ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Способ подачи и смешения газа и бензина в двигатель внутреннего сгорания. Температура горения газа и бензина в двс


Новости дня: Газ или бензин: плюсы и минусы - Свободная Пресса

Аргументов «за» при использовании пропан-бутановой смеси в качестве топлива для автомобилей — великое множество. Но есть и подводные камни. Которые не всегда перечеркиваются дешевизной газа.

О каком газе идёт речь?

Когда речь заходит об использовании газа вместо бензина, то часто возникает путаница, отягощаемая криками, что известный монополист с буквой G и язычком пламени на логотипе и так неплохо на нас наживается. Так вот, этот монополист добывает и продаёт природный газ метан. Этот газ в нормальных условиях может существовать только в газообразном виде и поэтому размещается в баллонах под давлением до 250 атмосфер. Но в таком виде его в баллонах много не поместится (в массовом выражении), поэтому для более-менее приемлемого запаса хода баллонов должно быть много. И в легковом автомобиле разместить их крайне проблематично. Конечно, пытаются делать баллоны из современных композитных материалов, в которых помещается чуть больше газа из-за большего давления, но всё равно, запас хода не достигает и 300 километров. А вот на грузовиках и на крышах автобусов места для баллонов много.

Другое дело — сжиженная смесь пропана и бутана. При относительно небольшом давлении (примерно 10 атмосфер) и при температуре +20°С пропан превращается в жидкость. А для снижения этого давления и для пущей безопасности добавляют бутан. И жидкая фаза — это уже совсем другое дело в плане запаса топлива на борту автомобиля.

Кстати, упомянутый выше монополист к пропан-бутановой смеси не имеет никакого отношения. И именно эта смесь применяется в качестве топлива для легковых автомобилей.

«Плюсы»

Прежде всего — цена за литр топлива. Литр «пропан-бутана» почти всегда в два раза дешевле литра бензина АИ-95. Теплотворная способность этой смеси чуть меньше бензина, и расход его чуть больше. Но выгода всё равно колоссальная. Даже с учётом затрат на установку газобалонного оборудования (ГБО).

Следующий плюс — октановое число газа составляет примерно 105 единиц. Это означает, что возникновение такого вредного и разрушительного явления, как детонация, абсолютно исключено. С высоким октановым числом, правда, связывают и вероятность «прогара» выпускных клапанов из-за меньшей скорости сгорания смеси газа с воздухом. Но на современных моторах эта проблема почти не актуальна.

Третий плюс, который любят подчёркивать установщики ГБО, — газообразное топливо не смывает плёнку масла со стенок цилиндров и не попадает в картер, где портит масло. Но это явление было характерно для карбюраторной системы питания, где тонкость распыла бензина была невысокая. Современные же системы впрыска с форсунками дают очень мелкий распыл, и смыв масляной плёнки уже не актуален.

«Минусы»

Их, по словам тех же установщиков ГБО, совсем немного. Это, прежде всего, уменьшение полезного объёма багажника за счёт размещения там баллона. Ну и чуть меньший ресурс свечей и более высокие требования к их качеству.

Что касается безопасности, то баллоны и их «обвязка» даже безопаснее бензина. Если не верите на слово — погуглите как образуются и взрываются смеси бензина с воздухом и газа с воздухом.

А вот про ещё один «минус» газа вам не расскажут ни в одном установочном центре ГБО. А если и расскажут, то честь им и хвала, которая тут же подкрепляется необходимостью установки так называемого «лубрикатора». За который вы тоже заплатите установщикам. Но обо всём по порядку. И сначала — случай из собственного опыта.

В начале 2005 года появилась у меня «Хонда Торнео». И знакомые газовщики уболтали меня на установку ГБО 4-го поколения. Это то самое поколение, которые имеет электронное управление и подаёт газ в цилиндры при помощи специальных форсунок. Короче, на тот момент — самый передовой писк газовой моды.

Поставили, подключили ноутбук, настроили. Показали графики и таблицы — дозирование газа в идеале на всех возможных режимах движения. Да и по поведению машины было понятно, что всё тип-топ. Начал я ездить на газе и радоваться экономии. Но летом решил податься «на дальняк». И во время возвращения домой мотор моей «Хонды» захандрил. Поначалу это было похоже на «умирание» свечей. Я вкрутил новые, но изменений не последовало. На бензине мотор работал получше, но тоже явно нештатно.

С горем пополам приезжаю к ребятам в проверенный «хондовский» сервис. Там очень быстро вынесли вердикт — «ушли» зазоры… впускных клапанов. Вот так новость! С чего бы это? Ребята предположили, что всему виною… газ.

Клапаны мне отрегулировали по новой, и поехал я к газовщикам. А те, похоже, меня уже ждали. И сразу спросили — клапаны? Я им в ответ — а что, мол, не предупредили заранее, когда ставили ГБО, редиски??? Газовщики покаялись, но рассказали, что по таким случаям ещё не набралась статистика. И мой случай — третий или четвёртый в их практике. И что примечательно — все проблемы связаны с «Хондами». Но при этом у моего хорошего приятеля тоже «Хонда» и тоже на газе, но он ездит и в ус не дует. Но эксплуатирует свою «Хонду» исключительно в городе — это означает частые запуски двигателя, когда тот работает на бензине, и относительно небольшие пробеги на газе. Я же к моменту возникновения проблем отмахал более 8000 километров практически на одном только газе.

И вот что произошло. При работе на бензине его (бензина) микро-капельки, с одной стороны, являются тепловым мостиком, благодаря которому происходит передача избыточного тепла с тарелки клапана на седло. С другой стороны, эти же микро-капельки играют роль, своего рода, амортизаторов при соударении тарелки с седлом. При работе же на газе ничего этого не происходит, и на поверхности седла происходит постоянная эрозия (выкрашивание). Как следствие — ухудшение герметичности и «уход» клапанных зазоров.

Примечательно, что этому явлению, в основном, подвержены моторы «Хонды». В меньшей степени — отдельные моторы «Тойоты» и «Субару». И некоторые другие. Остальные прекрасно работают на газе и вышеозначенных проблем не знают. Не менее примечательно, что «Хонда» на внутренний рынок Японии делает моторы для работы на газе с иной геометрией клапанов и сёдел и с другими материалами, из которых они изготовлены.

Газовщики тут же предложили установить новые клапанные сёдла, которые будут изготовлены из… бериллиевой бронзы. Которую они «достают» через «дырку в заборе» на ближайшем оборонном заводе. Но автомобиль уже готовился к продаже, и ГБО было просто демонтировано.

Так вот, чтобы не происходило выкрашивание сёдел впускных клапанов, устанавливают так называемый «лубрикатор», который впрыскивает во впускной коллектор специальное маловязкое легкосгораемоё масло. Расход этого масла невелик, но выгода от использования газа становится меньше. Ведь нужно потратиться на сам лубрикатор и покупать масло для него. Но всё равно — выгода остаётся. Пускай не двукратная, а полуторакратная.

И повторимся — этой эрозионной напасти подвержены очень немногие моторы. И давно работающие на рынке установщики ГБО прекрасно знают — какие именно. Лично я, когда, наконец, куплю себе большой американский пикап, то точно поставлю на него ГБО. А с лубрикатором или нет — изучу проблематику на профильных форумах и порешаю с газовщиками.

Фото: Caro / Teich/ Globallookpress

svpressa.ru

Способ подачи и смешения газа и бензина в двигатель внутреннего сгорания

Изобретение относится к двигателестроению, в частности к способам подачи и смешения газа и бензина в двигателе внутреннего сгорания. Изобретение позволяет осуществлять работу двигателя внутреннего сгорания на всех эксплуатационных режимах с любыми комбинациями подачи топлива, оптимизировать расход видов топлива, улучшить экономичность и экологичность при эксплуатации автомобилей. В способе подачи и смешения газа и бензина в двигатель внутреннего сгорания, включающем подачу жидкого и газообразного топлива и воспламенение топлива от электрического зажигания, запуск двигателя осуществляют на газобензовоздушной смеси, а прогрев до температуры 60±5°С - на бензиновоздушной смеси. Подбор видов топлива, их пропорцию и управление подачей при работе двигателя осуществляют электронным блоком управления по сигналам от датчиков температуры и нагрузки на двигатель. При достижении двигателем температуры 60±5°С включается инжектор газа и отключается инжектор жидкого топлива, двигатель работает на газе. В начале движения при увеличении оборотов включается инжектор жидкого топлива, в двигатель поступает газобензовоздушная смесь. При достижении оборотов двигателя, соответствующих максимальной мощности, отключается инжектор жидкого топлива, двигатель продолжает работу на газе. 1 ил.

 

Изобретение относится к области автомобилестроения, а именно к двигателям внутреннего сгорания с воспламенением от электрического зажигания, работающим на газе, бензине и смеси газа с бензином.

Широко известны двигатели, используемые в автомобилях и работающие на смешанном топливе. Смотри, например, авторские свидетельства СССР №№1650933, опубл. 20.03.89, 91754, опубл. 17.07.50 и другие.

Известны также различные способы работы двигателей внутреннего сгорания на смешенном топливе. Смотри, например, а.с. №91754.

Наиболее близким к заявляемому из известных является способ подачи и смешения газа и бензина в карбюраторную систему двигателя внутреннего сгорания по патенту России №2216636, опубл. 20.11.2003. Этот способ включает подачу жидкого и газообразного топлива и воспламенение топлива от электрического зажигания, при этом запуск двигателя осуществляют стартером, раскручивающим двигатель до 450-650 об/мин, далее в двигатель подают газобензиновую смесь, на которой двигатель набирает обороты 1000-1100 об/мин и температуру 20±5°С, далее двигатель прогревают до 60±5°С на бензиновоздушной смеси, режим холостого хода обеспечивают на газовоздушной смеси, работу двигателя с 1000-1100 об/мин до 2500-2700 об/мин обеспечивают на газобензиновоздушной смеси, а при более высоких оборотах - на бензиновоздушной смеси.

Недостатком данного способа является то, что он не достаточно вариативен, т.е. не предоставляет возможности работать только на газе, который является наиболее экономичным видом топлива.

Задачей изобретения является создание способа, позволяющего осуществлять работу двигателя внутреннего сгорания на всех эксплуатационных режимах с любыми комбинациями подачи топлива, оптимизировать расход всех видов топлива с максимальной эффективностью и с максимальным достижением технических характеристик работы двигателя, достижения наибольшей экономичности топлива и экологичности при эксплуатации автомобилей.

Технический результат заключается в возможности применения изобретения на двигателях с инжекторными системами питания без конструктивной переделки двигателя, при этом обеспечивается возможность эксплуатации автомобиля тремя вариантами использования топлива:

- только на бензине;

- только на газе;

- на смеси бензина и газа,

причем в последнем случае управление подачей бензина и газа происходит автоматически, и при этом обеспечиваются условия для максимального использования положительных свойств каждого вида топлива (бензина и газа), когда недостатки одного топлива компенсируются преимуществами другого.

Этот технический результат реализуется следующим образом. В способе подачи и смешения газа и бензина в двигатель внутреннего сгорания, включающем подачу жидкого и газообразного топлива и воспламенение топлива от электрического зажигания, в котором запуск двигателя осуществляют на газобензовоздушной смеси, а прогрев до температуры 60±5°С - на бензиновоздушной смеси, согласно изобретению, подбор видов топлива, их пропорцию и управление подачей при работе двигателя осуществляют электронным блоком управления по сигналам от датчиков температуры и нагрузки на двигатель, при достижении двигателем температуры 60±5°С включается инжектор газа и отключается инжектор жидкого топлива, двигатель работает на газе, в начале движения при увеличении оборотов включается инжектор жидкого топлива, в двигатель поступает газобензовоздушная смесь, при достижении оборотов двигателя, соответствующих максимальной мощности, отключается инжектор жидкого топлива, двигатель продолжает работу на газе.

На приведенном чертеже схематически изображено устройство, реализующее способ подачи и смешения газа и бензина.

Это устройство содержит две параллельные линии подачи топлива: 1 - линию подачи газа, 2 - линию подачи жидкого топлива. На линии подачи газа 1 последовательно установлены: источник горючего газа (газовый баллон) 3, запорный электромагнитный клапан 4, редуктор 5, дозатор горючего газа - инжектор 6. На линии подачи жидкого топлива 2 также последовательно установлены: топливный бак (бензобак) 7, запорный электромагнитный клапан 8, дозатор жидкого топлива - инжектор 9. Обе линии 1 и 2 входят в коллектор двигателя внутреннего сгорания 10. Клапаны 4, 8 и инжекторы 6, 9 электрически соединены с блоком управления 11, с которым также соединены датчик температуры 12 и группа датчиков состояния работы двигателя внутреннего сгорания 13 и 14.

На блоке 11 установлен переключатель режима работы 15, а с коллектором двигателя внутреннего сгорания 10 соединен воздухозаборник 16.

Предлагаемое устройство подачи топлива в двигатель внутреннего сгорания может работать в трех режимах, задаваемых различными положениями переключателя 15:

- в положении "Бензин" двигатель работает в штатном режиме на бензовоздушной смеси;

- в положении "Газ" - в штатном режиме на газовоздушной смеси;

- в положении "Бинар" - на бензогазовоздушной смеси с автоматическим дозированием и смешением бензина, газа и воздуха в нужных пропорциях в зависимости от температуры и нагрузки двигателя.

Работа в режиме "Бинар" осуществляется следующим образом. При включении электропитания двигателя из источника горючего газа (газового баллона) 3 через управляемый открытый электромагнитный клапан 4 и редуктор 5 газ подается к инжектору 6. При достижении двигателем 450 об/мин, сообщаемых ему стартером, блок управления 11 включает работу инжектора газа 6 и газ подается в коллектор двигателя 10.

Одновременно из топливного бака (бензобака) 7 через управляемый открытый электромагнитный клапан 8 с помощью инжектора 9 в коллектор двигателя 10 поступает бензин.

В коллекторе 10 газ и бензин смешиваются в необходимых пропорциях с воздухом, поступающим через воздухозаборник 16, и двигатель запускается на газобензовоздушной смеси. Двигатель развивает обороты до примерно 1000-1100 об/мин, но при этом он еще не достаточно прогрет. Прогрев двигателя до температуры 60°С±5°С продолжается на бензине. Поступление газа прекращается. Движение можно начинать.

При достижении температуры 60°С±5°С датчик температуры 12 подает сигнал в блок управления 11, который включает работу инжектора 6 в режиме холостого хода и отключает работу инжектора 9. Двигатель начинает работу на газе.

В начале движения при увеличении оборотов двигателя один из датчиков группы датчиков состояния работы двигателя: датчик числа оборотов (актан-корректор), кислородный датчик, сейсмодатчик, дает сигнал блоку управления 11, который включит работу инжектора 9 и в двигатель начинает поступать газобензиновоздушная смесь. При достижении оптимальных оборотов двигателя, соответствующих максимальной мощности, и отсутствии повышенной нагрузки блок управления отключает работу инжектора 9 и двигатель продолжает работу на газе в стабильном режиме в том числе и на максимальных оборотах. Включение инжектора 9 происходит только когда появляется необходимость увеличения мощности (дополнительная нагрузка), например при резком обгоне, при преодолении препятствия и т.п.

Таким образом, применение предлагаемого способа позволяет осуществлять работу двигателя на любых видах топлива в наиболее экономичном режиме и с учетом климатических условий, включая активное использование более экологически чистого газового топлива и при этом обеспечивая условия для максимального использования положительных свойств каждого вида топлива.

Способ подачи и смешения газа и бензина в двигатель внутреннего сгорания, включающий подачу жидкого и газообразного топлива и воспламенение топлива от электрического зажигания, в котором запуск двигателя осуществляют на газобензовоздушной смеси, а прогрев до температуры 60±5°С на бензиновоздушной смеси, отличающийся тем, что подбор видов топлива, их пропорцию и управление подачей при работе двигателя осуществляют электронным блоком управления по сигналам от датчиков температуры и нагрузки на двигатель, при достижении двигателем температуры 60±5°С включается инжектор газа и отключается инжектор жидкого топлива, двигатель работает на газе, вначале движения при увеличении оборотов включается инжектор жидкого топлива, в двигатель поступает газобензовоздушная смесь, при достижении оборотов двигателя, соответствующих максимальной мощности, отключается инжектор жидкого топлива, двигатель продолжает работу на газе.

www.findpatent.ru

способ подачи и смешения газа и бензина в двигатель внутреннего сгорания - патент РФ 2272929

Изобретение относится к двигателестроению, в частности к способам подачи и смешения газа и бензина в двигателе внутреннего сгорания. Изобретение позволяет осуществлять работу двигателя внутреннего сгорания на всех эксплуатационных режимах с любыми комбинациями подачи топлива, оптимизировать расход видов топлива, улучшить экономичность и экологичность при эксплуатации автомобилей. В способе подачи и смешения газа и бензина в двигатель внутреннего сгорания, включающем подачу жидкого и газообразного топлива и воспламенение топлива от электрического зажигания, запуск двигателя осуществляют на газобензовоздушной смеси, а прогрев до температуры 60±5°С - на бензиновоздушной смеси. Подбор видов топлива, их пропорцию и управление подачей при работе двигателя осуществляют электронным блоком управления по сигналам от датчиков температуры и нагрузки на двигатель. При достижении двигателем температуры 60±5°С включается инжектор газа и отключается инжектор жидкого топлива, двигатель работает на газе. В начале движения при увеличении оборотов включается инжектор жидкого топлива, в двигатель поступает газобензовоздушная смесь. При достижении оборотов двигателя, соответствующих максимальной мощности, отключается инжектор жидкого топлива, двигатель продолжает работу на газе. 1 ил. способ подачи и смешения газа и бензина в двигатель внутреннего сгорания, патент № 2272929

Рисунки к патенту РФ 2272929

способ подачи и смешения газа и бензина в двигатель внутреннего сгорания, патент № 2272929

Изобретение относится к области автомобилестроения, а именно к двигателям внутреннего сгорания с воспламенением от электрического зажигания, работающим на газе, бензине и смеси газа с бензином.

Широко известны двигатели, используемые в автомобилях и работающие на смешанном топливе. Смотри, например, авторские свидетельства СССР №№1650933, опубл. 20.03.89, 91754, опубл. 17.07.50 и другие.

Известны также различные способы работы двигателей внутреннего сгорания на смешенном топливе. Смотри, например, а.с. №91754.

Наиболее близким к заявляемому из известных является способ подачи и смешения газа и бензина в карбюраторную систему двигателя внутреннего сгорания по патенту России №2216636, опубл. 20.11.2003. Этот способ включает подачу жидкого и газообразного топлива и воспламенение топлива от электрического зажигания, при этом запуск двигателя осуществляют стартером, раскручивающим двигатель до 450-650 об/мин, далее в двигатель подают газобензиновую смесь, на которой двигатель набирает обороты 1000-1100 об/мин и температуру 20±5°С, далее двигатель прогревают до 60±5°С на бензиновоздушной смеси, режим холостого хода обеспечивают на газовоздушной смеси, работу двигателя с 1000-1100 об/мин до 2500-2700 об/мин обеспечивают на газобензиновоздушной смеси, а при более высоких оборотах - на бензиновоздушной смеси.

Недостатком данного способа является то, что он не достаточно вариативен, т.е. не предоставляет возможности работать только на газе, который является наиболее экономичным видом топлива.

Задачей изобретения является создание способа, позволяющего осуществлять работу двигателя внутреннего сгорания на всех эксплуатационных режимах с любыми комбинациями подачи топлива, оптимизировать расход всех видов топлива с максимальной эффективностью и с максимальным достижением технических характеристик работы двигателя, достижения наибольшей экономичности топлива и экологичности при эксплуатации автомобилей.

Технический результат заключается в возможности применения изобретения на двигателях с инжекторными системами питания без конструктивной переделки двигателя, при этом обеспечивается возможность эксплуатации автомобиля тремя вариантами использования топлива:

- только на бензине;

- только на газе;

- на смеси бензина и газа,

причем в последнем случае управление подачей бензина и газа происходит автоматически, и при этом обеспечиваются условия для максимального использования положительных свойств каждого вида топлива (бензина и газа), когда недостатки одного топлива компенсируются преимуществами другого.

Этот технический результат реализуется следующим образом. В способе подачи и смешения газа и бензина в двигатель внутреннего сгорания, включающем подачу жидкого и газообразного топлива и воспламенение топлива от электрического зажигания, в котором запуск двигателя осуществляют на газобензовоздушной смеси, а прогрев до температуры 60±5°С - на бензиновоздушной смеси, согласно изобретению, подбор видов топлива, их пропорцию и управление подачей при работе двигателя осуществляют электронным блоком управления по сигналам от датчиков температуры и нагрузки на двигатель, при достижении двигателем температуры 60±5°С включается инжектор газа и отключается инжектор жидкого топлива, двигатель работает на газе, в начале движения при увеличении оборотов включается инжектор жидкого топлива, в двигатель поступает газобензовоздушная смесь, при достижении оборотов двигателя, соответствующих максимальной мощности, отключается инжектор жидкого топлива, двигатель продолжает работу на газе.

На приведенном чертеже схематически изображено устройство, реализующее способ подачи и смешения газа и бензина.

Это устройство содержит две параллельные линии подачи топлива: 1 - линию подачи газа, 2 - линию подачи жидкого топлива. На линии подачи газа 1 последовательно установлены: источник горючего газа (газовый баллон) 3, запорный электромагнитный клапан 4, редуктор 5, дозатор горючего газа - инжектор 6. На линии подачи жидкого топлива 2 также последовательно установлены: топливный бак (бензобак) 7, запорный электромагнитный клапан 8, дозатор жидкого топлива - инжектор 9. Обе линии 1 и 2 входят в коллектор двигателя внутреннего сгорания 10. Клапаны 4, 8 и инжекторы 6, 9 электрически соединены с блоком управления 11, с которым также соединены датчик температуры 12 и группа датчиков состояния работы двигателя внутреннего сгорания 13 и 14.

На блоке 11 установлен переключатель режима работы 15, а с коллектором двигателя внутреннего сгорания 10 соединен воздухозаборник 16.

Предлагаемое устройство подачи топлива в двигатель внутреннего сгорания может работать в трех режимах, задаваемых различными положениями переключателя 15:

- в положении "Бензин" двигатель работает в штатном режиме на бензовоздушной смеси;

- в положении "Газ" - в штатном режиме на газовоздушной смеси;

- в положении "Бинар" - на бензогазовоздушной смеси с автоматическим дозированием и смешением бензина, газа и воздуха в нужных пропорциях в зависимости от температуры и нагрузки двигателя.

Работа в режиме "Бинар" осуществляется следующим образом. При включении электропитания двигателя из источника горючего газа (газового баллона) 3 через управляемый открытый электромагнитный клапан 4 и редуктор 5 газ подается к инжектору 6. При достижении двигателем 450 об/мин, сообщаемых ему стартером, блок управления 11 включает работу инжектора газа 6 и газ подается в коллектор двигателя 10.

Одновременно из топливного бака (бензобака) 7 через управляемый открытый электромагнитный клапан 8 с помощью инжектора 9 в коллектор двигателя 10 поступает бензин.

В коллекторе 10 газ и бензин смешиваются в необходимых пропорциях с воздухом, поступающим через воздухозаборник 16, и двигатель запускается на газобензовоздушной смеси. Двигатель развивает обороты до примерно 1000-1100 об/мин, но при этом он еще не достаточно прогрет. Прогрев двигателя до температуры 60°С±5°С продолжается на бензине. Поступление газа прекращается. Движение можно начинать.

При достижении температуры 60°С±5°С датчик температуры 12 подает сигнал в блок управления 11, который включает работу инжектора 6 в режиме холостого хода и отключает работу инжектора 9. Двигатель начинает работу на газе.

В начале движения при увеличении оборотов двигателя один из датчиков группы датчиков состояния работы двигателя: датчик числа оборотов (актан-корректор), кислородный датчик, сейсмодатчик, дает сигнал блоку управления 11, который включит работу инжектора 9 и в двигатель начинает поступать газобензиновоздушная смесь. При достижении оптимальных оборотов двигателя, соответствующих максимальной мощности, и отсутствии повышенной нагрузки блок управления отключает работу инжектора 9 и двигатель продолжает работу на газе в стабильном режиме в том числе и на максимальных оборотах. Включение инжектора 9 происходит только когда появляется необходимость увеличения мощности (дополнительная нагрузка), например при резком обгоне, при преодолении препятствия и т.п.

Таким образом, применение предлагаемого способа позволяет осуществлять работу двигателя на любых видах топлива в наиболее экономичном режиме и с учетом климатических условий, включая активное использование более экологически чистого газового топлива и при этом обеспечивая условия для максимального использования положительных свойств каждого вида топлива.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ подачи и смешения газа и бензина в двигатель внутреннего сгорания, включающий подачу жидкого и газообразного топлива и воспламенение топлива от электрического зажигания, в котором запуск двигателя осуществляют на газобензовоздушной смеси, а прогрев до температуры 60±5°С на бензиновоздушной смеси, отличающийся тем, что подбор видов топлива, их пропорцию и управление подачей при работе двигателя осуществляют электронным блоком управления по сигналам от датчиков температуры и нагрузки на двигатель, при достижении двигателем температуры 60±5°С включается инжектор газа и отключается инжектор жидкого топлива, двигатель работает на газе, вначале движения при увеличении оборотов включается инжектор жидкого топлива, в двигатель поступает газобензовоздушная смесь, при достижении оборотов двигателя, соответствующих максимальной мощности, отключается инжектор жидкого топлива, двигатель продолжает работу на газе.

www.freepatent.ru

А у нас в машине газ…

Пока бензин и дизельное топливо неумолимо дорожают, а всевозможные альтернативные силовые установки для автотранспорта остаются страшно далёкими от народа, проигрывая традиционным двигателям внутреннего сгорания в цене, автономности и эксплуатационных расходах, самым реальным способом сэкономить на заправке остаётся перевод автомобиля на «газовую диету». На первый взгляд это выгодно: стоимость переоборудования автомобиля вскоре окупается за счёт разницы в цене горючего, особенно при регулярных коммерческих и пассажирских перевозках. Недаром в Москве и многих других городах значительная доля муниципального автотранспорта уже давно переведена на газ. Но тут возникает закономерный вопрос: почему же тогда доля газобаллонных автомобилей в транспортном потоке и в нашей стране, и за рубежом не превышает нескольких процентов? Что таит обратная сторона газового баллона?

Предупреждающие таблички на заправке установлены неспроста: каждое соединение технологического газопровода — потенциальное место утечек горючего газа.

Баллоны для сжиженного газа легче, дешевле и разнообразнее по форме, чем для сжатого, а потому их проще компоновать исходя из свободного пространства в автомобиле и необходимого запаса хода.

Обратите внимание на разницу в цене жидкого и газообразного топлива.

Баллоны со сжатым метаном в кузове тентованной «Газели».

Редуктор-испаритель в пропановой системе требует подогрева. На фото хорошо виден шланг, соединяющий жидкостный теплообменник редуктора с системой охлаждения двигателя.

Принципиальная схема работы газобаллонного оборудования на карбюраторном двигателе.

Схема работы оборудования для сжиженного газа без перевода его в газообразную фазу в двигателе внутреннего сгорания с распределённым впрыском.

Метановая заправка — это просто специализированная компрессорная станция на газопроводе. В абсолютном большинстве случаев здесь же имеется стационарная ёмкость для заправки сжиженным пропан-бутаном.

Пропан-бутан хранят и перевозят в цистернах (на фото — за синими воротами). Благодаря такой мобильности заправку можно разместить в любом удобном месте, а при необходимости быстро перенести в другое.

На пропановой колонке заправляют не только автомобили, но и бытовые баллоны.

Колонка для сжиженного газа внешне отличается от бензиновой, но процесс заправки похож. Отсчёт залитого топлива идёт в литрах.

Понятие «газовое автомобильное топливо» включает в себя две совершенно разных по составу смеси: природный газ, в котором до 98% приходится на метан, и производимый из попутного нефтяного газа пропан-бутан. Кроме безусловной горючести общим для них является ещё и агрегатное состояние при атмосферном давлении и комфортных для жизни температурах. Однако при низких температурах физические свойства этих двух наборов лёгких углеводородов здорово различаются. Из-за этого они требуют совершенно разного оборудования для хранения на борту и подачи в двигатель, да и в эксплуатации автомобили с разными системами газового питания имеют несколько существенных различий.

Сжиженный газ

Пропан-бутановая смесь хорошо знакома туристам и дачникам: именно её заправляют в бытовые газовые баллоны. Она же составляет основную долю газа, который впустую сгорает в факелах нефтедобывающих и перерабатывающих предприятий. Пропорциональный состав топливной пропан-бутановой смеси может различаться. Дело не столько в исходном составе нефтяного газа, сколько в температурных свойствах получаемого горючего. Как моторное топливо чистый бутан (С4Н10) хорош во всех отношениях, кроме того, что он переходит в жидкое состояние уже при 0,5°С при атмосферном давлении. Поэтому к нему добавляют менее калорийный, но более холодостойкий пропан (С2Н8) с температурой кипения –43°С. Соотношение этих газов в смеси задаёт нижний температурный предел применения топлива, которое по этой же самой причине бывает «летним» и «зимним».

Относительно высокая температура кипения пропан-бутана даже в «зимнем» исполнении позволяет хранить его в баллонах в виде жидкости: уже под небольшим давлением он переходит в жидкую фазу. Отсюда и другое название пропан-бутанового топлива — сжиженный газ. Это удобно и экономично: высокая плотность жидкой фазы позволяет уместить в малом объёме большое количество топлива. Свободное пространство над жидкостью в баллоне занято насыщенным паром. По мере расхода газа давление в баллоне остаётся постоянным до самого его опустошения. Водителям «пропановых» машин при заправке следует заливать баллон максимум на 90%, чтобы оставить внутри место для паровой подушки.

Давление внутри баллона прежде всего зависит от температуры окружающей среды. При отрицательных температурах оно падает ниже одной атмосферы, но даже этого достаточно для поддержания работоспособности системы. Зато с потеплением оно быстро растёт. При 20°C давление в баллоне составляет уже 3—4 атмосферы, а при 50°C достигает 15—16 атмосфер. Для большинства автомобильных газовых баллонов эти значения близки к предельным. А это значит, что при перегреве в жаркий полдень на южном солнцепёке тёмный автомобиль с баллоном сжиженного газа на борту… Нет, не взорвётся, как в голливудском боевике, а начнёт сбрасывать излишки пропан-бутана в атмосферу через предохранительный клапан, предназначенный именно для такого случая. К вечеру, когда вновь похолодает, топлива в баллоне окажется заметно меньше, зато никто и ничто не пострадает. Правда, как показывает статистика, отдельные любители дополнительно сэкономить на предохранительном клапане время от времени пополняют хронику происшествий.

Сжатый газ

Иные принципы лежат в основе работы газобаллонного оборудования для машин, потребляющих в качестве топлива природный газ, в обиходе обычно именуемый метаном по своему основному компоненту. Это тот же газ, что подаётся по трубам в городские квартиры. В отличие от нефтяного газа метан (СН4) обладает низкой плотностью (в 1,6 раза легче воздуха), а главное — низкой температурой кипения. Он переходит в жидкое состояние лишь при –164°С. Наличие небольшого процента примесей других углеводородов в природном газе не сильно изменяет свойства чистого метана. А значит, превратить этот газ в жидкость для использования в автомобиле невероятно сложно. В последнее десятилетие активно велись работы по созданию так называемых криогенных баков, позволяющих хранить в автомобиле сжиженный метан при температурах –150°С и ниже и давлении до 6 атмосфер. Были созданы опытные образцы транспорта и заправок под этот вариант топлива. Но пока практического распространения эта технология не получила.

А потому в подавляющем большинстве случаев для использования в качестве моторного топлива метан просто сжимают, доводя давление в баллоне до 200 атмосфер. Как следствие, прочность и соответственно масса такого баллона должны быть заметно выше, чем для пропанового. Да и помещается в одинаковом объёме сжатого газа существенно меньше, чем сжиженного (в пересчёте на моли). А это — уменьшение автономности автомобиля. Другой минус — цена. Существенно больший запас прочности, заложенный в метановое оборудование, оборачивается тем, что цена комплекта на автомобиль оказывается почти в десять раз выше аналогичной по классу пропановой аппаратуры.

Метановые баллоны бывают трёх типоразмеров, из которых в легковом автомобиле можно разместить только самые маленькие, объёмом 33 л. Но для того, чтобы обеспечить гарантированную дальность хода в триста километров, таких баллонов нужно пять, суммарной массой 150 кг. Понятное дело, что в компактной городской малолитражке возить постоянно такой груз вместо полезного багажа смысла нет. Поэтому есть резон переводить на метан лишь большие автомобили. Прежде всего, грузовики и автобусы.

При всём этом у метана есть два существенных преимущества перед нефтяным газом. Во-первых, он ещё дешевле и не привязан к цене на нефть. А во-вторых, метановое оборудование конструктивно застраховано от проблем с зимней эксплуатацией и позволяет при желании вообще обходиться без бензина. В случае с пропан-бутаном в наших климатических условиях такой фокус не пройдёт. Автомобиль по факту останется двухтопливным. Причина именно в сжиженности газа. А точнее, в том, что в процессе активного испарения газ резко охлаждается. В результате сильно падает температура в баллоне и особенно — в газовом редукторе. Чтобы аппаратура не замерзала, редуктор подогревают, встраивая в него теплообменник, соединённый с системой охлаждения двигателя. Но чтобы эта система начала работать, жидкость в магистрали надо предварительно подогреть. А потому запускать и прогревать мотор при температуре окружающего воздуха ниже 10°С рекомендуется строго на бензине. И лишь затем, с выходом мотора на рабочую температуру, переключаться на газ. Впрочем, современные электронные системы переключают всё сами, без помощи водителя, автоматически контролируя температуру и не допуская замерзания оборудования. Правда, для поддержания корректной работы электроники в этих системах нельзя досуха опустошать бензобак даже в жаркую погоду. Пусковой режим на газу является для подобной аппаратуры аварийным, и на него систему можно переключить лишь принудительно в случае крайней необходимости.

У метановой аппаратуры никаких трудностей с зимним пуском нет. Наоборот, на этом газе в морозы запустить двигатель даже легче, чем на бензине. Отсутствие жидкой фазы не требует и подогрева редуктора, который лишь понижает давление в системе с 200 транспортировочных атмосфер до одной рабочей.

Чудеса непосредственного впрыска

Сложнее всего переводить на газ со-временные двигатели с непосредственным впрыском топлива в цилиндры. Причина в том, что газовые форсунки традиционно размещаются во впускном тракте, где и происходит смесеобразование во всех остальных типах двигателей внутреннего сгорания без непосредственного впрыска. Но наличие такового напрочь перечёркивает возможность столь легко и технологично добавить газовое питание. Во-первых, в идеале газ тоже надо подавать прямо в цилиндр, а во-вторых, и это ещё более важно, жидкое топливо служит для охлаждения собственных форсунок непосредственного впрыска. Без него они очень быстро выходят из строя от перегрева.

Варианты решения этой проблемы есть, причём как минимум два. Первый превращает двигатель в двухтопливный. Он был придуман довольно давно, ещё до появления непосредственного впрыска на бензиновых моторах и предлагался для адаптации дизелей к работе на метане. Газ не воспламеняется от сжатия, а потому «газированный дизель» заводится на солярке и продолжает на ней же работать в режиме холостых оборотов и минимальной нагрузки. А дальше в дело вступает газ. Именно за счёт его подачи регулируют скорость вращения коленвала в режиме средних и высоких оборотов. Для этого ТНВД (топливный насос высокого давления) ограничивают по подаче жидкого топлива до 25—30% от номинала. Метан поступает в двигатель по собственной магистрали в обход ТНВД. Никаких проблем с его смазкой из-за снижения подачи солярки на высоких оборотах не возникает. Дизельные форсунки при этом продолжают охлаждаться проходящим через них топливом. Правда, тепловая нагрузка на них в режиме высоких оборотов всё равно остаётся повышенной.

Аналогичную схему питания стали применять и для бензиновых моторов с непосредственным впрыском. Причём работает она как с метановой, так и с пропан-бутановой аппаратурой. Но в последнем случае более перспективным считается альтернативное решение, появившееся совсем недавно. Всё началось с идеи отказаться от традиционного редуктора с испарителем и подавать пропан-бутан в двигатель под давлением в жидкой фазе. Следующими шагами стали отказ от газовых форсунок и подача сжиженного газа через штатные форсунки для бензина. В схему добавили электронный модуль согласования, подключающий по ситуации газовую или бензиновую магистраль. При этом новая система лишилась традиционных проблем с холодным пуском на газе: нет испарения — нет и охлаждения. Правда, стоимость оборудования для моторов с непосредственным впрыском в обоих случаях такова, что окупается оно только при очень больших пробегах.

Кстати, экономическая целесообразность ограничивает применение газобаллонного оборудования в дизелях. Именно из соображений выгоды для моторов с воспламенением от сжатия используют только метановую аппаратуру, причём подходящую по характеристикам лишь двигателям тяжёлой техники, оснащённым традиционными ТНВД. Дело в том, что перевод маленьких экономичных легковых моторов с дизеля на газ себя не окупает, а разработка и техническое воплощение газобаллонной аппаратуры для новейших двигателей с общей топливной рампой (common rail) по нынешним временам считаются экономически неоправданными.

Правда, есть и другой, альтернативный путь перевода дизеля на газ — путём полной конвертации в газовый двигатель с искровым зажиганием. У такого мотора уменьшается до 10—11 единиц степень сжатия, появляются свечи и высоковольтная электрика, и он навсегда прощается с дизельным топливом. Зато начинает безболезненно потреблять бензин.

Условия работы

Старые советские инструкции по переводу бензиновых автомобилей на газ предписывали шлифовать головки блока цилиндров (ГБЦ), чтобы поднять степень сжатия. Оно и понятно: объектом газификации в них выступали силовые агрегаты коммерческого транспорта, работавшие на бензине с октановым числом 76 и ниже. У метана же октановое число 117, а у пропан-бутановых смесей оно около ста. Таким образом, оба вида газового топлива существенно менее склонны к детонации, чем бензин, и позволяют поднять степень сжатия двигателя, чтобы оптимизировать процесс сгорания.

Кроме того, для архаичных карбюраторных моторов, оснащавшихся механическими системами подачи газа, увеличение степени сжатия позволяло компенсировать потерю мощности, возникавшую при переходе на газ. Дело в том, что бензин и газы смешиваются с воздухом во впускном тракте в совершенно разных пропорциях, из-за чего при использовании пропан-бутана, а особенно метана, двигателю приходится работать на существенно более бедной смеси. Как результат — снижение крутящего момента двигателя, приводящее к падению мощности на 5—7% в первом случае и на 18—20% во втором. При этом на графике внешней скоростной характеристики форма кривой крутящего момента каждого конкретного мотора остаётся без изменений. Она просто смещается вниз по «оси ньютон-метров».

Однако для двигателей с электронными системами впрыска, оснащаемых современными системами газового питания, все эти рекомендации и цифры не имеют почти никакого практического значения. Потому что, во-первых, их степень сжатия и так достаточна, и даже для перехода на метан работы по шлифовке ГБЦ совершенно не оправданны экономически. А во-вторых, согласованный с электроникой автомобиля процессор газовой аппаратуры организует подачу топлива таким образом, что как минимум наполовину компенсирует вышеозначенный провал по крутящему моменту. В системах же с непосредственным впрыском и в газодизельных моторах газовое топливо в отдельных диапазонах оборотов и вовсе способно поднимать крутящий момент.

Кроме того, электроника чётко отслеживает необходимое опережение зажигания, которое при переключении на газ должно быть больше, чем для бензина, при прочих равных условиях. Газовое топливо горит медленнее, а значит, и поджигать его нужно раньше. По этой же причине возрастает тепловая нагрузка на клапаны и их сёдла. С другой стороны, меньшей становится ударная нагрузка на цилиндро-поршневую группу. Кроме того, для неё зимний пуск на метане существенно полезнее, чем на бензине: газ не смывает масло со стенок цилиндров. Да и вообще в газовом топливе не содержится катализаторов старения металлов, более полное сгорание топлива уменьшает токсичность выхлопа и нагар в цилиндрах.

Автономное плавание

Пожалуй, наиболее заметным минусом в газовом автомобиле становится его ограниченная автономность. Во-первых, расход газового топлива, если считать по объёму, получается больше, чем бензина и тем более солярки. А во-вторых, газовая машина оказывается привязанной к соответствующим заправкам. Иначе смысл её перевода на альтернативное топливо начинает стремиться к нулю. Особенно сложно тем, кто ездит на метане. Метановых заправок очень мало, и все они привязаны к магистральным газопроводам. Это просто небольшие компрессорные станции на ответвлениях главной трубы. В конце 80-х — начале 90-х годов ХХ века в нашей стране пытались активно переводить транспорт на метан в рамках государственной программы. Именно тогда и возникло большинство метановых заправок. К 1993 году их было построено 368, и с тех пор это число если и выросло, то совсем незначительно. Большинство заправок находится в европейской части страны вблизи федеральных трасс и городов. Но при этом их расположение определяли не столько с точки зрения удобства автомобилистов, сколько с точки зрения газовиков. Поэтому лишь в очень редких случаях газовые заправки оказались непосредственно у шоссе и практически никогда внутри мегаполисов. Почти везде, чтобы заправиться метаном, необходимо сделать крюк на несколько километров в какую-нибудь промзону. Поэтому, планируя дальний маршрут, эти заправки надо искать и запоминать заранее. Единственное, что удобно в такой ситуации, — стабильно высокое качество топлива на любой из метановых станций. Газ из магистрального газопровода весьма проблематично разбавить или испортить. Разве что фильтр или система осушки на какой-то из таких заправок может внезапно выйти из строя.

Пропан-бутан можно перевозить в цистернах, и благодаря этому свойству география заправок для него существенно шире. В некоторых регионах им можно заправиться даже в самом дальнем захолустье. Но изучить наличие пропановых заправок на предстоящем маршруте тоже не помешает, чтобы их внезапное отсутствие на шоссе не стало неприятным сюрпризом. При этом сжиженный газ всегда оставляет долю риска попасть на топливо не по сезону или просто некачественное.

Фото автора.

www.nkj.ru

Горение - бензин - Большая Энциклопедия Нефти и Газа, статья, страница 4

Горение - бензин

Cтраница 4

В результате разности температур между стенкой и бензином возникают конвективные течения, что обусловлено кипением слоя бензина около стенки. Формируется прогретый слой при горении бензина, увеличивается скорость испарения. При подаче на поверхность горящего бензина воды или пены может произойти вскипание и выброс бензина. Вскипание и выброс горючих жидкостей представляет большую опасность, так как внезапно выброшенная горящая жидкость может покрыть большую площадь вблизи очага горения и увеличить масштабы пожара.  [46]

При проведении испытаний поджигают горючее в поддоне. После его выгорания противень убирают из-под штабеля. Время свободного горения штабеля ( без учета времени горения бензина) устанавливают равным ( 7 1) мин. Наддув корпуса огнетушителя вытесняющим газом производят заранее перед началом тушения. Тушение начинают при полностью открытом клапане.  [47]

Отопительная установка работает независимо от двигателя. Бензин, подаваемый регулятором, сгорает в специальной камере и нагревает воздух, нагнетаемый вентилятором. Одновременно второй вентилятор, установленный на другом конце вала электродвигателя, нагнетает воздух, необходимый для горения бензина.  [48]

Конечно, этот эксперимент, взятый отдельно, еще не доказывает влияния воды на явление детонации. Однако совокупность всех экспериментальных данных о влиянии воды и водяного пара на детонацию в двигателях, в частности данные Автомобильной лаборатории, убеждают нас, что гашение детонации обусловливается также и непосредственным участием воды в процессе горения бензина. Во всяком случае вода, растворенная в бензине, согласно опытам Автомобильной лаборатории, оказывает в несколько раз более интенсивное гашение детонации, нежели вода, впрыснутая в цилиндры двигателя.  [50]

Для таких двигателей необходим высококачественный бензин. До последнего времени, как указывалось, повышение качества ( ожтанового числа) бензинов достигается добавкой этиловой жидкости, содержащей тетра-этиловинец. При горении бензина это соединение разлагается, пары свинца выделяются в атмосферу, резко повышая токсичность отходящих газов. Повышение качества бензина без добавки соединения свинца может быть достигнуто в результате каталитического риформинга, при значительных капитальных и эксплуатационных затратах, а также при необходимости использования дорогой аппаратуры и платинового катализатора; естественно, стоимость бонзина при этом существенно повышается.  [52]

Температура паровой фазы ( рис. 39) по мере удаления от поверхности испарения повышается от отрицательной температуры ( для пропана - 42 С) на поверхности раздела жидкость-пар до положительной. Отрицательная температура препятствует тушению жидкости струями воды, так как приносимое водой тепло значительно повышает испарение жидкости. Внешне процесс тушения водой сжиженных углеводородных газов напоминает случай, когда в горящую жидкость выплескивают бензин. В отличие от горения бензина и мазута при горении сжиженных углеводородных газов не образуется гомотермического слоя с температурой, равной температуре на поверхности горящих жидкостей, которая для бензина достигает 100 - 110 С, дизельного топлива 340 - 350 С. В каждой точке пламени температура быстро и беспорядочно изменяется с течением времени. Измерение температуры пламени представляет собой сложную задачу. Обычно ее измеряют оптическим пирометром с исчезающей нитью, но этот прибор замеряет яркостную температуру, которая на сотни градусов может отличаться от истинной температуры, что зависит от степени черноты пламени.  [53]

Нефть и мазут прогреваются вглубь весьма интенсивно и температура прогретого слоя при этом почти всегда выше 100 С. Керосин, дизельное топливо при Горении прогреваются медленно и не образуют прогретого слоя одинаковой температуры. Бензин прогревается тоже быстро, как нефть и мазут, но температура прогретого слоя ниже температуры кипения воды. Поэтому выброс при горении бензина маловероятен. Если же в резервуаре с горящей нефтью нет подстилающего слоя воды ( вода содержится в самой нефти в эмульгированном состоянии), то в начальный период горения вода более или менее равномерно будет распределена в массе нефти. При нагревании вследствие уменьшения вязкости верхнего слоя нефти капли воды опускаются в глубь слоя жидкости и постепенно накапливаются там, где вязкость нефти сравнительно велика. Одновременно с этим капли воды нагреваются и при достижении определенной температуры ( степени перегрева) закипают.  [54]

В очаге пожара создается определенная температура, которая характеризует тепловое равновесие между выделяющимися при реакции теплом и теплоотдачей в окружающую среду. Теоретическая температура горения определяется из предположения, что все выделяющееся тепло расходуется только на нагрев продуктов горения. Действительная температура, развивающаяся во время пожара, на 30 - 50 % меньше теоретической из-за потерь тепла в окружающую среду. Так, например, действительная температура при горении бензина составляет 1400 С, а теоретическая 1730 С.  [55]

Расчетная производительность откачки обеспечивает полное прекращение потока паров в зону стационарного пламени. Однако для ликвидации горения достаточно лишь до определенной степени уменьшить приток паров. Поэтому на практике рекомендуется постепенно увеличивать производительность откачки от нуля, пока не произойдет сначала заметное изменение, а затем и ликвидация горения. Эффективность настоящего метода достоверно доказана-в лабораторных условиях при горении бензина и в полигонных условиях при горении тюменской нефти.  [56]

Горение жидкости с поверхности фактически представляет собой горение паров в воздухе. Поток паров бензина поддерживается непрерывно идущим его испарением. Кислород, необходимый для горения, поступает из окружающей среды. Следовательно, процесс горения бензина или другой жидкости с поверхности является так называемым диффузионным горением, при к-ром размеры фронта пламени и скорости горения определяются не хим. свойствами горючего, а процессами образования топливно-воздушиой смеси.  [57]

Опыты по испарению проводились на каплях бензина, бензола и керосина размером 0 9 - 2 мм при скоростях потока 1 - 4 м / сек и температурах 290, 550 и 760 С. В результате проведенных опытов установлено, что как время испарения, так и время сгорания пропорциональны квадрату начального диаметра, а скорость испарения и горения для данного режима практически не зависит от размера капель. Скорость испарения при повышении температуры увеличивается. Как показали проведенные опыты, горение ускоряет процесс испарения, но не вызывает изменения характера зависимости диаметра капли от времени. Опыты также показали, что для данной скорости и температуры потока скорость горения бензина, керосина и бензола почти одинакова.  [58]

Исследования показали, что возникновение конвекции в горящей жидкости тесно связано с нагревом стенок резервуара при горении жидкости. Стенки резервуара, как правило, имеют температуру выше, чем соприкасающаяся с ними горючая жидкость. Это вызывает конвекцию в жидкости, вследствие чего она прогревается в глубине. Так, быстрый прогрев бензина в процессе горения ( см. рис. 88) вызван тем, что температура стенки резервуара выше температуры кипения бензина. Образующиеся при кипении пузырьки пара у стенки резервуара поднимаются вверх, что способствует перемешиванию бензина и более быстрому прогреву его. Правильность этого вывода подтверждают опыты [49] по сжиганию бензина в одном и том же резервуаре, но с охлаждением и без охлаждения стенки резервуара. При горении бензина без охлаждения стенки резервуара распределение температур в нем соответствовало распределению второго типа.  [60]

Страницы:      1    2    3    4

www.ngpedia.ru


Смотрите также