ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Большая Энциклопедия Нефти и Газа. Температура в камере сгорания двс


Что лучше, что выгоднее — бензиновый двигатель или дизель?

В среде автомобилистов немало расхожих заблуждений, некоторые из них касаются особенностей бензиновых и дизельных двигателей. Почему-то принято считать, к примеру, что у дизеля больше ресурс, и что у него «лучше» момент на низких оборотах. Попробуем разобраться.Для начала пройдем короткий ликбез, вспомним особенности моторов обоих типов. Основное и решающее отличие дизельного двигателя от бензинового — в организации рабочего процесса. Именно из-за него конструкции моторов — разные.1. БензинНачнем с бензинового двигателя. Топливовоздушная смесь у него формируется вне цилиндра, во впускном коллекторе (пока непосредственный впрыск оставим за кадром). Пары топлива окончательно перемешиваются с воздухом в конце такта сжатия. В камере сгорания образуется топливная смесь, которая называется гомогенной, с равномерным распределением топлива по объему. От сжатия температура смеси поднимается до 400–500 0С (ниже температуры самовоспламенения бензина). Далее смесь воспламеняется искрой свечи зажигания.Такая организация рабочего процесса ощутимо сужает возможности двигателей. Во первых, топливо должно иметь высокую испаряемость при температуре окружающей среды, иначе гомогенную смесь к моменту  зажигания не получить, И, значит не будет быстрого и полного ее сгорания. Это резко сужает возможный перечень альтернативных топлив. Во вторых, в двигателе с внешним смесеобразованием есть цикл сжатия топливной смеси. Это сильно ограничивает возможную степень сжатия (ε), а она, между прочим,  сильно влияет на КПД двигателя. Повысить степень сжатия не дает детонация. Поднять детонационный порог помогает высокое октановое число бензина, сокращение времени распространения фронта пламени и снижение температуры топливного заряда. В современных моторах удается достичь степени сжатия примерно около 11 единиц и, скорее всего, эта величина — предельная. В третьих, способность к воспламенению и сгоранию гомогенной смеси находится в узком диапазоне соотношения воздуха к бензину, с коэффициентом избытка воздуха 0,8< λ<1,2. То есть смесь не может быть ни слишком богатой, ни слишком бедной. Это значит, что регулировать мощность можно только меняя количество поступающей в двигатель смеси, одновременно меняя подачу бензина и воздуха. Поэтому в двигаете и имеется дроссельная заслонка, ограничивающая подачу воздуха в двигатель. Ну а система управления дозирует топливо так, чтобы λ.всегда оставалась в заданном диапазоне.Бытует заблуждение,  что гомогенная смесь вредна мотору. На самом деле, равномерное перемешивание паров бензина с воздухом помогает смеси сгорать более полно.

2. СоляркаУ дизеля рабочий процесс организован по-другому, и эта организация нивелировала недостатки бензиновых ДВС. В цилиндре дизеля  сжимается только воздух, причем с высоким, до 30-50 бар, давлением. От сжатия температура воздуха подскакивает до 700–900 оС. Солярка распыляется прямо в камере сгорания,  перед ВМТ поршня. Мельчайшие капли топлива мгновенно испаряются,  образуется  топливовоздушная смесь. Смесь должна образоваться очень быстро, на порядок быстрее, чем в бензиновом двигателе. Поэтому в камере сгорания образуется неоднородная (гетерогенная) топливовоздушная смесь. Что не мешает ей самовоспламеняться и нормально сгорать.Получается, что дизельный процесс обходится без предварительного приготовления топливной смеси. Это снижает требования к испаряемости, и, стало быть, спектр применяемых видов топлив расширяется. В принципе, теоретически сгодятся  дешевые  нефтепродукты, вплоть до мазута, и даже биотопливо. Многотопливность — серьезное преимущество дизеля. На первый взгляд кажется удивительным, но дизель может  работать и на бензине. Правда, для этого приходится снижать степень сжатия. По крайней мере, некоторые армейские многотопливные двигатели могут работать и на солярке, и на бензине (с особыми присадками), правда,  в ущерб ресурсу.Сжатие воздуха без топлива дает еще один плюс: устраняется опасность детонации и, стало быть, снимается ограничение по степени сжатия. Степень сжатия дизеля обычно находится в пределах 13<ε<25. Малые значения встречаются у дизелей с наддувом, большие — для атмосферных дизелей с разделенными камерами сгорания. Нижний предел ограничения степени сжатия дизеля задается трудностями с пуском мотора зимой, а верхний ограничивается  прочностью деталей: с увеличением степени сжатия растет и предельное давление в камере сгорания.Высокое давление в камере сгорания сказывается на конструкции дизеля — детали кривошипно-шатунного и газораспределительного механизмов приходится делать более прочными, тяжелыми, и, значит, растет их инерционность. Как следствие, дизельные моторы по этой причине проигрывают в быстроходности и приемистости (способности быстро набирать обороты). К преимуществам дизеля отнесем большой крутящий  момент в весьма широком диапазоне оборотов, который обусловлен этим же высоким давлением в камере сгорания. Поэтому дизель тяговит и эластичен.Повышение степени сжатия — один из ключевых способов увеличения КПД мотора, а это значит, что дизель — экономичнее. Из-за степени сжатия КПД дизеля на 10–12% выше, чем у бензинового мотора (0,27–0,42 против 0,22–0,3). При этом по топливной экономичности дизель дает фору бензиновому моторы  процентов на 30-40! В чем причина этого несоответствия? А всё дело — в способе регулирования.Вспомните, в бензиновом двигателе смесь всегда гомогенная, отношение топлива к воздуху — постоянное, и для изменения мощности приходится менять количество всей смеси. Это — количественное регулирование мощности. В дизеле количество поступающего в двигатель воздуха практически не меняется, а мощность регулируется изменением подачи количества топлива, то есть меняется качество смеси. Это — качественное регулирование. Напомним, что с коэффициент избытка воздуха λ у бензинового двигателя не выходит за пределы 0,8< λ<1,2. А вот в дизеле оно может меняться от 1,1–1,2 в режиме максимальной нагрузки до 15–20 на холостом ходу! Потому-то в режиме холостого хода дизель потребляет до смешного мало солярки, или, как говорят водители, «работает на одном воздухе». Смесь же остается бедной во всех режимах!.Далее. Эффективный КПД замеряют в режиме максимальной нагрузки. Здесь лидерство дизелей невелико. Однако в реальности двигатель автомобиля до 90% времени работает в режиме частичной нагрузки, выдавая четверть максимальной мощности, а то и меньше. Тут-то и проявляются преимущества качественного регулирования, то есть — способность работать на сверхбедных смесях.Однако гетерогенность смеси отрицательно сказывается на содержании вредных компонентов в выхлопных газах. Бытует заблуждение, что дизель менее токсичен. Не исключено, что оно сложилось в те времена, когда проверяли только угарный газ (СО) и несгоревшие углеводороды (СН). Их в выхлопе у дизеля действительно мало (все по той же причине — процесс протекает в условиях избытка воздуха, окисление получается более полное). Но работа на бедных смесях и более высокая температура в камере сгорания приводят к тому, в выхлопе дизеля почти вдвое больше оксидов азота (NOx), их массовая доля в суммарном выбросе токсичных компонентов — 30-80%! А ведь они чрезвычайно вредны. Но и это не все. При сгорании гетерогенных смесей всегда образуются твердые частицы, в основном это свободный углерод (обычная сажа). Опасность в том, что на частицы сажи адсорбируются канцерогенные соединения — полициклические ароматические углеводороды. Кроме сажи, в рядах твердых частиц имеются несгоревшие частицы топлива и масла, соединения серы и оксиды металлов, добавляемых в топливо и масло в качестве присадок. Всё это и проявляется в виде дымности, вплоть до копоти. Твердые частицы легко переносятся в воздухе и поэтому могут легко подпортить здоровье людей. Самое же неприятное, что от них очень трудно избавиться. Выхлоп бензинового двигателя, в принципе, можно сделать сколь угодно чистым — оптимизацией рабочего процесса и использованием каталитических нейтрализаторов. Для борьбы с дымностью ограничивают нжний предел качества смеси λ на уровне 1,1–1,2.  А с катализаторами у дизелей проблемы, как раз из-за сажи. Она моментально, за сотню километров пробега, выведет его из строя. А эффективный и экономичный сажевый фильтр до сих пор остается мечтой конструкторов.Есть еще одно заблуждение — о том, что у дизеля больше ресурс. Вроде бы более прочная конструкция и невысокие обороты действительно способствуют меньшему износу. Да и солярка не так активно смывает масляную пленку со стенок цилиндров, как бензин. С другой стороны, у дизеля высокая теплонапряженность камеры сгорания и большие нагрузки, особенно у КШМ. Большой ресурс дизелей — миф, и сформировался он оттого, что дизель устанавливают на коммерческие автомобили, вся конструкция которых заточена под большой пробег, и в том числе — двигатель. Для увеличения ресурса применяются типовые конструкторские решения, и не суть важно, дизельный мотор, или бензиновый. Примером низкоресурсного дизеля может, кстати, служить танковый.3. РезюмеИтак, как известно, у дизеля нет системы зажигания, равно как дросселя*.  Но отсутствие системы вовсе не говорит о том, что дизель проще. Все как раз наоборот. Дизель пришлось комплектовать предпусковым подогревом со свечами накаливания, кроме того, у дизеля сложная и дорогая система топливоподачи, в которую входит топливный насос высокого давления (ТНВД).Сложность и высокая точность ТНВД вносит свои недостатки. Это и высокие требования к качеству и чистоте топлива, дорогим обслуживанием и ремонтом. Все эти траты могут свести на нет экономию на расходе топлива. Кстати, из-за того что в режиме максимальных нагрузок дизель вынужден работать на обедненной смеси, да еще и с меньшей частотой вращения, его удельная мощность обычно ниже, чем у бензиновых моторов.Так какой будет ответ — что выгоднее, дизель или бензиновый мотор? Простого ответа нет. Дизель экономичнее, но реальная выгода видна лишь при больших ежедневных пробегах, особенно по пробкам. .Дизель тяговит и эластичен, но страдает шумностью и повышенной вибрацией.Вывод банален: дизель хорошо для интенсивной эксплуатации, то есть — для коммерческих автомобилей. Почему дизель так популярен на Западе, спросите вы. По всей видимости, причина кроется в том, что еще до недавнего времени солярка там стоила существенно дешевле бензина, это во первых. Все же дизель экономичнее, а топливо в Европе — дорогое, это во вторых. Сервисное обслуживание и ремонт дизелей там налажены давно, недостатка в специалистах нет, это в третьих. Солярка, которая продается в Европе, весьма хорошего качества и очень редко бывает причиной поломки двигателя, это в четвертых. Моду на дизели и воздействие рекламы — в пятых. Возможно, есть и другие причины.Но мы — не Европа, у нас свой путь, даже в выборе моторов.

* В некоторых дизелях заслонка есть, она нужна для того, чтобы в задроссельном пространстве создавалось разрежение, нужное для организации вакуумного привода различных устройств автомобиля. Но чаще встречается вакуумный насос с приводом от распредвала.** Любопытно, что степень сжатия 11–13 — граница, разделяющая бензиновые и дизельные моторы.

arkan.people.zr.ru

Факторы, влияющие на процесс сгорания в карбюраторном двигателе

Основными показателями, определяющими протекание процесса сгорания в карбюраторном двигателе являются:

Эти показатели зависят от различных конструктивных и эксплуатационных факторов.

Эксплуатационные факторы, влияющие на процесс сгорания:

  1. Состав смеси. Наименьшие значения первой фазы сгорания соответствуют составу смеси, при котором скорость сгорания имеет наибольшие значения (а от 0,8 до 0,9). При сильном обеднении смеси не только увеличивается первая фаза сгорания, но и резко ухудшается стабильность воспламенения вплоть до появления пропусков в отдельных цилиндрах.
  2. Вихревое движение заряда обеспечивается конструкцией: типом и формой камеры сгорания, профилем впускных клапанов и позволяет в результате улучшения однородности рабочей смеси сократить продолжительность 01.
  3. Степень сжатия. С ростом степени сжатия увеличиваются температура и давление рабочей смеси, что способствует увеличению скорости сгорания и соответствующему сокращению продолжительности 01.
  4. Угол опережения зажигания. Каждому режиму работы двигателя соответствует свой наивыгоднейший (оптимальный) угол опережения зажигания, при котором основная фаза сгорания 02 располагается максимально близко к ВМТ, и двигатель работает с наилучшей эффективностью: развивает максимальную мощность и имеет минимальный расход топлива. Оптимальный угол опережения зажигания зависит от продолжительности фаз сгорания (в первую очередь от 01), поэтому при увеличении частоты вращения коленчатого вала и уменьшении нагрузки угол опережения зажигания необходимо увеличить. Отклонение угла опережения зажигания от оптимального значения ведет к изменению положения кривой Т относительно ВМТ, что влечет за собой потери, связанные с динамикой сгорания. Это происходит потому, что при позднем зажигании значительная часть тепловыделения происходит уже на такте расширения, когда объем увеличивается, в результате чего максимально возможное давление не достигается. При отклонении значения угла опережения зажигания от оптимального в сторону увеличения поршню приходится в конце процесса сжатия преодолевать резко увеличивающееся от сгорания давление газов. А при чрезмерно большом значении угла опережения зажигания значительное возрастание давления и температуры в цилиндре приводит к возникновению детонационного сгорания, сущность которого рассматривается ниже.
  5. Частота вращения коленчатого вала. При увеличении частоты вращения коленчатого вала возрастает скорость прохождения смеси через клапанную щель, поэтому усиливается турбулизация заряда. При этом продолжительность 01 и 03 относительно второй фазы сгорания затягивается, поэтому при увеличении частоты вращения коленчатого вала необходимо увеличить угол опережения зажигания. В целом с увеличением частоты вращения коленчатого вала эффективность сгорания увеличивается.
  6. Нагрузка. Уменьшение нагрузки осуществляется поворотом (закрытием) дроссельной заслонки, которое приводит к уменьшению коэффициента наполнения и росту коэффициента остаточных газов. Кроме этого уменьшаются давление и температура в конце сжатия. Все это уменьшает скорость развития пламени в первой фазе сгорания и снижает скорость распространения фронта пламени во второй и третьей фазах сгорания. Их протекание замедляется, особенно при малых нагрузках и низких частотах вращения коленчатого вала. Для того чтобы в какой-то мере компенсировать ухудшение динамики сгорания на малых нагрузках прибегают к обогащению горючей смеси и увеличению угла опережения зажигания. Ухудшение сгорания на малых нагрузках является большим недостатком карбюраторного двигателя, так как оно влечет за собой перерасход топлива и увеличение окиси углерода и углеводородов в отработавших газах.

Конструктивные факторы, влияющие на процесс сгорания:

  1. Форма камеры сгорания. Турбулизация, которая возникает в процессе впуска, может быть не только сохранена, но и усилена на такте сжатия при перетекании заряда из цилиндра в камеру сгорания. Для этого камера сгорания имеет специальную форму. Завихрение улучшает однородность рабочей смеси, что особенно положительно влияет на сгорание во второй и третьей фазах. Для улучшения турбулизации применяют тангенциальное расположение впускных каналов перед клапанами и так называемые вытеснители, которые представляют собой зазоры между поверхностью головки цилиндров и днищем поршня. Различные конструкции камер сгорания представлены на рисунке.Различные конструкции камер сгорания двигателей с искровым зажиганием

    Рис. Различные конструкции камер сгорания двигателей с исковым зажиганием: а — полусферическая; б — плоскоовальная; в — клиновая; г — полуклиновая: д — шатровая; 1 — вытеснитель

    При выборе места расположения свечи зажигания стремятся к тому, чтобы обеспечить хорошую очистку зоны свечи от продуктов сгорания. Ее размещают ближе к центру камеры сгорания с тем, чтобы сократить путь пламени до наиболее удаленных точек.

  2. Степень сжатия. Чем больше степень сжатия, тем больше давление и температура рабочей смеси в момент искрового разряда, что улучшает воспламенение и протекание первой фазы сгорания, но продолжительность третьей фазы затягивается, так как количество смеси в пристеночных слоях увеличивается. Поэтому рост степени сжатия увеличивает только КПД цикла. Основным препятствием к увеличению степени сжатия является возникновение детонации.
  3. Параметры искрового разряда. Количество теплоты, выделяемой при искровом разряде, определяет надежность зажигания и продолжительность первой фазы сгорания. Чем больше тепловая энергия разряда, тем больше объем смеси прогревается этим разрядом до температуры воспламенения, тем меньше время формирования фронта пламени, способного к быстрому распространению. Однако положительный эффект повышения энергии разряда наблюдается только до определенною момента. Дальнейшее повышение энергии влияет значительно меньше и не вызывает существенного улучшения протекания первой фазы. При повышенной энергии искровою разряда увеличивается нижний предел воспламенения, и можно использовать бедные составы горючей смеси. Значительная часть энергии системы зажигания затрачивается на ионизацию газового промежутка между электродами свечи, а также рассеивается в камере сгорания. На нагрев смеси в зоне искры расходуется только 10-20% энергии, и, чтобы обеспечить надежное воспламенение, система зажигания должна выделять количество теплоты значительно больше, чем для этого требуется. Поэтому искровой разряд должен обладать не только достаточной энергией, но и достаточной продолжительностью выделения этой энергии.
  4. Расслоение смеси. Считается, что для улучшения сгорания в зоне свечи зажигания должна находиться обогащенная рабочая смесь, а по мере удаления от нее смесь обедняется. В обычных камерах сгорания это обеспечить очень сложно, поэтому применяют разделенные камеры сгорания с форкамерно-факельным зажиганием.Устройство карбюраторного двигателя с форкамерно-факельным зажиганием

    Рис. Устройство карбюраторного двигателя с форкамерно-факельным зажиганием

    В форкамере (предкамере) небольшого объема (3—20 % объема основной камеры сгорания) устанавливается свеча зажигания и небольшой впускной клапан, через который подается сильно обогащенная смесь (а2). В основную же камеру подается обедненная смесь (а, > 1,5). Смесь такого состава не загорается от искры, но хорошо воспламеняется от факелов пламени, выбрасываемых из сопловых отверстий форкамеры. В результате экономичность и мощность двигателя увеличиваются. Недостатками являются сложность газораспределительного механизма, плохие условия работы свечи зажигания, неравномерное распределение по цилиндрам форкамерной смеси.

ustroistvo-avtomobilya.ru

Камера - сгорание - двигатель

Камера - сгорание - двигатель

Cтраница 2

В камере сгорания двигателя, работающего на смеси кислорода с водородом, образуются горячие водяные пары при давлении р 8 32 107 Па. Определить максимальный КПД такого двигателя, если температура отработанных паров Т2 - 1000 К.  [16]

В камере сгорания двигателя теплоотвод в стенки значительно больше, чем в сферической бомбе. Особенно он велик в начале сгорания, когда пламя начинает распространяться от свечи, расположенной у холодной стенки, и отношение площади соприкосновения со стенкой к поверхности объема, охваченного пламенем, весьма велико. Площадь соприкосновения со стенкой в автомобильной камере сгорания сильно возрастает также в конце сгорания вследствие резкого увеличения отношения поверхности части заряда, сгорающей в последнюю очередь, к ее объему.  [18]

В камере сгорания двигателя развиваются очень высокие температуры, достигающие 2000 С.  [19]

В камере сгорания двигателя энергичное окисление углеводородов и накопление пероксидных соединений начинается в конце такта сжатия в связи со значительным повышением температуры. Процессы окисления приобретают особенно большую скорость после воспламенения смеси и образования фронта пламени. По мере сгорания рабочей смеси температура и давление в камере сгорания быстро нарастают, что способствует дальнейшей интенсификации окисления в несгоревшей части рабочей смеси.  [20]

В камере сгорания двигателя применено тридцать осевых за-вихрителей ( по одному на каждую топливную форсунку), которые способствуют обеднению топливовоздушной смеси в первичной зоне камеры, что позволяет исключить образование видимого дыма с высоким содержанием частиц углерода, который обычно является результатом переобогащения смеси в этой зоне.  [21]

В камере сгорания двигателя внутреннего сгорания развиваются очень высокие температуры, достигающие в момент сгорания топливной смеси 2000 и более.  [22]

В компактных камерах сгорания двигателей с подвесными клапанами свечу по тем же соображениям следует устанавливать также ближе к выпускному клапану.  [23]

При изготовлении камер сгорания двигателей, работающих по схеме /, применяется литье в кокиль.  [24]

Особенности конструкции камеры сгорания двигателя с подводом теплоты при постоянном объеме приводят к существенно пульсирующим режимам работы. Поэтому, несмотря на его более высокий термический КПД по сравнению с КПД для двигателя с подводом теплоты при постоянном давлении, он широкого применения в практике не нашел.  [26]

Затем очищают камеру сгорания двигателя от смазки следующим образом: вливают в цилиндр через отверстие под свечу около 50 г бензина и проворачивают коленчатый вал пусковым рычагом на 20 - 25 оборотов; в промытый таким образом цилиндр заливают около 10 см3 свежего масла и проворачивают 3 - 5 раз коленчатый вал двигателя. После этого промывают бензином или керосином ТБ, заправляют его бензином и делают пробный пуск двигателя. Прогревают его на соответствующих режимах согласно инструкции по эксплуатации.  [27]

Масло в камеру сгорания двигателя из цилиндра передается поршневыми кольцами. Под этим давлением масло поступает в зазоры под кольцом и за кольцом. При движении поршня вверх кольцо вследствие трения прижимается к нижней кромке кольцевого паза. При перемещении кольца к нижней его кромке часть масла выдавливается в зазор между поршнем и цилиндром, а часть вверх, в камеру сгорания.  [29]

Даже топки и камеры сгорания двигателей входят в эту категорию, поскольку топливо в этих устройствах часто вводят в виде распыленных капель, которые должны испариться до начала горения.  [30]

Страницы:      1    2    3    4

www.ngpedia.ru

Камеры сгорания дизелей

ПоршеньАвтор: Юлиюс Мацкерле (Julius Mackerle)Источник: «Современный экономичный автомобиль» [1]Количество просмотров 14589 Количество комментариев 0

У дизелей требования к форме камеры сгорания определяются процессом смесеобразования. Для создания рабочей смеси в них отводится очень малое время, так как почти сразу после начала впрыска топлива начинается сгорание, и остаток топлива подается уже в горящую среду. Каждая капля топлива должна войти в соприкосновение с воздухом как можно быстрее, чтобы выделение теплоты произошло в начале хода расширения.

Для удовлетворения этих требований необходимым является создание интенсивного направленного движения воздуха, но организовать этот процесс нужно так, чтобы с впрыскиваемым топливом смешалось необходимое для сгорания количество воздуха. Принципиально для этой цели существуют две возможности: направлять либо воздух к топливу, либо топливо к воздуху. У автомобильных дизелей используются оба способа.

В первом из них топливо впрыскивается непосредственно в цилиндр несколькими струями (факелами), которые обдуваются вращающимся потоком воздуха. Скорость потока должна обеспечивать прохождение воздухом пути от одной струи к другой за время сгорания [2].

Число струй, однако, ограничено, и поэтому необходимое количество топлива должно впрыскиваться с определенной скоростью, чтобы обеспечивалось, его хорошее распыливание. Если топливо хорошо распылено, то оно быстро прогревается после впрыска в горячий воздух, и время, проходящее до его воспламенения (так называемая задержка воспламенения), уменьшается. Малое время задержки воспламенения нужно для того, чтобы количество топлива, поданного в камеру сгорания за этот период, не было настолько большим, чтобы после воспламенения вызвать резкое нарастание давления и большую жесткость работы двигателя. Регулирование процесса, сгорания может быть обеспечено законом подачи топлива в уже воспламененную среду.

Если скорость, время и количество подаваемого топлива определены, то можно рассчитать диаметр силовых отверстий распылителя форсунки, задавшись их числом. Для устранения опасности закоксовывания и обеспечения технологичности изготовления распылителей форсунок минимальный диаметр отверстий ограничивается 0,25—0,3 мм. Поэтому их число в автомобильных дизелях не превышает 4—5. В соответствии с этим должна быть установлена интенсивность вращения воздуха. Вращательное движение воздуха в цилиндре можно создать с помощью впускного канала тангенциальной или винтовой формы. Так же, как и у бензиновых двигателей, дополнительную турбулизацию заряда в дизеле можно создать в конце хода сжатия вытеснением воздуха из пространства между днищем поршня и головкой цилиндра.

Образование смеси с помощью второго способа — подвода топлива к воздуху — затруднено, если нельзя использовать большое число форсунок. У дизелей с разделенными камерами сгорания (предкамерных и вихрекамерных) впрыск осуществляется так, что все топливо подается во вспомогательную камеру малого объема, содержащую лишь часть воздуха, поступившего в цилиндр. При воспламенении топлива в этой камере давление повышается и вытесняет еще не сгоревшее топливо в объем основной камеры сгорания над поршнем, где сгорание завершается.

Таким образом, по способу смесеобразования различают дизели с непосредственным впрыском топлива в цилиндр и дизели с разделенной камерой сгорания. При непосредственном впрыске камера сгорания образована в поршне, который имеет более высокую температуру, чем охлаждаемая головка цилиндра. Это уменьшает потери теплоты горячих газов в стенки камеры сгорания. Камера сгорания должна быть компактной с тем, чтобы потери теплоты при сжатии воздуха также не были большими и, следовательно, для достижения необходимой для воспламенения топлива температуры не требовалась слишком высокая степень сжатия. Величина степени сжатия дизеля сверху ограничена нагрузкой на кривошипный механизм и потерями на трение, а снизу — условиями обеспечения так называемого холодного пуска. При непосредственном впрыске степень сжатия ε лежит в пределах от 15 до 18. При холодном пуске дизели этого типа не требуют дополнительных мер для обеспечения воспламенения топлива.

У дизеля с разделенной камерой сгорания воздух во время такта сжатия поступает во вспомогательную камеру через соединительный канал с большой скоростью и при этом значительно охлаждается. Поэтому для обеспечения необходимой температуры к моменту воспламенения требуется более высокая степень сжатия — от 20 до 24, но, несмотря на это, при холодном пуске двигателя воздух во вспомогательной камере должен предварительно подогреваться с помощью специальной свечи накаливания, выключаемой после пуска двигателя.

Площадь поверхности основной и вспомогательной камер сгорания весьма велика, скорость движения воздуха около их стенок также достигает высоких значений. Это означает повышенную теплоотдачу в стенки, т. е. рост тепловых потерь. В связи с этим дизели с раздельной камерой сгорания имеют более высокие удельные расходы топлива, чем дизели с непосредственным впрыском.

Итак, дизели с непосредственным впрыском топлива более экономичны. Недостаток их состоит в значительном шуме при сгорании, однако у последних конструкций этот недостаток практически устранен. Главной причиной шума является высокая скорость нарастания давления в начальной фазе горения. Для устранения этого явления необходимо сократить период задержки воспламенения и управлять дальнейшим протеканием процесса сгорания посредством закона подачи топлива.

Хорошие результаты по снижению жесткости работы достигнуты в дизелях фирмы «МАН» с помощью сферической камеры сгорания, расположенной в поршне.

Форсунка в этих дизелях имеет только два отверстия, через одно из которых основная масса топлива впрыскивается на стенку камеры сгорания, а через другое — меньшая, запальная порция направляется в середину камеры, где воздух имеет наиболее высокую температуру. Воздуху в камере придано интенсивное вращение. Топливо, находящееся на стенке камеры, относительно холодное и поэтому воспламенения всей его массы сразу не происходит. Топливные пары поступают в поток воздуха со стенок камеры постепенно, смешиваются с ним, и образовавшаяся после этого топливовоздушная смесь воспламеняется. При этом обеспечивается мягкая и достаточно экономичная работа двигателя, в связи с чем возникло несколько близких по принципиальной схеме вариантов этого рабочего процесса.

В частности, в камере сгорания цилиндрической формы фирмы «Дойц» (ФРГ) одна струя впрыскивается параллельно оси камеры в пространство вблизи стенки. Полученные при этом способе результаты также можно оценить положительно. Следует отметить, что при таком смесеобразовании многое зависит от температуры стенок камеры сгорания.

При затягивании процесса сгорания теплота, выделяющаяся в течение хода расширения, используется не полностью (см. рис. 3 в статье «Влияние степени сжатия на индикаторный КПД двигателя»), из-за чего увеличивается удельный расход топлива, т. е. преимущества непосредственного впрыска топлива фактически теряются. В наиболее широко применяемых камерах сгорания тороидальной формы топливо впрыскивается по радиусу камеры на ее стенку несколькими симметричными струями, расположенными под большим углом к вертикальной оси. При сгорании вначале реагирует часть топлива, смешиваемая с воздухом прямо у стенки. Газы, образующиеся при горении, имеют высокую температуру и небольшую плотность. При сильном вращении заряда на стенки камеры за счет центробежной силы попадает холодный воздух из центральной части камеры, оттесняя к центру легкие продукты сгорания. Непосредственно вблизи стенок воздух смешивается с топливом. В лаборатории фирмы «Рикардо» (Англия) этот процесс был зарегистрирован на кинопленку.

В дизелях с разделенными камерами сгорания вспомогательную камеру довольно просто создавать и при небольших диаметрах цилиндра. Это весьма важно при конвертировании бензинового двигателя в дизель. Такая задача с успехом была решена под руководством П. Хофбауэра на двигателе автомобиля «Фольксваген Гольф» (рис. 1).

Рис. 1
Вихревая камера сгорания дизеля «Фольксваген»
Вихревая камера сгорания дизеля «Фольксваген»:А — исходный вариант размещения свечи накаливания;Б — улучшенный вариант размещения свечи накаливания.

В алюминиевой головке цилиндра была образована небольшая вихревая камера сгорания с форсункой и свечой накаливания. Выемка в днище поршня и выходное отверстие канала, соединяющего вихревую камеру с цилиндром, выполнены обычным способом. Объем вихревой камеры составлял 48 % объема всей камеры сгорания. Рабочий объем двигателя был увеличен с 1100 см3 до 1500 см3, степень сжатия ε = 23,5. Мощность этого дизеля при 5000 мин-1 составила 37 кВт.

Рис. 2
Зависимость удельного расхода от среднего эффективного давления двигателей «Фольксваген»
Зависимость удельного расхода ge от среднего эффективного давления pe двигателей «Фольксваген»:1 — вихрекамерный дизель;2 — бензиновый двигатель.

Удельный расход топлива при частоте вращения n = 2500 мин-1 дизельного и бензинового двигателей автомобиля «Фольксваген Гольф» показан на рис. 2.

При среднем эффективном давлении pe = 0,2 МПа удельный расход топлива у дизеля ниже на 25 %. С повышением нагрузки разница в топливной экономичности бензинового двигателя и дизеля уменьшается, а при работе в режиме полной нагрузки она равна нулю. Снижение удельного расхода топлива при частичной нагрузке является очень важным, так как для легковых автомобилей именно эти режимы являются наиболее типичными при движении в городских условиях.

Рис. 3
Влияние размещения свечи накаливания в дизеле «Фольксваген» на его среднее эффективное давление, удельный расход топлива и дымность отработавших газов.
Влияние размещения свечи накаливания в дизеле «Фольксваген» на его среднее эффективное давление pe, удельный расход топлива ge и дымность K отработавших газов.

Варианты конструкции дизеля «Фольксваген», отличающиеся размещением форсунки и свечи накаливания, показаны на рис. 1. Изменение местоположения свечи накаливания принесло уменьшение удельного расхода топлива и снижение дымности отработавших газов, что отражено на графиках, приведенных на рис. 3, а. Влияние нагрузки, т. е. среднего эффективного давления pe на те же показатели при работе двигателя в режиме постоянной частоты вращения, равной 3000 мин-1, показано на рис. 3, б. Улучшение отчетливо видно на всех режимах работы двигателя. Вариант Б (см. рис. 1) отличается расположением свечи накаливания относительно направления вращения воздуха в вихревой камере. Эта конструкция, однако, достаточно сложна при ее реализации в производстве.

Энергетический кризис [3] подтолкнул многих конструкторов автомобильных бензиновых двигателей к конвертированию их в дизельные с целью повышения индикаторного КПД. Конструктор и исследователь из ФРГ Л. Эльсбетт при конвертировании бензиновых двигателей достиг экономии топлива до 20 %. В его дизелях «ЭЛКО» используется непосредственный впрыск топлива односопловой форсункой в сферическую камеру сгорания, расположенную в днище поршня. Ось струи делит радиус камеры пополам в точке пересечения с ним. Организация рабочего процесса использует эффект перемещения горячих продуктов сгорания малой плотности в центр вращающегося в камере сгорания воздушного заряда. Вследствие этого происходит хорошее перемешивание горящей смеси с воздухом, и так как сгорание происходит в основном в центре камеры, то тепловые потери в ее стенки относительно невелики.

Поршень состоит из двух частей, причем верхняя с размещенной в ней камерой сгорания и поршневыми кольцами стальная. Сталь обладает большой термической прочностью и худшей, чем алюминий, теплопроводностью, и поэтому поверхность камеры сгорания имеет более высокую температуру, что, в свою очередь, уменьшает теплопередачу от горячих газов в стенки камеры.

Такое решение, кроме того, предотвращает повышенный износ поршневых канавок, характерный для алюминиевых поршней дизелей.

Юбка поршня, служащая направляющей, изготовлена из алюминиевого сплава и соединяется с верхней частью через поршневой палец. Такая конструкция поршня обладает свойствами крейцкопфа, т. е. уменьшает действующие на стенку цилиндра боковые силы, возникающие при движении шатуна, и создает предпосылки для исключения, являющегося одним из источников шума при работе двигателя опрокидывающего момента, который действует на верхнюю часть поршня.

Для снижения удельного давления на поршневой палец верхняя головка шатуна и бобышки днища поршня имеют клиновидную форму в сечении по оси пальца. Благодаря этому площадь верхней части бобышки днища поршня больше нижней его части. Аналогично нижняя часть втулки шатуна имеет также большую площадь, чем верхняя. Края поршневого пальца воспринимают лишь незначительные силы от юбки поршня.

Водяные каналы в головке цилиндра дизеля «ЭЛКО» исключены. Теплота отводится только от наиболее важных мест, таких как межклапанные перемычки и отверстия для форсунок при помощи масла, циркулирующего по специально высверленным каналам диаметром 6—8 мм. С целью уменьшения отвода теплоты цилиндры охлаждаются таким образом, чтобы температура их верхней зоны не превышала температуру, необходимую для обеспечения смазывания.

При таком уменьшении теплоотвода в систему охлаждения большее количество теплоты отводится, однако с отработавшими газами, что, естественно, приводит к применению турбины для использования этой теплоты. Удельные расходы топлива дизелей «ЭЛКО» изображены на рис. 4, где представлены многопараметровые характеристики пятицилиндрового дизеля с рабочим объемом 2300 см3 мощностью 80 кВт (рис. 4, а) и шестицилиндрового с рабочим объемом 13300 см3 (рис. 4, б) [4]. Оба дизеля имеют газотурбинный наддув без промежуточного охлаждения наддувочного воздуха.

Рис. 4
Характеристики дизелей «ЭЛКО»:а — пятицилиндровый двигатель с рабочим объемом 2300 см3;б — шестицилиндровый двигатель с рабочим объемом 13300 см3.

Уменьшение теплоотдачи в систему охлаждения позволяет использовать радиатор меньшего объема и соответственно вентилятор меньшей мощности. Если учесть необходимость отапливания автомобиля в холодный период, для чего вполне достаточно теплоты, отводимой от двигателя, то радиатор для охлаждения двигателя в этот период может вообще не потребоваться.

Рис. 5
Конструкция поршня и головки цилиндра дизеля «ЭЛКО».
Конструкция поршня и головки цилиндра дизеля «ЭЛКО».

При сравнении удельных расходов топлива нужно учитывать влияние целого ряда факторов. Так, чем больше диаметр цилиндра, тем более выгодные условия имеются для достижения малого удельного расхода топлива. Важным является также отношение диаметра цилиндра к величине хода поршня. Л. Эльсбетт называет свой дизель «теплоизолированным», что является определенным шагом вперед в направлении создания адиабатного двигателя, о котором будет сказано в следующих главах книги. Некоторые особенности конструкции дизеля «ЭЛКО» показаны на рис. 5.

Дизели непосредственного впрыска по сравнению с дизелями с разделенными камерами сгорания имеют лучшие условия для уменьшения тепловых потерь в систему охлаждения. Выше уже говорилось о менее интенсивном охлаждении поверхности камеры сгорания и снижении скорости движения горячих газов около стенок. Однако и при непосредственном впрыске могут создаваться различные условия для отвода теплоты. В качестве примера на рис. 6 показан процесс совершенствования камеры сгорания дизеля «Татра 111А» (ЧССР).

Рис. 6
Совершенствование камеры сгорания дизеля «Татра 111А»
Совершенствование камеры сгорания дизеля «Татра 111А»:а — исходный вариант;б — модернизированный вариант.

В первом варианте этого дизеля воздушного охлаждения была использована камера сгорания полусферической формы. Таким путем при помощи больших клапанов стремились получить хорошее наполнение цилиндра и благодаря большому углу развала клапанов обеспечить возможности создания ребер охлаждения в зоне седла выпускного клапана. Для получения требуемой величины объема камеры сгорания днище поршня имело куполообразную форму, камера сгорания теряла компактность, и ее развитые поверхности охлаждения приводили к большим потерям теплоты и пониженным температурам в конце сжатия.

Уменьшив угол развала клапанов и применив почти параллельное их расположение, достигли почти плоского днища головки цилиндра и уменьшения поверхности охлаждения. Камера сгорания была размещена в днище поршня и стала более компактной. Температура стенок камеры сгорания в поршне выросла, и уменьшился отвод теплоты через них. Узкая горловина камеры сгорания обеспечила интенсивное завихривание воздуха при сжатии, что способствовало улучшению смесеобразования и регулирования процесса сгорания. Тем самым были снижены тепловые потери при сгорании, улучшены условия холодного пуска, уменьшен шум. Удельный расход топлива при этом снизился на 15 %. Сравнение начального и модернизированного вариантов камеры сгорания, показанных на рис. 6, является примером того, как с помощью конструкции камеры сгорания можно снизить расход топлива.

Последнее обновление 02.03.2012Опубликовано 26.05.2011

Читайте также

Сноски

  1. ↺ Мацкерле Ю. Современный экономичный автомобиль/Пер. с чешск. В. Б. Иванова; Под ред. А. Р. Бенедиктова. - М.: Машиностроение, 1987. - 320 с.: ил.//Стр. 131 - 141 (книга есть в библиотеке сайта). – Прим. icarbio.ru
  2. ↺ Согласно другим взглядам считается, что угол поворота воздуха в камере сгорания за время впрыска топлива должен равняться углу между соседними топливными струями за вычетом угла конуса топливной струи (факела). – Прим. ред. А.Р. Бенедиктова
  3. ↺ Речь идёт о энергетическом кризисе 70-х годов XX века. – Прим. icarbio.ru
  4. ↺ Возможно, в книге допущена ошибка, так как прибавление одного цилиндра едва ли могло дать такое увеличение рабочего объёма двигателя. – Прим. icarbio.ru

Комментарии

icarbio.ru


Смотрите также