ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Большая Энциклопедия Нефти и Газа. Двс температура в камере сгорания


Температура - стенка - камера - сгорание

Температура - стенка - камера - сгорание

Cтраница 1

Температура стенок камеры сгорания и днища поршня у различных двигателей находится в пределах 250 - 400 С, а на впускных или выпускных клапанах она значительно выше. При таких температурах под действием кислорода воздуха и каталитического влияния металлических поверхностей масло претерпевает глубокие изменения, в результате чего образуются нагары.  [2]

Температура стенок камеры сгорания в карбюраторном двигателе не превышает 200 С. Наиболее высокую температуру стенок камеры сгорания имеют головки цилиндров дизелей с воздушной системой охлаждения, температура в межклапанной перемычке достигает 260 С. Введение масляного канала для отвода части тепла от головки на дизеле Д-37 М снижает температуру межклапанной перемычки до 200 С. Попытка обеспечить снижение температуры в межклапанной перемычке за счет более развитых ребер охлаждения ввиду конструктивной сложности головки не дает желаемых результатов.  [3]

Температура стенок камеры сгорания остается относительно низкой. Между приводной шестерней и внутренним кольцом верхнего подшипника находится пружина, которая компенсирует осевой зазор подшипника ( фиг.  [4]

Повышение температуры стенок камеры сгорания достигается применением теплоизолирующих вставок в камере или жароупорных накладок на днище поршня. При этом температура стенок камеры повышается на 160 - 240 С для наиболее горячей точки по сравнению с обычной конструкцией, что приводит к уменьшению задержки воспламенения с 13 85 до 12 6 м / сек.  [5]

С понижением температуры стенки камеры сгорания и температуры продуктов сгорания увеличивается зона пониженных температур, при которых может сохраниться агар.  [6]

Замечено, что при постоянной мощности двигателя температура стенки камеры сгорания снижается пропорционально увеличению в составе топлива содержания водорода. Эта особенность обнаруживается тем резче, чем больше мощность двигателя.  [7]

Из табл. 6 и 7 видно также, что температура стенки камеры сгорания ТВД ( в зоне горения) в зависимости от нагрузки двигателя почти в 2 раза превышает температуру днища поршня из алюминиевого сплава. Между тем, толщина нагара на поверхностях камеры сгорания ГТД в зо-не горения достигает 20 мм и иногда нагарный пояс перекрывает до 60 % площади поперечно-то сечения жаровой трубы ( см. ркс. На кромках поршней со стороны входа горючей смеси в четырехтактных бензиновых двигателях или продувочного воздуха в двухтактных двигателях толщина нагара меньше иди его вообще не бывает.  [9]

Для верхнеклапанных карбюраторных двигателей такая система охлаждения позволяет понизить температуру стенок камеры сгорания и повысить температуру стенок цилиндров, что несколько повышает мощностные и экономические показатели двигателя и снижает износ его цилиндров.  [11]

Считают, что в реактивном двигателе источником радиирую-щего пламени, повышающего температуру стенки камеры сгорания, является горение не непосредственно углеводородов, а продуктов их глубокой деструкции - микрочастиц углерода. Степень радиации пламени углеводородов определяется их химической структурой и отношением в рабочей смеси топлива к воздуху.  [12]

В качестве показателя теплоизоляционных свойств нагара принято теплоизоляционное число, представляющее собой отношение перепада температуры стенки камеры сгорания под слоем накопившегося нагара на испытуемом топливе к перепаду температуры стенки при проведении испытаний в определенных условиях на испытуемом топливе. Теплоизоляционное число так же, как и нагарное число, выражается в процентах.  [13]

Этиловый спирт, имея малые значения теплоты испарения по сравнению с другими применявшимися ОЖ незначительно влияет на снижение температуры стенки камеры сгорания, обдуваемой вторичным воздухом, содержащим пары и неиспарившиеся капли этилового спирта.  [14]

Индукционный период уменьшается при увеличении степени сжатия, повышении температуры и давления всасываемого в цилиндр воздуха, а также при повышении температуры стенок камеры сгорания в тех местах, куда ударяет струя топлива. Однако решающее значение имеет состав топлива. Меньшим индукционным периодом обладают парафиновые углеводороды нормального строения с длинной цепью. Топлива, содержащие много ароматических углеводородов с короткими боковыми цепями, имеют чрезмерно высокую температуру самовоспламенения и длинный индукционный период. Нафтеновые и ароматические углеводороды с длинными парафиновыми цепями, напротив, характеризуются коротким индукционным периодом и соответственно нормальной скоростью горения. Таким образом, условия возникновения стуков в дизелях противоположны тем, которые вызывают детонацию в двигателях с искровым зажиганием.  [15]

Страницы:      1    2    3

www.ngpedia.ru

Температура камеры сгорания - Справочник химика 21

    Температура камеры сгорания, °С 1000—1100 1000—1100 1000—1100 [c.24]

    Теплота сгорания газа 5 = 35 600 кдж/м . Температуру камеры сгорания принять 1 300 °С. [c.90]

Рис. 12. Влияние отношения воздуха к топливу на температуру камеры сгорания. Весовой расход воздт- ха 1 фунт/сек. (0.454 /сг/сек.), камера торых изменялось общее ОТПОРЫ., 1,35/84. шение воздуха к топливу путем Рис. 12. <a href="/info/96335">Влияние отношения</a> воздуха к топливу на температуру камеры сгорания. <a href="/info/877908">Весовой расход</a> воздт- ха 1 фунт/сек. (0.454 /сг/сек.), камера торых изменялось общее ОТПОРЫ., 1,35/84. шение воздуха к топливу путем
    Теплота сгорания газа 0 =8499 ккал/мК Температуру камеры сгорания принять [c.149]

    Отложения при высокотемпературном режиме работы дизелей и карбюраторных двигателей образуются в основном в виде нагаров и лаков на поверхностях деталей, имеющих относительно высокую температуру (камера сгорания, цилиндропоршневая группа). В карбюраторных двигателях количество сажи, образующейся при сгорании топлива и поступающей в масло, значительно меньше, чем в дизелях. Главной причиной, ведущей к образованию высокотемпературных отложений в двигателях с искровым зажиганием, являются окислительные процессы, протекающие в объеме масла и на металлической поверхности. Кроме того, в карбюраторных двигателях отложения образуются преимущественно на низкотемпературном режиме, для которого характерны конденсация и полимеризация продуктов окисления масла, что приводит к образованию низкотемпературных отложений (шлам). Эти отложения отрицательно влияют на надежность, экономичность и долговечность работы двигателя. [c.210]

    В карбюраторном двигателе повышение степени сжатия и температуры камеры сгорания усиливает стуки. В двигателе с воспламенением от сжатия повышение давления и температуры цикла снижает стуки. Поэтому требования к химическому составу дизельных топлив прямо противоположны требованиям к топливам для карбюраторных двигателей. [c.196]

    Температуры камеры сгорания. Много усилий затрачено на увеличение срока службы камер сгорания. Повидимому, считается установленным, что коробление стенок камер сгорания и образование в них трещин следует приписать главным образом перегреву от местного переобогащения смеси наряду с переохлаждением тех же участков камеры вследствие несимметричности воздушного потока вокруг камеры сгорания снаружи. Необходимо рассмотреть, может ли топливо оказать какое-либо влияние на эго явление. Очевидно, что наиболее важным, подлежащим исследованию фактором будет при этом содержание ароматических углеводородов в топливе, так как из опыта работы поршневых двигателей известно, что топлива с высоким содержанием ароматических углеводородов сгорают при несколько более высоких температурах пламени, что приводит к некоторому повышению температуры головки цилиндра. В Торнтоне были проведены опыты по сравнению двух топлив с различным содержанием ароматических углеводородов в отношении их влияния на температуру камеры сгорания. [c.112]

    Недостаточная полнота сгорания высокоцетановых топлив объясняется различными причинами. Одной из них считают слишком малую термическую устойчивость парафиновых углеводородов. При высоких температурах камеры сгорания парафиновые углеводороды мгновенно расщепляются с выделением легких углеводородов и твердых частиц углерода, не успевающих сгорать и выбрасываемых из двигателя в виде дыма. [c.201]

    После смешения приготовленную смесь подавали в перепускную емкость 2 до установления требуемого давления, откуда при помощи пневматического перепускного клапана 4 смесь перепускали в предварительно вакуумированную (по вакуумметру), нагретую и выдержанную при требуемой температуре камеру сгорания 1. [c.105]

    Важнейшей деталью туннельных горелок является камера сгорания топлива, представляющая собой металлический корпус, футерованный внутри огнеупорным материалом. Обычно для футеровки камеры сгорания применяют огнеупорный кирпич с огнеупорной набивкой, состоящей из 45% порошка хромистого железняка, 10% огнеупорной глины и 45% порошка обожженного магнезита или из 50% алунда, 30—20% шамота и 20—30% огнеупорной глины. Для футеровки погружных горелок малого диаметра применяют специальные огнеупорные керамические кольца, уложенные в корпус горелки на огнеупорной глине и набивке. Огнеупорная футеровка камеры сгорания способствует устойчивому горению топлива, служит теплоизолятором и аккумулятором тепла, стабилизирует температуру камеры сгорания при колебаниях в подаче топлива и воздуха, уровня жидкости и других возмущающих факторов, воздействующих на работу погружной горелки. Считается, что раскаленная керамика является катализатором сгорания топлива. [c.70]

    Если принять в качестве лимитирующих факторов температуру камеры сгорания и максимальное число оборотов, то двигатель должен работать в области, лежащей между линией 815°С (или каким-либо другим допустимым пределом) и линией расхода топлива, соответствующего режиму понижения скорости и малого числа оборотов. В настоящее время это не всегда удается, и мы испытываем трудности при запуске. Минимальный расход топлива, требующийся для получения пламени, дает слишком высокую температуру, когда сгорание уже началось, — запуск представляет собой трудную и опасную операцию в области нужных рабочих режимов двигателя имеются мертвые зоны чтобы избежать срыва пламени, приходится очень осторожно открывать дроссель иногда пламя в двигателе может погаснуть, если слишком быстро закрыть дроссель. Кроме всего этого, образова -ние нагара, удушливый запах и дым в отходящих газах заставляют подозревать, что сгорание в двигателе протекает не до конца. [c.45]

    Оценка действительного качества масла и эффективности присадок к маслу мон ет быть сделана только по состоянию колец, кольцевых канавок поршней и боковой поверхности самих поршней, т. е. тех деталей двигателя, которые непосредственно соприкасаются с маслом при температурах выше 100°, но значительно более низких, чем, например, температура камеры сгорания. [c.450]

    Измерение температур поршня проводилось при установившемся тепловом состоянии двигателя, момент стабилизации которого контролировался по температурам камеры сгорания и выхлопных газов, непрерывно записывавшимся на диаграмме электронного потенциометра. [c.207]

    Отложения, связанные с высокотемпературным режимом двигателя, откладываются в основном в виде нагаров и лаков на поверхностях деталей с относительно высокой температурой (камера сгорания и цилиндропоршневая группа). В состав этих отложений помимо углеродистых и асфальто-омолистых продуктов входят также зольные остатки от сгорания топлива и масла, разложившаяся присадка, пыль и продукты износа. Так, в отложениях на наружной поверхности поршня обнаруживается до 7% чугунной пыли. [c.52]

    Температура камеры сгорания (приблизительно на 25 см ниже радиантных труб) обычно от 650 до 850° С. Температура дымовых газов на выходе из конвекционной секции от 425 до 550° С. Высокая температура газов, выходящих из конвекционной камеры, определяется высокой температурой входящего в печь сырья. Следует помнить, что температура перерабатываемого сырья на входе в печь обычно близка к 300 — 350° С, так что минимальная температура дымовых газов, выгходящих из печи, должна быть около 425 - 500° С. [c.247]

    Влияние увеличения степени сжатия на детонацию очевидно из вышеприведенного рассуждения. Подобным же образом легко оценить влияние опережения зажигания. Оно приводит к большему сжатию несгоревшей части газа, благодаря увеличению пути пламени перед верхней мертвой точкой. Таким образом, опережение зажигания приводит к более высокому максимальному давлению. Действие наддува сводится к увеличению давления. Уменьшение пути пламени было целью многих усовершенствований в конструкции головки цилиндра [И]. Среди них может быть упомянута головка цилиндра конической формы со свечой в верхней части и двойным зажиганием. Увеличение завихрения также уменьшает время нормального сгорания ). Газ приводится в движение потоком, засасываемым через впускной клапан, ходом поршня и расширением горящего газа. Отсюда видно, что конструкция головки цилиндра сильно влияет на завихрение. Конструкция так называемой высокотурбулентной головки хорошо известна. Следует, однако, отметить, что слишком большая турбулентность может вызвать слишком быстрое сгорание и, соответственно, жесткую работу двигателя [13]. Запаздывание искры уменьшает сжатие несгоревшей смеси, так как возрастает доля процесса сгорания, происходящая после верхней мертвой точки. Если несгоревшая часть газа сжимается в узком пространстве, то это препятствует его охлаждению, но понижает химическую активность. Если применяемое топливо имеет низкотемпературный взрывной полуостров, то охлаждение благоприятно только в том случае, если оно не приводит смесь в эту область высокой химической активности. Кроме того, оно увеличивает еще скорость обрыва цепей, что, в свою очередь, увеличивает задержку воспламенения. с то замечание о влиянии охлаждения на задержку воспламенения показывает, как трудно предсказать, в какую сторону будет направлено влияние температуры двигателя. В этом отношении интересны опыты Дюмануа [14]. Он нашел, что при постепенном увеличении средней температуры камеры сгорания с помощью увеличения как степени сжатия, так и температуры охлаждающей среды, детонационное сгорание может уступить место плавному нормальному сгоранию. [c.402]

    Попытка дать ответ на вопрос о причинах отсутствия связи между нагарообразованием и качеством топлива и масла для карбюраторных двигателей сделана К. К. Папок в предложенной им теории образования отложений нагара иа днпще поршня. Автор указывает, что в условиях высокой температуры камеры сгорания (выше 1000°) в присутствии кислорода воздз ха топливо и масло любого качества должны были бы сгорать без остатка. Этого не происходит, так как часть газовой смсси, непосредственно прилегающая к стенкам камеры сгорания и днищу поршня, будет иметь вследствие теплоотдачи более ш зкую температуру. [c.336]

chem21.info

Нарушения режима сгорания топлива в цилиндре

Нарушения режима сгорания в двигателях с принудительным воспламенением смеси

Обычное сгорание топливновоздушной смеси в цилиндре осуществляется в точно определенном процессе. Воспламенение начинается от искры свечи зажигания незадолго до достижения верхней мертвой точки. Пламя распространяется в виде круга от свечи зажигания и проходит камеру сжигания с постоянно растущей скоростью сжигания от 5 до 30 м/с. В результате этого давление в камере сгорания резко поднимается и достигает максимального значения сразу после верхней мертвой точки. Для уменьшения нагрузки на детали кривошипношатунного механизма скорость роста давления на градус угла коленчатого вала не должна превышать 3,5 бар. Этот обычный процесс воспламенения может, однако, быть нарушен различными воздействиями, что можно обобщить, в основном, в виде трех совершенно разных случаев нарушений режима сгорания:

1. калильное зажигание (преждевременное воспламенение): оно приводит к термической перегрузке поршня

2. Детонационное зажигание: оно приводит к эрозионному съему материала и к механической перегрузке на поршне и на кривошипношатунном механизме

3. переполнение топливом: он приводит к износу с излишним расходом масла и также к заеданию поршня.

На рис. 1 представлены различия между обычным зажиганием, детонационным зажиганием и калильным зажиганием по времени.

рис. 1

к пункту 1. Калильное зажигание (преждевременное воспламенение)

При калильном зажигании воспламенение начинается каленной деталью в камере сгорания уже до самого момента зажигания. Это может быть горячий выпускной клапан, свеча зажигания, детали уплотнения и отложения на названных деталях и поверхностях, находящихся вокруг камеры сгорания. При калильном зажигании пламя воздействует на конструктивные элементы неконтролируемо, в результате чего температура в днище поршня очень сильно повышается, достигая при продолжающемся калильном зажигании уже в течение нескольких секунд точки плавления материала поршня. В двигателях с камерами сгорания, в основном имеющими форму полусферы, это в днище поршня приводит к дырам, возникающим в продолжении оси свечи зажигания.

В камерах сгорания с большими сжимными поверхностями между днищем поршня и головкой цилиндра плавится жаровой пояс в точке с наибольшей нагрузкой, что доходит часто до маслосъемного кольца и до внутренней части поршня

Объяснение:

сжимной поверхностью в производстве двигателей называется та поверхность на днище поршня, которая находится довольно близко к головке цилиндра в верхней мертвой точке. При перемещении поршня вверх в направлении верхней мертвой точки свежие газы выдавливаются из этой узкой щели в направлении середины камеры сгорания, что обеспечивает завихрение газов и тем самым улучшает сгорание смеси.

Детонационное горение, приводящее к высокой температуре поверхности отдельных деталей камеры сгорания, может также вызвать калильное зажигание.

к пункту 2: детонационное зажигание:

При детонационном воспламенении зажигание обычно начинается искрой свечи зажигания. Распространяющееся от свечи зажигания пламя создает волну давления, вызывающую в несгоревшем газе критические реакции. В связи с этим в смеси остаточного газа во многих местах одновременно возникает самовоспламенение. Скорость сжигания возрастает в 10 - 15 раз. Рост давления на градус угла поворота коленчатого вала и пиковые значения давления существенно повышаются Кроме того, в ходе расширения образовываются высокочастотные колебания давления.

Дополнительно поверхности, замыкающие камеру сгорания, сильно нагреваются. Камеры сгорания, из которых в процессе сжигания удалены остатки, являются однозначным признаком детонационного горения. Легкие детонации с прерываниями большинство двигателей выдерживает в течение длительного времени без повреждений.

Сильные, продолжающиеся детонации приводят к эрозионному съему материала поршня на жаровом поясе и на днище поршня. Головка цилиндра и прокладки головки блока цилиндра также могут быть повреждены. Детали в камере сгорания (напр., свеча зажигания) могут при этом

настолько сильно нагреться, что это приводит к калильному зажиганию (преждевременное воспламенение) с термической перегрузкой поршня (прогары и отложения).

Тяжелые постоянные детонации по истечении короткого времени приводят к поломкам перемычки колец и юбки поршня, причем обычно без прогаров и отложений и без задиров. На рис. 1 графически представлена кривая давления в камере сгорания. Синяя линия показывает кривую давления при обычном сжигании. Красная линия показывает кривую давления при детонационном горении, на которое наложены пиковые значения давления.

К пункту 3: переполнение топливом:

Слишком богатая смесь, уменьшающееся давление сжатия и нарушения режима зажигания вызывают неполное сжигание с переполнением топливом. Смазка поршней, поршневых колец и рабочих поверхностей цилиндров все больше и больше теряет эффективность. Последствием являются полусухое трение с износом и расходом масла, а также задиры (подробности приведены также в разделах «Расход масла» и «Задиры поршня»).

рис. 1

Нарушения режима сгорания в дизельных двигателях

Для оптимального процесса сжигания в дизельном двигателе наряду с механически безупречным состоянием двигателя важную роль играет также крайне тонкое и очень точное распыление форсункой, а также правильное начало впрыска. Только таким образом впрыскиваемое топливо может воспламеняться с наименьшей задержкой зажигания и сгорает без остатков при нормальной характеристике давления. На этот нормальный процесс сжигания, однако, может отрицательно повлиять ряд факторов. В основном, имеется три существенных вида нарушений режима сжигания

1. задержка зажигания

2. неполное сгорание

3. подтекание топлива из форсунок

К пункту 1: задержка зажигания:

Впрыскнутое в начале впрыска топливо воспламеняется лишь с определенной задержкой (задержка зажигания) при недостаточно тонком распылении и попадании в цилиндр не в нужный момент или если температура сжатия в момент впрыска недостаточно высока. Степень распыления зависит только от состояния форсунки. Форсунка, безупречно впрыскивающая при испытании на приборе контроля форсунок, может, однако, заклиниваться при монтаже в головке цилиндра или от температурных напряжений настолько, что в работе уже не будет безупречного распыления. Температура сжатия зависит от давления сжатия и тем самым от механического состояния двигателя. Холодный двигатель всегда имеет определенную задержку зажигания. Холодные стенки цилиндра при сжатии забирают столько тепла из еще более холодного всасываемого воздуха, что в момент начала впрыска имеющаяся температура сжатия оказывается недостаточной для того, чтобы немедленно воспламенить впрыскиваемое топливо. Лишь при продолжающемся сжатии температура зажигания достигается и впрыснутое до тех пор топливо воспламеняется внезапно. Это вызывает резкое взрывообразное повышение давления с образованием шума и сильный нагрев днища поршня. Последствием являются поломки в кривошипно-шатунном механизме, напр., перемычек колец, поршня, и трещины в днище поршня.

К пункту 2: неполное сгорание:

Если топливо попадает в камеру сгорания не в нужный момент или без распыления, оно не может сжигаться без остатков за имеющееся в распоряжении короткое время. То же самое происходит, если в цилиндр попадает недостаточное количество кислорода, т. е., всасываемого воздуха. Причинами могут быть забитый воздушный фильтр, неправильное открытие впускных клапанов, дефекты в турбонагнетателе или износ поршневых колец или клапанов. Несгоревшее или не полностью сгоревшее топливо частично отлагается на стенках цилиндра и понижает эффективность смазочной пленки или разрушает ее. Рабочие поверхности и боковые поверхности поршневых колец, боковые стороны пазов поршней, рабочая поверхность цилиндра и в конечном счете также юбка поршня из-за этого подвергаются сильному износу или же появляется заедание. В результате этого расход масла повышается и мощность понижается (примеры повреждений см. в разделах «Расход масла» и «Задиры от работы всухую»).

К пункту 3: подтекание топлива из форсунок:

Чтобы форсунки после конца впрыска из-за колебаний давления от напорного клапана топливного насоса высокого давления через топливопроводы высокого давления до форсунок не открылись повторно, в системе снижается давление на определенную величину через напорный клапан топливного насоса высокого давления. Если давление впрыска форсунок отрегулировано на слишком низкое значение или если оно не может поддерживаться постоянно(механические форсунки), форсунки могут еще несколько раз подряд открываться из-за колебаний давления в топливопроводе высокого давления несмотря на понижение давления после конца впрыска. Негерметичные форсунки или подтекание топлива из форсунок вызывает также неконтролируемую подачу топлива в камеру сгорания. Из-за отсутствия кислорода топливо, впрыскиваемое неконтролируемо, в обоих случаях попадает на днище поршня в несгоревшем виде. Там топливо накаливается при довольно высоких температурах и нагревает материал поршня в этом месте настолько сильно, что динамические силы и эрозия газов сжигания отрывают частицы поршня от его поверхности. Следствием этого является существенный съем материала или эрозионное разрушение на днище.

Прогар на головке и юбке поршня (двигатель с принудительным воспламенением смеси)

Описание повреждения

На головке поршня имеется прогар поршня за кольцами. Юбка поршня не имеет задиров, лишь со стороны повреждения на юбку поршня попал материал поршня.

Оценка повреждения

Прогары в головке поршня двигателей с принудительным воспламенением смеси являются последствием калильного воспламенения на поршнях с преимущественно ровным днищем и большими сжимными поверхностями. Калильное зажигание вызывается накаленными деталями в камере сгорания,если их температура превышает температуру самовоспламенения газовой смеси. Это в основном свеча зажигания, выпускной клапан и другие остатки, прилипающие к стенкам камеры сгорания. В зоне сжимных поверхностей головка поршня очень сильно нагревается калильным зажиганием. Температура повышается до такой степени, что материал поршня становится мягким. Из-за динамических сил и проникающих в место повреждения газов сжигания материал снимается до маслосъемного кольца.

Возможные причины повреждения

• свечи с недостаточным калильным числом

• слишком бедная смесь и в результате этого повышенные температуры сжигания.

• Поврежденные, негерметичные клапаны или слишком маленький клапанный зазор. Поэтому клапаны неправильно закрываются. От протекающих газов сжигания клапаны сильно нагреваются и накаливаются.

В первую очередь это касается выпускных клапанов, потому что впускные клапаны охлаждаются свежими газами.

• Накаленные остатки сжигания на днищах поршней, головке цилиндров, клапанов и свеч зажигания.

• неподходящее топливо со слишком низким октановым числом. Качество топлива должно соответствовать степени сжатия двигателя, т. е., октановое число топлива должно покрыть октановую потребность двигателя во всех режимах работы.

дизельное топливо в бензине и в результате этого понижение октанового числа топлива, большое количество масла в камере сжигания из-за высокого расхода масла на поршневых кольцах или на направляющей клапана.

высокая температура двигателя или всасываемого воздуха изза недостаточной вентиляции моторного отсека, общий перегрев.

Прогары и отложения на головке поршня (дизельный двигатель)

Описание повреждения

Зона днища и жарового пояса полностью разрушена (рис. 1). Жаровой пояс прогорел до упрочняющей вставки. Расплавленный материал поршня продвинулся по юбке поршня и вызвал там также повреждения и задиры. Упрочняющая вставка первого компрессионного кольца сохранилась частично только еще на левой стороне поршня Остсток упрочняющей вставки отсоединилась во время работы от поршня и вызвал в камере сгорания другие разрушения. Части поршня отлетали с такой силой, что попали через впускной клапан во впускной коллектор и тем самым также в смежный цилиндр и там также нанесли повреждения (следы ударов).

к рис. 2:

в направлении впрыска одной или несколькими струями форсунок на днище поршня и на краю жарового пояса появились эрозионные прогары. Юбка поршня и зона поршневых колец не имеют задиров.

Оценка повреждения

Повреждения такого рода возникают особенно в дизельных двигателях непосредственного впрыска. Предкамерных дизельных двигателей это касается только в том случае, если одна из предкамер повреждена и в результате этого предкамерный двигатель превращается в двигатель непосредственного впрыска. Если форсунка соответствующего цилиндра не поддерживает давление впрыска после

окончания процесса впрыска и давление падает, вибрации в топливопроводе высокого давления могут еще раз поднять иглу форсунки, так что после окончания процесса впрыска снова впрыскивается топливо в камеру сгорания(механические форсунки). Если кислород в камере сгорания исчерпан, то отдельные капли топлива протекают через всю камеру сгорания и попадают на днище перемещающегося вниз поршня ближе к краю. Они быстро догорают там при нехватке кислорода, причем образуется довольно много тепла. При этом материал в этих местах смягчается. Динамические силы и эрозия быстро протекающих газов сжигания вырывают отдельные частицы из поверхности (рис. 2) или снимают головку полностью что приводит к повреждениям, показанным на рис. 1.

Возможные причины повреждения

• негерметичные форсунки или тяжело перемещающиеся или заклинившиеся иглы форсунок.

• поломанные или ослабившиеся пружины форсунок.

• дефектные клапаны понижения давления в топливном насосе высокого давления

• количество впрыскиваемого топлива и момент впрыска не отрегулировано по инструкции изготовителя двигателя.

• в предкамерных двигателях: дефект предкамеры, но только в сочетании с одной из вышеназванных причин.

• задержка зажигания из-за недостаточного сжатия в результате слишком большого зазора, неправильных фаз газораспределения или негерметичных клапанов

• слишком большая задержка из-за несклонного к воспламенению дизельного топлива (слишком низкое цетановое число)

Трещины в днище и в углублениях днища (дизельный двигатель)

Описание повреждения

Головка поршня имеет трещину от напряжения, которая распространяется односторонне от днища поршня до отверстия для поршневого пальца (рис. 1 и рис. 2). Горячие газы сжигания, протекавшие через трещину, прожгли канал в материал поршня, проходящий от углубления до литейной канавки под маслосъемным кольцом наружу.

Оценка повреждения

Из-за высокой термической нагрузки материал поршней в предкамерном двигателе сильно нагревается в местах попадания предкамерных струй и в двигателе непосредственного впрыска на краю углубления. В нагретых местах материал сильнее расширяется, чем в других местах. Поскольку перегретые места окружены холодным материалом, материал подвергается постоянной выходящей за пределы эластичности деформации в горячем месте перегрузки. При остывании происходит точно наоборот. В местах, в которых материал сначала подвергался обжатию и затем вытеснению, вдруг возникает нехватка материала. В результате этого в этой зоне появляются соответствующие напряжения при растяжении, которые вызывают трещины от напряжения (рис. 3 и рис. 4). Если на напряжения от термической нагрузки наложены еще напряжения от прогибания пальца, из трещины напряжения образовывается иногда широкая основная трещина, которая приводит к полной поломке и выходу поршня из строй

Возможные причины повреждения

• дефектные или неправильные форсунки, нарушения в работе топливного насоса высокого давления, повреждения на предкамере.

• высокая температура изза дефектов в системе охлаждения.

• дефекты на моторном тормозе или чрезмерное его использование. Впоследствии возникает перегрев.

• недостаточное охлаждение поршней с охлаждающим каналом, напр., из-за забитых или изогнутых форсунок охлаждающего масла.

• в двигателях с часто меняющейся нагрузкой, напр., в городских автобусах, землеройных машинах и т. д., названные факторы могут быть особенно критичными.

• использование поршней неправильной спецификации, напр., монтаж поршней без охлаждающего канала, хотя нужно было использовать поршень с охлаждающим каналом, монтаж поршней других изготовителей, не усиленных волокнистыми вставками на краю углубления.

• монтаж поршней с неправильной для двигателя формой углубления, см. к этому также пункт «3.4.7 Задиры в головке поршня в результате использования неправильных поршней».

Поломки перемычек между канавками колец

рис. 2 Кольцевое поперечное ребро

Описание повреждения

На одной стороне поршня поломана перемычка между канавками для первого и второго компрессионных колец (рис. 1). Трещина начинается на верхней кромке перемычки на дне канавки и проходит под углом в материал поршня. Вблизи нижней кромки трещина снова идет к наружной стороне и выходит наружу на нижней кромке перемычки или немного ниже на дне канавки. Продольные трещины в перемычках между канавками, ограничивающие трещину перемычки сбоку, расширены книзу. Задиры поршня или перегревы не имеются.

Оценка повреждения

Дефекты материала не являются причиной трещины перемычек, хотя это часто предполагается в случае повреждений. Такие трещины всегда являются последствием перегрузки материала. Можно подразделить эти перегрузки на 3 причины:

детонационное сгорание:

Это означает, что октановое число топлива не покрывает потребность двигателя во всех режимах работы и нагрузки, (см. также пункт «3.4.0 Общие сведения о повреждениях из-за нарушений режима зажигания в двигателях с принудительным воспламенением смеси»). Трещины перемычек между канавками из-за детонационного зажигания возникают большей частью на нагруженной стороне. В дизельном двигателе детонационное зажигание может быть вызвано только задержкой зажигания.

Гидравлические удары:

В неработающем или работающем двигателе жидкость (вода, охлаждающее средство, масло или топливо) попадают револьно в камеру сгорания. Поскольку жидкости не поддаются сжатию, в такте сжатия появляется огромная нагрузка на поршень и кривошипно-шатунный механизм. Неизбежным следствием являются трещины на перемычках между канавками, трещины на ступицах или повреждения на шатунах или коленчатом валу Рис. 3 показывает процесс поломки, который появляется при детонационном сгорании и при гидравлических ударах. Поверхности лома при этом расширены вниз, потому что усилие, вызвавшее поломку, воздействует сверху на перемычку между канавками. Неправильный монтаж: При монтаже поршень был не введен, а вбит, потому что поршневые кольца неправильно сжаты или были использованы неподходящие инструменты. При этом перемычки между канавками выламываются в обратном направлении, потому что давление действует не как в вышеназванных случаях сверху, а снизу (рис. 4).

Возможные причины повреждения

Детонационное сгорание в двигателях с принудительным воспламенением смеси

• использование топлива с недостаточной детонационной стойкостью. Качество топлива должно соответствовать степени сжатия двигателя, т. е., октановое число топлива должно покрывать октановую потребность двигателя во всех режимах работы.

• дизельное топливо в бензине и в результате этого понижение октанового числа топлива.

• масло в камере сгорания изза высокого расхода масла на поршневых кольцах или на направляющей клапана понижает детонационную стойкость топлива.

• слишком высокая степень сжатия, вызванная остатками сжигания на днищах поршня и головке цилиндра или чрезмерным шлифованием поверхности блока и головки цилиндра в ходе капитального ремонта двигателя или с целью тюнинга.

• слишком большое опережение зажигания

• слишком бедная смесь и в результате этого повышенные температуры сжигания.

• слишком высокая температура всасываемого воздуха из-за недостаточной вентиляции моторного отсека или обратного напора ОГ Но и несвоевременное переключение заслонки всасываемого воздуха на летний режим или дефект автоматической системы переключения заслонки приводят к существенному повышению температуры всасываемого воздуха(особенно в старых карбюраторных двигателях).

Детонационное сгорание в дизельных двигателях

• некачественные или негерметичные распылители форсунки

• слишком низкое давление впрыска форсунок.

• слишком низкое давление сжатия из-за неправильных уплотнений головки цилиндра, слишком маленькие выступы поршней, негерметичные клапаны или поломанные или изношенные поршневые кольца

• дефектные уплотнения головки цилиндров.

рис. 3

рис. 4

• повреждения предкамеры.

• ненадлежащее или чрезмерное применение вспомогательных средств помощи (аэрозоли для помощи при пуске) при пуске в холодном состоянии.

при гидравлических ударах

• непреднамеренное всасывание воды при переезде через воды, лужи или низкие воды или из-за попадания большого количества воды от брызг проезжающих впереди или мимо автомобилей.

• заполнение цилиндра водой при неработающем двигателе из-за негерметичности уплотнения головки цилиндра или трещин в конструктивных элементах.

• заполнение цилиндра водой при неработающем двигателе из-за негерметичности уплотнения головки цилиндра или трещин в конструктивных элементах. Остаточное давление в системе впрыскивания сбрасывается через негерметичную форсунку в цилиндр. В этом и в предыдущем случае при пуске возникают описанные повреждения.

Следы ударов на головке поршня (дизельный двигатель)

Описание повреждения

На головке поршня (рис. 1) видны сильные следы удара. В этой зоне масляный нагар почти полностью удален вследствие металлического контакта поршня с головкой блока цилиндров. Изза ударов отложения масляного нагара вдавлены в днище поршня, что оставило свои следы. Поршневые кольца имеют очень сильный износ. Особенно на маслосъемном кольце невооруженным глазом видны сильные следы износа.

Поршень на рис. 2 имеет на передней кромке днища отпечаток вихревой камеры, а на правой стороне днища сильный отпечаток клапана. Рядом с вихревой камерой во время эксплуатации клапан входил в контакт с днищем поршня и в течение времени проникал все глубже в днище поршня. На юбке поршня видны первые признаки начинающихся задиров от работы всухую (рис. 4).

Оценка повреждения

Поршни ударяли в работе о головку цилиндра или о вихревую камеру и один из клапанов. Поломки в результате этого воздействия больших усилий еще не появились. Износ на поршневых кольцах, а также на юбке поршня, однако, указывает на то, что в результате этих ударов возникло нарушение режима сгорания из-за переполнения топливом. Удары поршня вызывают более или менее сильные сотрясения на головке цилиндра. В результате этих сотрясений в форсунке также возникают вибрации. Поэтому форсунка в закрытом состоянии не может поддерживать давление и впрыскивает топливо неконтролированно. Увеличенный объем впрыска топлива в цилиндр приводит к переполнению топливом. Следствием этого является повреждение масляной пленки что влечет за собой сначала полусухое трение и тем самым износ в зоне поршневых колец. В связи с этим повышается также расход масла. Лишь если масляная пленка настолько сильно повреждена, что смазка становится недостаточной, то образовываются характерные задиры от попадания топлива (см. также пункт «3.2.3 Задиры от работы без смазки из-за переполнения топливом»). Юбка поршня в начальной стадии меньше страдает, потому что она кривошипношатунным механизмом все вновь и вновь снабжается свежим маслом, имеющим еще смазочные свойства. Лишь после перемешивания абразивных частиц из зоны хода поршня со смазочным маслом и после того, как смазочное масло все больше теряет смазочную способность из-за разбавления масла износ распространяется по всем сопряженным деталям скольжения двигателя.

Возможные причины повреждения

• неправильный размер выступа поршня. Размер выступа поршня не проверен или не поправлен в рамках капитального ремонта двигателя.

• не соосно просверленная втулка нижней головки шатуна в ходе замены втулки нижней головки шатуна

• эксцентричное шлифование коленчатого вала

• эксцентричная доработка базового отверстия подшипника (при доработке крышек подшипников коленчатого вала)

• монтаж уплотнений головки блока цилиндров недостаточной толщины

• отложения масляного нагара на головке поршня и в результате этого уменьшение или полное исчезновение зазора.

• неправильные фазы газораспределения из-за неправильной регулировки, удлинения цепи, соскакивания зубчатых ремней.

• неправильная доработка торцевых поверхностей головки блока цилиндров и возникающее из-за этого смещение фаз газораспределения, (изменяется расстояние между ведущим и ведомым колесом, что в определенных конструкциях невозможно поправить в рамках регулировки ремня или цепи)

• при замене колец седла клапана не обратили внимание

на правильное положение седел клапана. Если поверхность седла клапана при обработке размещается в головке блока цилиндров недостаточно глубоко, клапаны могут выходить за кромку головки блока цилиндров.

• превышение максимально допустимого числа оборотов. Из-за повышенных динамических сил клапаны несвоевременно закрываются и сталкиваются с поршнем.

• слишком большой зазор в опорах шатунов или изношенный подшипник шатуна, особенно при очень высокой частоте вращения при движении в спусках.

Дыра в днище поршня (двигатель с принудительным воспламенением)

Описание повреждения

В днище поршня видна дыра. Днище поршня покрыто выплавленным материалом. Образующееся большое тепло и истертый материал повреждают также юбку, в которой наблюдаются задиры.

Оценка повреждения

Повреждения такого рода вызваны калильным воспламенением. При этом превышается температура самовоспламенения газовой смеси калящими деталями в камере сгорания. Это в основном свеча зажигания, выпускной клапан и другие, находящиеся в камере сгорания, остатки горения. При этом смесь воспламеняется еще до собственного воспламенения свечей зажигания. Сжигание при этом начинается уже задолго до собственного момента зажигания, так что пламя в отличие от обычного сжигания намного дольше воздействует на днище поршня. Днище поршня нагревается из-за калильного воспламенения настолько сильно за короткое время, что материал смягчается в этом месте. Динамические силы в подъемных движениях поршня, а также быстро протекающие газы сжигания снимают мягкую массу. В результате уменьшения прочности в этом месте давление сжигания продавливает оставшееся тонкое днище вовнутрь. Часто даже не возникают задиры.

Указание:

причиной такого быстрого местного нагревания днища поршня до мягкого состояния может быть только калильное воспламенение.

Возможные причины повреждения

• свечи с недостаточным калильным числом

• слишком бедная смесь и в результате этого повышенные температуры сжигания.

• Поврежденные, негерметичные клапаны или слишком маленький клапанный зазор. Поэтому клапаны неправильно закрываются. От протекающих газов сжигания клапаны сильно нагреваются и накаливаются.

В первую очередь это касается выпускных клапанов, потому что впускные клапаны охлаждаются свежими газами.

• Накаленные остатки сжигания на днищах поршней, головке цилиндров,клапанов и свеч зажигания.

• неподходящее топливо со слишком низким октановым числом.Качество топлива должно соответствовать степени сжатия двигателя, т. е., октановое число топлива должно покрыть октановую потребность двигателя во всех режимах работы.

• дизельное топливо в бензине и в результате этого понижение октанового числа топлива.

• большое количество масла в камере сжигания из-за высокого расхода масла на поршневых кольцах или на направляющей клапана.

• высокая температура двигателя или всасываемого воздуха изза недостаточной вентиляции моторного отсека.

• общий перегрев.

Задиры в головке поршня в результате использования неправильных поршней (дизельный двигатель)

рис. 1

Описание повреждения

На головке поршня видны локальные явные риски заедания, распределенные по всему периметру. Эти риски заедания особенно сильно образовались на жаровом поясе. Они начинаются на днище поршня и кончаются на 2-ом компрессионном кольце.

Оценка повреждения

Исходя из вида повреждения, можно сказать, что причина связана с нарушениями режима сжигания. Дефект, однако не в системе впрыска, как можно было бы предполагать, а в использовании неправильного поршня.

В рамках законодательства по сокращению вредных выбросов в отработанном газе двигатели конструируются в соответствии с предписанными нормами по ОГ. Часто поршни различных норм по сокращению ОГ оптически почти не различаются. В данном случае в пределах одной и той же серии двигателей для различных норм выбросов отработанных газов используются поршни с разными диаметрами углубления. Поршень нормы по ОГ Евро 1 с диаметром углубления 77 мм в ходе ремонта двигателя был заменен поршнем нормы по ОГ Евро 2 с диаметром углубления в 75 мм. Это привело к повышенному нагреву края углубления, потому что струя форсунки попала в результате меньшего диаметра углубления не в само углубление, а на его край. В местах попадания струй впрыскиваемого топлива поэтому возник локальный перегрев материала поршня и повышенное тепловое расширение, что затем вызвало локальные задиры.

Если не используются предписанные для соответствующего двигателя и соответствующей нормы по ОГ поршни, в работе могут возникнуть серьезные нарушения режима сжигания с непредвидимыми последствиями Если не учесть повреждения, как в данном случае, то несоблюдение требований по ОГ было бы не такой большой проблемой. Более низкая мощность, повышенный расход топлива и последующий монтаж правильных поршней, однако, вызывают значительные дополнительные затраты.

Возможные причины повреждения

• использование поршней с неправильной формой, глубиной и диаметром углубления

• использование поршней других размеров (степень сжатия)

• использование поршней неправильной конструкции Не разрешается, напр., использовать поршень без охлаждающего канала, если изготовителем двигателя для соответствующего назначения (напр., достижение определенной мощности) предусмотрен охлаждающий канал.

• монтаж правильных поршней, но использование неподходящих для назначения конструктивных элементов (форсунок, уплотнений головок цилиндров, топливных насосов высокого давления или прочих элементов, оказывающих влияние на рабочую смесь или процесс сжигания).

Эрозия на жаровом поясе и на днище поршня (двигатель с принудительным воспламенением смеси)

рис. 2

Описание повреждения

Жаровой пояс имеет эрозионные сносы аналогично рис. 1, которые часто продолжаются на поверхности днища поршня (рис. 2). При этом необязательно появляются задиры или другие повреждения поршня.

Оценка повреждения

Эрозионный снос материала на жаровом поясе и на днище поршня всегда является последствием детонационного сжигания средней интенсивности в течение длительного времени. При этом создаются волны давления, распространяющиеся в цилиндре также между жаровым поясом и стенкой цилиндра до первого компрессионного кольца. В точке поворота волны давления из-за кинетической энергии из поверхности поршня вырываются мельчайшие частицы. В течение времени снос материала увеличивается, особенно тогда, когда детонационное воспламенение переходит также в калильное. В зоне повреждения материал часто снимается за кольцами до канавки маслосъемного кольца.

Возможные причины повреждения

• использование топлива с недостаточной детонационной стойкостью. Качество топлива должно соответствовать степени сжатия двигателя, т. е., октановое число топлива должно покрыть октановую потребность двигателя во всех режимах работы.

• бензин загрязнен дизельным топливом. Случайная неправильная заправка или попеременное использование баков или канистр для обоих типов топлива может привести к таким загрязнениям. Уже минимальное количество примесей дизельного топлива достаточно для сильного понижения октанового числа бензина.

• большое количество масла в камере сгорания, напр., из-за изношенных поршневых колец, направляющих клапанов и турбонагнетателя, работающего на ОГ, или тому подобное приводят к понижению детонационной стойкости топлива.

• слишком высокая степень сжатия, вызванная остатками сгорания на днищах поршня и головке цилиндра или чрезмерным шлифованием поверхности блока и головки цилиндра в ходе капитального ремонта двигателя или с целью тюнинга.

• слишком большое опережение зажигания слишком бедная смесь и в результате этого повышенные температуры сжигания, слишком высокая температура всасываемого воздуха из-за недостаточной вентиляции моторного отсека или обратного напора ОГ. Но и несвоевременное переключение заслонки всасываемого воздуха на летний режим или дефект автоматической системы переключения заслонки приводят к существенному повышению температуры всасываемого воздуха (особенно в старых карбюраторных двигателях).

opelastra10.ru

Температура - стенка - камера - сгорание

Температура - стенка - камера - сгорание

Cтраница 2

Экспериментальными исследованиями установлено, что в дизеле Д-37 М при изменении температуры воздуха на 60 ( от - 20 до 40) температура стенок камеры сгорания и днища поршня увеличивается на 100 С, а верхнего пояса цилиндров на 85 С.  [17]

В таблице 99 приводятся люмшомотрические числа индивидуальных углеводородов, а на рис. 48 -лк минометрическая характеристика углеводородов в зависимости от содержания в них водорода; рис. 49 характеризует изменение температуры стенки камеры сгорания воздушно-реактивного двигателя в зависимости от содержания в топливе водорода.  [19]

Хотя Уатсон и Кларк утверждают, что существует такой тепловой режим прогрева стенки камеры сгорания, при котором возможно полное исключение нагаро-образования, следует иметь в виду, что температура стенки камеры сгорания является производной величиной от качества смесеобразования, полноты испарения топлива и полноты его окисления. В камере сгорания ГТД нетрудно создать условия, при которых значительно повысится температура стенки, но этот путь нельзя признать целесообразным, так как он ведет к снижению прочности конструкционных сплавов, появлению градиентов температуры, короблению и прогоранию стенок камеры, что снижает надежность и долговечность двигателя.  [20]

Этот период, а следовательно, и тенденция к детонации могут быть уменьшены увеличением степени сжатия, повышением температуры и давления всасываемого в цилиндр воздуха ( наддув), а также повышением температуры стенок камеры сгорания в тех местах, куда ударяет струя топлива.  [21]

Они показывают, что тяжелые топлива легче дают нагары в виде углеродистых отложений и безостаточное сжигание таких топлив возможно лишь при установлении специально для них отработанного оптимального режима, прежде всего по распЫливанию, температуре стенок камеры сгорания и подаче окислителя.  [23]

Количество нагара, образующегося в двигателе, а также его характер ( сажистый, коксообразный) зависят от химического состава топлива и от внешних условий, основными из которых являются: состав рабочей смеси, полнота сгорания топлива, качество распыливания топлива, температура стенок камеры сгорания и некоторые другие.  [24]

По мере увеличения чисел оборотов в камерах сгорания дизелей в единицу времени сжигают большое количество топлива. При этом температуры стенок камеры сгорания, поршня и клапанов повышаются; одновременно тепловые потери от газов в стенки от каждого цикла на больших оборотах сокращаются. Вследствие этого температура газов в конце сжатия повышается и теплопередача от них к более холодному, впрыскиваемому топливу становится более интенсивной. В условиях более высоких температур физико-химическая подготовка топлива к сгоранию сокращается, что характеризуется более коротким по времени периодом задержки самовоспламенения, по углу поворота кривошипа этот период удлиняется, но весьма незначительно. На повышенных числах оборотов период сгорания удлиняется и частично переходит на расширение, вследствие чего целесообразно по мере роста оборотов увеличивать угол предварения впрыска топлива.  [25]

Чем больше теплопроводность материала камеры сгорания и поршня, тем продолжительнее получается, при прочих равных условиях, период задержки воспламенения. Такое явление объясняется тем, что с повышением теплопроводности материала температура стенок камеры сгорания и поршня получается относительно более низкими. В результате у двигателей с алюминиевыми поршнями период задержки воспламенения, скорость нарастания давления и максимальное давление сгорания получаются больше, чем двигателей с чугунными или стальными поршнями.  [26]

Эти же явления наблюдались многократно и при других дорожных и стендовых моторных испытаниях. Они могут быть объяснены тем, что при испытаниях, проводившихся в условиях большой нагрузки, температура стенок камеры сгорания и отложений выше. При этих условиях углеродистый материал может выгорать. Это приводит к уменьшению количества связующего материала и, как правило, к уменьшению веса и объема отложений. Уменьшение количества связующего материала не только препятствует накоплению отложений, но и благоприятствует отслаиванию их. Работа в условиях тяжелой нагрузки снижает также возможность воспламенения на поверхности отложений, так как значительно уменьшается количество углеродистого материала, который может находиться в раскаленном состоянии и создавать температуру, достаточную для воспламенения.  [27]

В настоящем разделе будет рассмотрено влияние физико-химических свойств топлив на интенсивность излучения пламени. При эксплуатации газотурбинных двигателей этот вопрос важен потому, что при сгорании топлив, дающих высокую интенсивность излучения пламени, температура стенок камеры сгорания резко повышается, что в некоторых случаях приводит к их короблению и прогару.  [28]

В 1959 г. американская нефтяная фирма Шел Ойл объявила [17], что ею создан коммерческий сорт реактивного топлива с теплотой сгорания ( низшей) 10 610 ккал / кг, что примерно на 3 0 - 3 5 % выше теплоты сгорания товарных сортов реактивных топлив, находящихся на эксплуатации США. По опубликованным данным, благодаря почти полному отсутствию в этом топливе ароматических углеводородов при эксплуатации двигателей устраняется дымление, уменьшается нагарообразование, а также резко снижается интенсивность излучения пламени, в результате чего понижается температура стенок камеры сгорания и удлиняются сроки службы тех частей двигателя, которые работают в зоне высоких температур.  [29]

В работе [92] указывается, что на деталях с более низкой температурой, как правило, наблюдается повышенное нагарообразование. Это подтверждается результатами исследований и других авторов, которыми установлено, что в одноцилиндровом предкамерном двигателе с отношением хода поршня к диаметру цилиндра 5 / Оц1 21 ( 115 / 95) и степенью сжатия е19 увеличение температуры стенок камеры сгорания от 200 до 550 С привело к уменьшению отложений нагара в 30 раз. Эта особенность характерна для двигателя данной конструкции и режима работы его.  [30]

Страницы:      1    2    3

www.ngpedia.ru

Оптимальный режим и температура дизельного двигателя

В последнее время можно заметить бурное развитие сферы автомобилестроения. Отдельное внимание уделяется развитию дизельных технологий. Немалая часть современных машин оснащается дизельными моторами. При этом производители не стоят на месте и постоянно модернизируют движки, наделяя их большей мощностью.

Основной принцип функционирования дизельного движка не изменяется уже много лет. При этом каждый последующий выпущенный движок становится всё более экологичным, производительным и тихим.

Шумные автомобили, с густым и тёмным дымом из выхлопной трубы и соответствующим звуковым сопровождением остались в далёком прошлом. Современные дизельные движки характеризуются высокой экономичностью, большой мощностью, отличной динамикой разгона и удобством эксплуатации. Дизельный мотор продолжает отвечать постоянно возрастающим потребностям современного общества. Рассмотрим, как производителям удается повышать технические характеристики движка, при этом отвечая требованиям экологичности.

Дизельный мотор в большей степени отличается от аналога, работающего на бензине методом создания топливной смеси, а также способом её воспламенения. Как правило, во всех моторах с карбюратором и инжектором, функционирующих на бензине, рабочий состав производится в тракте впуска. Но на сегодня существуют также движки, с функцией приготовления рабочего состава в цилиндре – что во многом напоминает работу дизеля. Существует ещё одно характерное отличие дизеля от аналога на бензине. В бензиновом движке поджиг рабочей смеси производится от искрообразования, в дизеле же поджиг состава производится благодаря высокой температуре воздуха в цилиндре.

Принципы функционирования движка таковы. Во время хода поршня вниз осуществляется допускание потока воздуха в цилиндр. Запущенный в цилиндр воздушный поток, повышает свою температуру во время обратного хода. В таком случае, температура работы мотора может находиться в приделе от семисот до девятисот градусов по Цельсию. Такая высокая температура, объясняется показателями сжатия. Во время нахождения поршня в верхнем положении, происходит впрыск смеси сопровождающийся определенным давлением, и температура увеличивается. Контактируя с горячим потоком, топливо воспламеняется. При воспламенении, дизельное топливо расширяется и ведёт к нагнетанию давления в рабочем цилиндре. В связи с этим также увеличивается температура. Данный процесс объясняет звуковое сопровождение работы дизельного мотора.

Все это помогает мотору использовать обедненный состав при небольшой цене топлива, что объясняет экономичность и практичность движка. В сравнении с бензиновым двигателем, дизель отличается высокой производительностью.

Несмотря на ряд достойных преимуществ, данный тип двигательной системы имеет свои характерные недостатки. К отрицательным сторонам можно отнести высокую шумность в процессе эксплуатации и постоянно возникающие вибрации. При этом, запустить холодный дизельный двигатель достаточно проблематично. Конечно, современные производители сводят отрицательные стороны дизельного двигателя к минимуму.

Рассмотрим характерные особенности некоторых составляющих двигательной системы, функционирующей на дизельном топливе.

Конечно, учитывая характерные особенности дизельного мотора, производителя усиливают определённые его детали. Это объясняется тем, что изменяется рабочая температура движка и увеличиваются показатели сжатия. В отличие от бензинового аналога, дизельный движок имеет более высокие показатели сжатия, в связи с чем некоторые детали в значительной мере отличаются от привычных элементов бензинового мотора.

Одной из важнейших деталей дизельного мотора является поршень. В зависимости от параметров камеры сгорания смеси и её типа, форма поршня может различаться. В некоторых системах камера сгорания установлена в дно самого поршня. Существует также характерное отличие дизельного движка в моменте движение поршня. При нахождении в максимально верхней точки, поршень может выходить за поверхность блока цилиндров.

Учитывая основную особенность воспламенения топливной смеси, дизельный двигатель не оснащается привычной совокупностью зажигания. Несмотря на это, элементы системы зажигания все же применяются на дизельном движке. Свечи, применяемые на дизелях несколько отличаются. Свеча для дизеля, имеет встроенную спираль, отвечающую за термические показатели воздушного потока. Данный элемент незаменим при запуске непрогретого мотора. Во многом технические характеристики и уровень экологичности мотора определяется системой впуска смеси и габаритами камеры сгорания.

Поговорим о принципе функционирования камер сгорания топливной смеси.

В частности от характеристик двигательной системы, на дизеле применяется камеры двух видов: разделённые и целостные. Раньше, в автомобилестроении применялись чаще раздельные отсеки. В таком случае состав подается не в пространство на поверхности подвижного поршня, а в камеру сгорания, которая располагается в ГБЦ. Конструкция раздельных устройств может различаться в частности от принципа создания смеси. Существует несколько способов создания топливной смеси в дизельном движке: перед камерная и вихревого – камерная.

В первом случае, подача состава происходит в специальный отсек, который взаимодействуют с каналами цилиндров через небольшие отверстия. Топливная смесь при взаимодействии со стенками каналов, смешивается с воздушным потоком. После воспламенения, состав стремительно движется в камеру сгорания, где происходит финальная стадия сгорания. Промежутки в каналах определяются с учетом того, чтобы во время создания состава оставалась разница давлений в камере и цилиндре. В ином случае, формирование смеси аналогично происходит в первичной камере, которая имеет вид сферы. Далее, состав подается в отсек через специальный проводник. Во время движения, состав контактирует со стенами камеры и смешивается с воздухом.

Характерное отличие конструкции мотора с раздельным отсеком сгорания в том, что процесс формирования рабочего состава проходит в несколько этапов. Такое построение процесса, в некоторой степени снижает давление на рабочий поршень, в связи с чем происходит более равномерная работа мотора.

Несмотря на это, устройство раздельной камеры имеет несколько значимых недостатков. Дело в том, что при данной конструкции двигателя увеличивается расход топливной смеси. Это объясняется некоторым количеством потерь смеси во время взаимодействия с отсеком. Также, определенная часть состава теряется при переходе воздуха из рабочего цилиндра в отсек, после чего смесь поступает обратно.Помимо потери экономичности, такие этапы частично влияют на характеристики запуска движка и изменяется рабочая температура мотора.

Строение дизелей с целостной камерой сгорания также называют движками прямого впрыска. Отсек сгорания в таком случае представляет собой специальное пространство, встроенное в дно подвижного элемента. В данном случае смесь переходит прямо в цилиндр. Некоторое время назад, такая конструкция камеры сгорания чаще использовалась для двигателей с низкими оборотами, имеющими немалый объем, которые часто устанавливались на крупногабаритные авто. Такая система, обуславливает хорошую экономичность, но во время эксплуатации все же возникают некоторые трудности. Дело в том, что при такой организации камеры сгорания усложняется процесс воспламенения топливной смеси. В связи с этим набор скорости сопровождается характерным звуковым сопровождением, а также нестабильна рабочая температура двигателя.

В последнее время в автомобилестроении нередко применяются специальные электронные системы, которые регулируют подачу топливной смеси на двигателях с прямым впуском. Большая часть современных дизельных моторов, оснащается системой электронного контроля. Такая функция приводит к снижению шумовых характеристик мотора и прибавляет двигателю экономичности, в то время как рабочая температура поддерживается в допустимом пределе.

Система подачи топливной смеси.

Данная совокупность является одной из ключевых элементов дизельного мотора. Система подачи состава обеспечивает передачу необходимой части топлива с определённым давлением.

Важнейшим компонентом ДВС является насос. Данное устройство осуществляет подачу нужного количества смеси из бака прямо в магистраль определенного цилиндра. При увеличении давления клапан форсунки открывается для допуска смеси. В случае если давление падает, форсунка закрывается. В современном автомобилестроение применяются насосы для топлива нескольких видов: рядные и распределительная. Первый вид насосов имеет несколько отдельных отсеков, которые определяются по наличию цилиндров в системе. Как становится ясно из названия, все элементы располагаются в одном ряду.  Несмотря на технические характеристики современных движков, данный вид насосов сегодня используется крайне редко. Дело в том что при такой конструкции насоса, рабочее давление изменяется исходя от движения коленвала. Поэтому, такая конструкция не экологичная.

В отличие от первого вида насосов, распределительные создают большее давление при подаче смеси, что обеспечивает соответствие нормам токсичности выхлопных газов. Данный вид насосов регулирует давление исходя от основных параметров мотора, что является весьма удобным при эксплуатации. Также характерным отличаем данного вида насосов является компактность. Распределительный насос характеризуется хорошей равномерностью впрыска топлива в цилиндре. Также одним из преимуществ данного вида насосов является равномерная работа при высоких оборотах мотора. Конечно, как и любое другое устройство распределительный насос имеет свои слабые стороны. Дело в том что данный вид компрессора весьма привередлив к качеству используемой смеси. Это объясняется тем что каждая составляющая устройства в ходе работы смазывается используемой смесью.

Для подачи топлива, также используется форсунка, которая вмонтирована в ГБЦ. Количество форсунок в данном случае полностью повторяет число цилиндров. При этом, каждый процесс работы мотора происходит поочерёдно. Магистрали форсунки также находится в голове блока и имеют вид каналов. Возможность работать поочерёдно, позволяет производить первичный пуск топлива – небольшого количества. Благодаря данной возможности, работа двигателя становится более мягкой и равномерный, что хорошо сказывается на экологичности отработанных газов. Основным недостатком данных устройств является относительно высокая цена которая объясняется сложной конструкцией.

Турбонаддув.

Турбодизель, одна из наиболее мощных разновидностей моторов. Благодаря турбонаддуву, цилиндры мотора наполняются необходимым количеством смеси, что позволяет во многом повысить продуктивность движка.

Такое строение двигателя позволяет увеличить давление отработанных газов, в связи с чем практически полностью исключается возможность провала которые так характерны для движков на бензине. Это связано с тем, что компрессор обеспечивает наддув с самого начала функционирования мотора. Как известно, одним из отличий дизеля является отсутствие заслонки дросселя. В связи с этим, для осуществления контроля за работой двигателя не требуются дополнительные системы управления. Данное устройство двигателя, позволяет обеспечить равномерность мощности несмотря на объем мотора. Таким образом, турбонаддув позволяет уменьшить массу мотора.

Турбонаддув особенно актуален при эксплуатации автомобиля в высокогорных условиях, где приходиться компенсировать нехватку воздуха для того чтобы удерживать мощность. Одним из характерных недостатков данной конструкции двигателя, является привередливый в эксплуатации компрессор. В связи с тем, что компрессор весьма чувствителен к качеству моторного масла, срок его эксплуатации несколько ниже ресурса мотора.

Рабочая температура данного вида моторов отличается от стандартного двигателя работающего на ДТ. Данная конструкция характеризуется повышенной температурой в отсеке сгорания. Температура поддерживается маслом, которое попадает на поршни через определенный распылитель.

Конечно, турбодизель является надежной и весьма продуктивной конструкцией двигателя. Но срок эксплуатации данного вида мотора, все же меньше чем у обычного дизеля.

Похожие статьи

carmend.ru

Камера - сгорание - двигатель

Камера - сгорание - двигатель

Cтраница 2

В камере сгорания двигателя, работающего на смеси кислорода с водородом, образуются горячие водяные пары при давлении р 8 32 107 Па. Определить максимальный КПД такого двигателя, если температура отработанных паров Т2 - 1000 К.  [16]

В камере сгорания двигателя теплоотвод в стенки значительно больше, чем в сферической бомбе. Особенно он велик в начале сгорания, когда пламя начинает распространяться от свечи, расположенной у холодной стенки, и отношение площади соприкосновения со стенкой к поверхности объема, охваченного пламенем, весьма велико. Площадь соприкосновения со стенкой в автомобильной камере сгорания сильно возрастает также в конце сгорания вследствие резкого увеличения отношения поверхности части заряда, сгорающей в последнюю очередь, к ее объему.  [18]

В камере сгорания двигателя развиваются очень высокие температуры, достигающие 2000 С.  [19]

В камере сгорания двигателя энергичное окисление углеводородов и накопление пероксидных соединений начинается в конце такта сжатия в связи со значительным повышением температуры. Процессы окисления приобретают особенно большую скорость после воспламенения смеси и образования фронта пламени. По мере сгорания рабочей смеси температура и давление в камере сгорания быстро нарастают, что способствует дальнейшей интенсификации окисления в несгоревшей части рабочей смеси.  [20]

В камере сгорания двигателя применено тридцать осевых за-вихрителей ( по одному на каждую топливную форсунку), которые способствуют обеднению топливовоздушной смеси в первичной зоне камеры, что позволяет исключить образование видимого дыма с высоким содержанием частиц углерода, который обычно является результатом переобогащения смеси в этой зоне.  [21]

В камере сгорания двигателя внутреннего сгорания развиваются очень высокие температуры, достигающие в момент сгорания топливной смеси 2000 и более.  [22]

В компактных камерах сгорания двигателей с подвесными клапанами свечу по тем же соображениям следует устанавливать также ближе к выпускному клапану.  [23]

При изготовлении камер сгорания двигателей, работающих по схеме /, применяется литье в кокиль.  [24]

Особенности конструкции камеры сгорания двигателя с подводом теплоты при постоянном объеме приводят к существенно пульсирующим режимам работы. Поэтому, несмотря на его более высокий термический КПД по сравнению с КПД для двигателя с подводом теплоты при постоянном давлении, он широкого применения в практике не нашел.  [26]

Затем очищают камеру сгорания двигателя от смазки следующим образом: вливают в цилиндр через отверстие под свечу около 50 г бензина и проворачивают коленчатый вал пусковым рычагом на 20 - 25 оборотов; в промытый таким образом цилиндр заливают около 10 см3 свежего масла и проворачивают 3 - 5 раз коленчатый вал двигателя. После этого промывают бензином или керосином ТБ, заправляют его бензином и делают пробный пуск двигателя. Прогревают его на соответствующих режимах согласно инструкции по эксплуатации.  [27]

Масло в камеру сгорания двигателя из цилиндра передается поршневыми кольцами. Под этим давлением масло поступает в зазоры под кольцом и за кольцом. При движении поршня вверх кольцо вследствие трения прижимается к нижней кромке кольцевого паза. При перемещении кольца к нижней его кромке часть масла выдавливается в зазор между поршнем и цилиндром, а часть вверх, в камеру сгорания.  [29]

Даже топки и камеры сгорания двигателей входят в эту категорию, поскольку топливо в этих устройствах часто вводят в виде распыленных капель, которые должны испариться до начала горения.  [30]

Страницы:      1    2    3    4

www.ngpedia.ru

температура в камере сгорания - это... Что такое температура в камере сгорания?

 температура в камере сгорания

 

температура в камере сгорания — [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

Тематики

Справочник технического переводчика. – Интент. 2009-2013.

Смотреть что такое "температура в камере сгорания" в других словарях:

technical_translator_dictionary.academic.ru


Смотрите также