталкиваясь с проблемами надёжности и эксплуатации, прекращали разработку. Да и сама NSU погорела именно на эксплуатации. Неопытные покупатели просто-напросто палили двигатели, перекручивая их сверх всяких норм. Надёжность двигателя в таких условиях была слишком низкой. А тут еще топливные кризисы! Расход топлива для Ro-80 составлял от 15 до 17,5 литров на 100 км…
Финансовые проблемы загнали NSU в яму, откуда ей не суждено было выбраться: в 1969 году её со всеми потрохами поглотил Volkswagen. Этим закончилось серийное производство роторных автомобилей в Германии. Но опытные машины были. Mercedes Benz работал над суперкаром с роторным двигателем. Опытный образец появился в 1969 году и оснащался трёхсекционным роторным двигателем с объёмом каждой секции в 600 см3 и мощностью в 280 лошадиных сил. Лёгкий автомобиль с пластмассовым кузовом разгонялся до 257,5 км/ч, а до «сотни» за пять секунд.Mercedes C111 Через год на Женевском Моторшоу публике представили С111 второго поколения. Автомобиль имел сверхобтекаемый по тем временам кузов, его Сх был в пределах 0,325. Двигатель получил ещё одну секцию и теперь развивал 350 л.с. Водитель такого автомобиля мог ездить на скорости 300 км/ч, а благодаря переработанному и укреплённому каркасу кузова он получал удовольствие от поведения машины в поворотах. Разгонялся второй образец до 100 км/ч ещё быстрее – за 4,8 секунды оранжевый клиновидный автомобиль достигал магической отметки и продолжал набирать скорость.
Поклонники «Gulfwing» уже выстраивались в очередь за новым «Крылом», но Mercedes не собирался тогда производить римейки своей легенды. Эти машины были нужны для обкатки нового мотора, но даже MB так и не смог справиться с основной проблемой роторного двигателя – его прожорливость была колоссальной. Так нефтяные кризисы погубили германское направление разработки «ванкелей».
Chevrolet Corvette
За океаном также присматривались к двигателю Ванкеля. Chevrolet получил лицензию на производство роторных двигателей и в 1970 году принялся за разработку Корветов с двух- и четырёхсекционными двигателями. Фиберглассовая модель с двигателем в базе получила одобрение президента GM Эда Коула в июне 1971 года. Спустя год, в июне 1972 года, Corvette со стальным кузовом и с двухсекционным роторным двигателем был представлен правлению GM, и получил обозначение XP-987GT.
К январю 1973 года был собран и Корвет с двигателем с четырьмя секциями, в апреле он продувался в аэродинамической трубе в Калифорнии. Corvette с двухсекционным ротором мощностью 266 л.с. выставлен на обозрение публики 13 сентября 1973 года во Франкфурте, а его собрат с четырёхсекционным сердцем и мощностью 390 л.с. показался на Парижском салоне 4 октября того же года. Но 24 сентября 1974 года Эд Коул отложил разработку Corvette с двигателем Ванкеля из-за трудностей с выпуском.
Немецкую идею восприняли и в соседней Франции. Сотрудничать с NSU французы начали в 1964 году, образовав с немецким партнером компанию Comotor. В 1973 году Citroen завершил разработку роторного двигателя и в 1974 в производство пошел Citroen GS Birotor.Сiitroen GS Birotor Автомобиль оснащался двухсекционным роторным двигателем объёмом 2 х 498 см3, развивающим 107 лошадиных сил при 5500 об/мин. Рабочую смесь ванкелю поставляли два карбюратора Solex. Машины также оснащены полуавтоматом и гидравлической подвеской. Когда запущен двигатель, Birotor поднимается над землей (традиция Citroen) и выглядит при этом почти как полноприводник. Салон отделывался тканью и винилом, как дополнительное оснащение устанавливались радио, тонированные стёкла и люк в крыше.
С марта по август 1974 года завод покинули 750 Ситроенов с роторным двигателем. До конца 1974 года сделали еще 93 машины, а в 1975 только 31 GS Birotor съехал с конвейера. Всего, как не трудно подсчитать, было сделано 874 Citroen GS Birotor. В 1977 году завод отозвал роторные машины, чтобы их ликвидировать. Однако порядка 200 машин могли уцелеть, но большинство нигде не зарегистрированы. Вероятность обнаружить живой Birotor больше всего во Франции, а вообще они продавались в Швеции, Великобритании, Германии, Дании и Нидерландах.
Но самого верного и последовательного поклонника идея Ванкеля приобрела в далёкой Японии, где фирме Mazda позарез требовалась свежая идея, чтобы выделяться среди остальных. Тогда правительству самураев пришла в голову идея объединить весь автопром. Но от неё отказались, и правильно сделали!Mazda Cosmo Sport Первым автомобилем Mazda с роторным двигателем стало купе Mazda Cosmo Sport, первый образец которой был показан на Токийском автосалоне в 1964 году. В 1965 была произведена первая партия из 60 Космосов, но серийное производство началось только в 1967 году.
Космос серии 1 оснащался двухсекционным двигателем Ванкеля 10A 0810 объёмом 2 x 491 см3 с двумя карбюраторами Hitachi. Такая силовая установка развивала мощность в 110 л.с. и разгоняла немаленький автомобиль до 185 километров в час. Управлять машиной помогала 4-скоростная ручная коробка передач и передняя независимая подвеска. Производилась первая серия с мая 1967 года по июль 1968, сделано 343 машины. С июля 1968 года производилась вторая серия Cosmo Sport. Машина получила двигатель 10A 0813 мощностью 128 лошадиных сил, пятискоростную коробку передач, более мощные тормоза и 15-дюймовые тормоза (на предыдущей серии стояли 14-дюймовые). Теперь Космос мог достичь скорости 120 миль в час (или 193 км/ч), а четырёхсотметровую дистанцию проехать при старте с места за 15,8 секунды. Внешне обновлённую модель можно было отличить по увеличившейся «пасти» и по чуть увеличенной базе. До июля 1972 года сделали 1176 машин, что относительно неплохо при ручной сборке и норме выпуска одна машина в день.
Тогда же, с 1968 по 1973 год производилась роторная модификация модели Familia. Двухдверное купе использовало шасси обычной Фамилии, но под капотом у нее жил двигатель Ванкеля мощностью 100 л.с. от Космоса. Меньшая по сравнению с Cosmo мощность двигателя 10А 0820 объясняется малыми размерами карбюратора. Для недорогой машины использовались недорогие материалы – в частности, алюминий заменялся чугуном. Но вес двигателя увеличился ненамного, на 20 кг, и достиг всего 122 кг. Familia R100 участвовала в гонках 24 часа Спа и Ле-Мана, где она проигрывала только 911-ым и BMW.Mazda Luce R130 Третьей моделью стало заднеприводное купе Luce люкс-класса. Переднемоторная машина с дизайном от Джуджаро оснащалось двигателем модели 13А объёмом 2 x 655 см3, развивавшим 126 лошадиных сил. Четверть мили при разгоне с места Luce R130 мог проехать за 16,9 секунд. Эта машина не поставлялась на американский рынок. Производилась модель с 1969 по 1972 год. В 70-х годах прошлого века двигатель Ванкеля ставился японцами практически на любую свою новую модель, от Capella до пикапа и микроавтобуса. Именно в это десятилетие родился бренд «RX», значащий для Мазды то же самое, что и «GTI» для Фольксвагена. Роторный двигатель обходил конкурентов по всем статьям, но неожиданные финансовые потери заставили руководство фирмы. В 1970 появилась смена Familia R100. Новая модель Mazda RX2 основывалась на шасси модели Capella с обычным поршневым двигателем. RX2 предлагалась покупателям с кузовами «седан» и «купе», представлявшими собой лишь модификации таких же версий модели Капелла, и отличаясь от них внешне лишь шильдиками. Основные изменения скрывались под капотом.
RX2 оснащалась двигателем модификации 12А, имеющим две секции общим объёмом 1146 кубических сантиметров. «Ванкель» развивал мощность 130 л.с., что для весящей 1050 кг машины означало хорошую динамику даже по сегодняшним меркам. Такая «горячесть» модели обеспечивало ей любовь поклонников. В 1974 году Mazda RX2 получила чуть улучшенный двигатель, то позволило ей продержаться в производстве до 1978 года.
С октября 1972 года Mazda производила большой автомобиль Luce Rotary, пришедший на замену Luce R130. Три кузова – купе, седан и универсал, ручная 4-ступенчатая коробка передач и 3-ступенчатый автомат производили впечатление. Автомобиль продавался с двигателем 12А, выдававшим 130 л.с., но на экспорт в Америку с 1974 года он поставлялся оснащённым мотором серии 13В и под новым названием RX-4. Этот роторный двигатель поглощал меньше топлива и соответствовал американским нормам по чистоте выхлопа.
13В выдавал мощность 110 л.с., что обеспечивало купе или седану снаряжённой массой около 1190 кг неплохую динамику. Универсал участвовал в тестах журнала Road&Truck в 1974 году и показал вполне сносные результаты, несмотря на массу, возросшую до 1330 кг. Разгоняясь до 60 миль в час за 11,7 секунд, он 400 метров преодолел за 18 секунд, показав в конце мерного отрезка 124,5 км/ч. Журнал отметил и возросшую экономичность модели, внеся её в десятку «Лучших Покупок в диапазоне цен 3500-6000$». Сама машина стоила 4250 долларов, но за опции в виде кондиционера (395$) или «автомата» (270$) приходилось доплачивать. Производилась модель ровно пять лет, претерпев в 1976 году обновление кузова.Mazda Rotary Pickup С 1974 года на американском и канадском авторынках стал продаваться первый и пока единственный роторный пикап. Mazda продавала его исключительно на заокеанском рынке, на внутреннем он не был представлен. От пикапов серии B и родственных им Ford Courier роторная модель отличалась внешним видом – увеличившимися бамперами, другими линиями, хромированной передней решёткой радиатора и круглыми задними фонарями.
Под капотом Rotary Pickup располагался знакомый уже мотор 13B, который придавал пикапу изрядную толику спортивности. Было изготовлено 15 000 машин, большинство из которых продано в 1974 году, перед энергетическим кризисом. Из-за кризиса продажи резко упали, автомобилей 1976 модельного года было сделано всего около 700. Mazda изменила дизайн для машин 1977 модельного года, обновила электронику, заменила коробку передач на 5-скоростную, даже удлинила кабину на 10 см для пущего комфорта, но всё было напрасно. В 1977 году модель была снята с производства.Mazda Parkway Rotary 26 C июля 1974 производилась еще одна редчайшая модель Parkway Rotary 26 – единственный в мире автобус с роторным двигателем. Оснащён он был мотором модели 13B рабочим объёмом 2 x 654 см3, развивавшим уже 135 л.с. и обладавшим низким уровнем содержания вредных веществ в выхлопных газах. Управлялся этот силовой агрегат с помощью четырёхступенчатой ручной коробки передач. Немаленький автобус (габариты 6195 x 1980 x 2295 мм, снаряжённая масса 2835 кг) легко разгонялся до крейсерской скорости 120 км/ч.
Прозвище «двадцать шесть» Парквэй получил за вместимость – в стандартной комплектации DX он имел на борту 26 пассажирских мест, что было отражено и в его названии. Имелась и роскошная версия Super DX, вмещавшая только тринадцать человек. Модель отличалась низким уровнем вибраций и тишиной в салоне, что было обеспечено гладкостью работы роторного двигателя. По заказу Parkway можно было оснастить системой вентиляции. Производство завершено в 1976 году.
В 1975 году австралийское отделение Holden концерна Ford поставило своим японским коллегам машину представительского класса Premier для выпуска под брэндом Mazda. Производство машин было успешно освоено, но Holden не дал японцам двигателей, подходящих для машины весом 1575 кг, и они приспособили под капот большого седана Mazda RoadPacer роторный двигатель модели 13B. Поскольку он был мощнее, чем те моторы, что имелись у Холдена, то максимальная скорость достигла 166 км/ч, но вот крутящего момента ему явно не хватало. Разгон был очень слабым, а расход топлива и так не отличающегося плохим аппетитом мотора зашкалил за 26 литров бензина на 100 км. Первоначально планировавшийся как представительский, автомобиль попал в продажу во время топливного кризиса и успеха на рынке закономерно не получил. Сняли неудачливого RoadPacer’а с производства через три года.Mazda RX-7 Последнее, третье поколение RX-7 было полнокровным японским спортивным автомобилем. Под капот ставился роторный двигатель модели 13B-REW, оснащавшийся двумя турбинами, стоящими друг за другом. Система работы двух турбин была разработана вместе с фирмой Хитачи и обкатана на модели Cosmo, продававшейся на внутреннем рынке. Первая турбина была маленькой и работать начинала на малых оборотах двигателя (примерно с 1800 об/мин), чтобы на них не возникала «турбояма». Вторая турбина была побольше и включалась в работу с 4000 об/мин. Их совместная работа была отлажена настолько, что крутящего момента «хватало» всегда. Платформа FD была оценена как разработка мирового класса. Длительная работа над улучшением ходовых качеств, отточенное шасси, низкий центр тяжести и равномерное распределение веса по осям привели к появлению очень серьёзного «драйверского» автомобиля.
Русская страница этой истории
ВАЗ 21018 Первое упоминание о роторном двигателе в Советском Союзе относится к 60-м годам: некий умелец собрал и установил на свой мотоцикл в качестве эксперимента двигатель Ванкеля. Промышленное производство началось в 1974 году на ВАЗе с создания Специального конструкторского бюро роторно-поршневых двигателей (СКБ РПД). Поскольку лицензию купить не было возможности, был разобран и скопирован серийный «ванкель» от NSU Ro80. На этой основе разработали и собрали двигатель Ваз-311, а произошло это знаменательное событие в 1976 году. Доработка конструкции тянулась почти шесть лет. И на выставке НТТМ-82 ВАЗ наконец-то представил свой первый серийный автомобиль с роторным двигателем под капотом – Ваз-21018. Машина практически по конструкции не отличалась от своих обычных «поршневых» собратьев, но под капотом стоял односекционный роторный двигатель мощностью 70 л.с. Длительность разработки не помешала случиться конфузу: на всех 50 машинах опытной серии при эксплуатации возникли поломки мотора, заставившие завод установить на его место обычный поршневой. Установив, что причиной неполадок являлись вибрации механизмов и ненадёжность уплотнений, конструкторы начали спасать тонущий проект. Уже в 83-ем появились двухсекционные Ваз-411 и Ваз-413 (мощностью, соответственно, 120 и 140 л.с.). Несмотря на низкую экономичность и малый ресурс, сфера применения роторного двигателя всё-таки нашлась – ГАИ, КГБ и МВД требовались мощные и незаметные машины. Оснащённые роторными двигателями «Жигули» и «Волги» легко догоняли иномарки.
ВАЗ 21079 А затем СКБ был увлечён новой темой – роторные двигатели стали пробовать применить в малой авиации. Безрезультатное отвлечение от темы привело к тому, что для переднеприводных машин роторный двигатель Ваз-414 создаётся лишь к 1992 году, да ещё три года доводится. В 1995 году Ваз-415 был представлен к сертификации. В отличие от предшественников он универсален, и может устанавливаться под капотом как заднеприводных («классика» и ГАЗ), так и переднеприводных машин (ВАЗ, Москвич). Двухсекционный «ванкель» имеет рабочий объём 1308 см3 и развивает мощность 135 л.с. при 6000об/мин. «Девяносто девятую» он ускоряет до сотни за 9 секунд. К сожалению, одно из самых перспективных направлений в нашем автомобилестроении было свёрнуто.
Дальнейшие перспективы роторных двигателей Сейчас серийно выпускается только Mazda RX-8. У неё потрясающие управляемость и динамика: максимальная скорость 235 км/ч и разгон до сотни за 6,4 секунды. Двигатель нового поколения Renesis выдаёт 250 л.с. при 9000 об/мин без турбонаддува с двух секций общим объёмом 1598 см3, и расходует на удивление мало бензина. Но для новой RX-8 свойственны некоторые отличия от легендарных машин прошлого. Экологические требования привели к отказу от применения турбонаддува, который придавал прежним моторам невероятную мощь. Кроме того, японские тюнингеры разгоняли их до 1000 л.с., повышая давление наддува, а с новым мотором этого не выйдет. Он форсирован по-другому, методом повышения максимальных оборотов. Видимо, это плата за существование двигателя Ванкеля в новом, странном и непонятном, но экологичном мире.
История не закончена… В настоящее время разработку роторных двигателей официально ведёт только Mazda, накопившая в этой области гигантский опыт. Именно ей принадлежит идея заставить роторный двигатель работать на водородном топливе, таким образом, исключая выбросы вообще. Правда, роторный двигатель Renesis на водороде работает с неохотой, выдавая всего 109 лошадей. Но для упорных японцев это не проблема. Пока RX-8 Hydrogene возит на борту два бака – один для бензина, другой для водорода. На трассе Мазда ездит на бензине, а в городе на водороде – переключение между видами топлива происходит с водительского места простым нажатием кнопки. Так что история роторного двигателя на этом не заканчивается. Возможно, в будущем к двигателю, работающему на чистом водороде, японцы приспособят турбонаддув… Вместо поскриптума
Недавно на крупном автосайте обнаружено сообщение о разработке АвтоВАЗом нового роторного двигателя. Может быть, именно это придаст брэнду «ВАЗ» узнаваемость, а его моделям динамичность?
down-house.ru