ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Авиа двигатели. Типы двигателей используемых в авиастроении. Самолеты с двс


Як-50 из потолочки с ДВС двигателем DLE-30 — Паркфлаер

Наш первый ДВС самолет с двигателем DLE-30 ( Бензиновый двигатель DLE-30cc ), Экстра-300, был разбит, мы уже писали про это:

http://www.parkflyer.ru/36011/blogs/view_entry/551/

Однако после аварии, мотор был восстановлен и стал работать еще стабильнее, поэтому решили построить под него новую модель – Як-50. Тоже из потолочки. С размахом 225 см и длиной фюзеляжа 175 см.

Планируемый вес составлял около 5000 г, однако итоговый вес получился в районе 7300 г.

Из опыта с Экстрой-300 стало ясно, что бензин быстро проедает потолочку, а делать самолет из бальзы целиком возможности нет, поэтому решили строить Як-50 опять из потолочки и линеек, а самые бензино-уязвимые места просто промазали клеем Титан, который после затвердевания образует непроницаемый для бензина слой (по крайней мере пока все цело). Внутренняя часть моторного отсека была дополнительно обклеена печатной бумагой для дополнительной твердости и температуроустойчивости.

Основной лонжерон, к которому крепятся стойки шасси, сделан из деревянной обналички.

Крыло разбито на 3 части, центроплан жестко крепится к фюзеляжу. Для усиления крыла использована металлическая трубка от швабры, которая целиком помещается в центроплане. Съемные консоли крыла крепятся к центроплану тремя болтами стык в стык нервюра к нервюре.

Доступ к крепежным болтам осуществляется через лючки в верхней части центроплана. Моторама выполнена из 4-х слойной строительной фанеры. Все остальные усиливающие элементы сделаны из деревянных линеек.

Для удобства обслуживания вся передняя верхняя часть капота снимается и состоит из двух крышек, которые крепятся к фюзеляжу обычными саморезами.

Чтобы предохранить внутренность фюзеляжа от бензина бак был помещен в капроновый съемный блок, где под баком проложен полиэтилен. В этом же капроновом блоке сделаны ниши под аккумуляторы. Весь блок легко достается из фюзеляжа. Бак заправляем пока что самым простым способом – достаем его и заливаем в него бензин, затем помещаем бак обратно в капроновый блок. В будущем планируем заправлять заправочной помпой, это будет удобнее, чем доставать бак каждый раз.

Для стоек шасси использованы те же дюралюминиевые уголки, что были на Экстре-300.

Все оперение сделано профильным с нервюрами и самодельными петлями из линеек и ниток.

Основные колеса были куплены специально под размер Яка, вот такие:

Резиновое колесо 4.0дюйма (101.6 мм) со ступицей из окалиностойкого сплава

Хвостовая стойка сделана из стальной проволоки и для упрощения конструкции просто вклеена в руль направления и поворачивается вместе с ним.

В центровку попали почти точно, но в нос пришлось довесить 230 грамм.

Летать на Турниге 9Х не решились, поэтому была приобретена новая аппаратура управления Футаба 7С:

Futaba 7C 2.4GHz Heli w/R617FS Receiver (Mode 2)

У этой аппаратуры нет кривой газа в самолетном режиме, но можно настроить расходы и экспоненту на 3 канале – этого вполне хватило для удобного управления газом. Глушим мотор отдельной сервой, которая закрывает чок через тумблер на пульте.

Руль высоты посадили на два канала и замикшировали, а элероны решили через Y-Кабель посадить на 1 канал. Управление самолетом – руль высоты, руль направления, элероны. Посадочные щитки делать не стали.

Так как капот получился достаточно широким, решили поставить на этот мотор максимальный рекомендуемый винт 20х6 (деревянный).

Вот как мы обкатывали и настраивали мотор перед первым полетом:

Первый полет не прошел без происшествий – сразу на взлете отлетело колесо – было плохо зажато крепление на оси. Решили продолжать полет без колеса. После небольшого триммирования самолет полетел ровно. Несмотря на большой винт, тяга была очень большая, настолько, что не удержались и решили сделать бочку. Бочка вышла очень удачной, но сразу после нее мотор почему-то перешел как будто бы на холостые обороты и не реагировал на газ. Решили экстренно сажать. Посадка была не простой, с глохнущим двигателем и без колеса, и хотя самолет покатился кубарем, ничего страшного не случилось – всего лишь погнулись стойки шасси и выломало качалку на серве элерона. Все таки потолочка очень удобна в плане ремонтопригодности – в тот же вечер вырезали полоски в крыле и выровняли стойки шасси, наклев деревянные накладки на треснувшем лонжероне. И эти же полоски вклеили на место почти без следов.

Следующие полеты уже прошли как надо от начала и до конца.

Самолет показал себя очень устойчивым, летает в пол газа очень уверенно, но от фигур высшего пилотажа пока временно отказались, пока не настроим двигатель на более устойчивую работу во всех положениях. Опыта работы с ДВС-ами у нас пока нет, поэтому приходится все делать осторожно.

Явными преимуществами ДВС самолетов является, конечно, мощный звук, добавляющий правдоподобности, большой запас мощности и большой запас времени полета, не надо усиленно следить за разрядкой батареек.

Самолетом очень довольны! Себестоимость получилась очень низкой, менее 2000 р. Обклеивать газетой не стали, ограничились цветным скотчем и самоклейкой. Как оказалось, конструкцию можно было сделать гораздо легче, мы просто перестраховались и усилили все сверх меры. Так что можно было бы уложиться в вес 5 кг. И еще немного портят вид в полете неубирающиеся стойки шасси, будем учиться их убирать :)

www.parkflyer.ru

Как работает двигатель самолета

Впервые самолет с турбореактивным двигателем (ТРД) поднялся в воздух в 1939 году. С тех пор устройство двигателей самолетов совершенствовалось, появились различные виды, но принцип работы у всех них примерно одинаковый. Чтобы понять, почему воздушное судно, имеющий столь большую массу, так легко поднимается в воздух, следует узнать, как работает двигатель самолета. ТРД приводит в движение воздушное судно за счет реактивной тяги. В свою очередь, реактивная тяга является силой отдачи струи газа, которая вылетает из сопла. То есть получается, что турбореактивная установка толкает самолет и всех находящихся в салоне людей с помощью газовой струи. Реактивная струя, вылетая из сопла, отталкивается от воздуха и таким образом, приводит в движение воздушное судно.

как работает двигатель самолета

Устройство турбовентиляторного двигателя

Конструкция

Устройство двигателя самолета достаточно сложное. Рабочая температура в таких установках достигает 1000 и более градусов. Соответственно, все детали, из которых двигатель состоит, изготавливаются из устойчивых к воздействию высоких температур и возгоранию материалов. Из-за сложности устройства существует целая область науки о ТРД.

ТРД состоит из нескольких основных элементов:

Перед турбиной установлен вентилятор. С его помощью воздух затягивается в установку извне. В таких установках используются вентиляторы с большим количеством лопастей определенной формы. Размер и форма лопастей обеспечивают максимально эффективную и быструю подачу воздуха в турбину. Изготавливаются они из титана. Помимо основной функции (затягивания воздуха), вентилятор решает еще одну важную задачу: с его помощью осуществляется прокачка воздуха между элементами ТРД и его оболочкой. За счет такой прокачки обеспечивается охлаждение системы и предотвращается разрушение камеры сгорания.

Возле вентилятора расположен компрессор высокой мощности. С его помощью воздух поступает в камеру сгорания под высоким давлением. В камере происходит смешивание воздуха с топливом. Образующаяся смесь поджигается. После возгорания происходит нагрев смеси и всех расположенных рядом элементов установки. Камера сгорания чаще всего изготавливается из керамики. Это объясняется тем, что температура внутри камеры достигает 2000 градусов и более. А керамика характеризуется устойчивостью к воздействию высоких температур. После возгорания смесь поступает в турбину.

принцип работы двигателя самолета

Вид самолетного двигателя снаружи

Турбина представляет собой устройство, состоящее из большого количества лопаток. На лопатки оказывает давление поток смеси, приводя тем самым турбину в движение. Турбина вследствие такого вращения заставляет вращаться вал, на котором установлен вентилятор. Получается замкнутая система, которая для функционирования двигателя требует только подачи воздуха и наличия топлива.

Далее смесь поступает в сопло. Это завершающий этап 1 цикла работы двигателя. Здесь формируется реактивная струя. Таков принцип работы двигателя самолета. Вентилятор нагнетает холодный воздух в сопло, предотвращая его разрушение от чрезмерно горячей смеси. Поток холодного воздуха не дает манжете сопла расплавиться.

В двигателях воздушных судов могут быть установлены различные сопла. Наиболее совершенными считаются подвижные. Подвижное сопло способно расширяться и сжиматься, а также регулировать угол, задавая правильное направление реактивной струе. Самолеты с такими двигателями характеризуются отличной маневренностью.

Виды двигателей

Двигатели для самолетов бывают различных типов:

Классические установки работают по принципу, описанному выше. Такие двигатели устанавливают на воздушных судах различной модификации. Турбовинтовые функционируют несколько иначе. В них газовая турбина не имеет механической связи с трансмиссией. Эти установки приводят самолет в движение с помощью реактивной тяги лишь частично. Основную часть энергии горячей смеси данный вид установки использует для привода воздушного винта через редуктор. В такой установке вместо одной присутствует 2 турбины. Одна из них приводит компрессор, а вторая – винт. В отличие от классических турбореактивных, винтовые установки более экономичны. Но они не позволяют самолетам развивать высокие скорости. Их устанавливают на малоскоростных воздушных судах. ТРД позволяют развивать гораздо большую скорость во время полета.

Турбовентиляторные двигатели представляют собой комбинированные установки, сочетающие элементы турбореактивных и турбовинтовых двигателей. Они отличаются от классических большим размером лопастей вентилятора. И вентилятор, и винт функционируют на дозвуковых скоростях. Скорость перемещения воздуха понижается за счет наличия специального обтекателя, в который помещен вентилятор. Такие двигатели более экономично расходуют топливо, чем классические. Кроме того, они характеризуются более высоким КПД. Чаще всего их устанавливают на лайнерах и самолетах большой вместительности.

устройство двигателя самолета

Размер двигателя самолета относительно человеческого роста

Прямоточные воздушно-реактивные установки не предполагают использование подвижных элементов. Воздух втягивается естественным путем благодаря обтекателю, установленному на входном отверстии. После поступления воздуха двигатель работает аналогично классическому.

Некоторые самолеты летают на турбовинтовых двигателях, устройство которых гораздо проще, чем устройство ТРД. Поэтому у многих возникает вопрос: зачем использовать более сложные установки, если можно ограничиться винтовой? Ответ прост: ТРД превосходят винтовые двигатели по мощности. Они мощнее в десятки раз. Соответственно, ТРД выдает гораздо большую тягу. Благодаря этому обеспечивается возможность поднимать в воздух большие самолеты и осуществлять перелеты на высокой скорости.

Facebook

Twitter

Вконтакте

Одноклассники

Google+

samoleting.ru

Авиа двигатели. Виды и типы двигателей для самолетов и вертолетов

 

Именно благодаря использованию авиа двигателей, прогресс развития современной авиации продолжает развиваться. Первые самолёты которые не были оснащены двигателями практически не получили своего практического применения, так как не могли перевозить более одного человека, да и значительные расстояния преодолеваемые такими воздушными судами большими никак не назовёшь.

Все авиа двигатели принято разделять на 9 основных категорий.

  1. Паровые авиа двигатели;
  2. Поршневые авиа двигатели;
  3. Атомные авиа двигатели;
  4. Ракетные авиа двигатели;
  5. Реактивные авиа двигатели;
  6. Газотурбинные авиа двигатели;
  7. Турбовинтовые авиа двигатели;
  8. Пульсирующие воздушно-реактивные двигатели;
  9. Турбовентиляторные авиа двигатели.

 

Паровые авиа двигатели

 

Паровые авиа двигатели практически не нашли своего практического применения в авиации из-за низкого КПД своей работы. Главным принципом работы парового авиационного двигателя является преобразование возвратно-поступательного движения поршней во вращательное движение винтов за счёт энергии пара.

 

 

Стоит отметить, что первоначально паровые авиа двигатели предполагалось использовать на заре авиации, когда источник пара был наиболее доступным, однако из-за массивности своей конструкции паровые двигатели не смогли поднимать воздушные суда.

 

Поршневые авиа двигатели

 

Поршневой авиа двигатель представляет собой обычный двигатель внутреннего сгорания, в котором тепловая энергия расширяемого газа превращает поступательное движение поршня во вращательное движение винта. Такие авиа двигатели нашли своё применение, и применяются и по сегодняшний день из-за простоты своего функционирования и недорогостоящего изготовления.

 

 

КПД поршневого авиационного двигателя, как правило, не превышает 55 %, однако это ничуть не смущает современных авиаконструкторов, так как у этого двигателя имеется высокая надёжность.

 

Атомные авиа двигатели

 

Первые атомные авиа двигатели начали появляться в середине минувшего века, когда начались мирные исследования атома. Основным принципом работы атомного авиационного двигателя является осуществление контролируемой цепной ядерной реакции, что позволяло выдавать огромную мощность, при сравнительно небольшом уровне затрат.

Атомные авиа двигатели практически одновременно появились и в США и в СССР, однако сама идея того, что самолёт, пусть и с весьма компактным атомным реактором на своём борту может упасть и это впоследствии приведёт к катастрофе, заставила отказаться от этой идеи.

В США атомный авиационный двигатель применялся на самолёте Convair NB-36H, а в СССР на самолётах Ту-95 и Ан-22.

 

Ракетные авиа двигатели

 

 

Первые ракетные авиа двигатели появились в начале 40 годов прошлого столетия в Германии, когда немцы всеми усилиями пытались создать быстрый самолёт, который мог бы принести им победу во Второй мировой войне. Тем не менее, стоит отметить, что наука в те годы не позволяла совершить точный расчёт некоторых параметров, поэтому проект так и не был реализован. Впоследствии ракетные авиа двигатели испытывались исключительно с возможностью их применения для разгона самолётов в стратосфере, но применимость их весьма ограничена, и потому на сегодняшний день они практически не используются.

Основным недостатком ракетного авиационного двигателя является практически полное отсутствие управляемости на высоких скоростях.

 

Реактивные авиа двигатели

 

 

Реактивные двигатели весьма распространены на сегодняшний день в авиации и авиаконструкторском деле. Принцип работы этих авиа двигателей основывается на то, что необходимая тяга для воздушного судна создаётся за счёт преобразования в кинетическую энергию реактивную струи внутренней энергии авиационного топлива.

Реактивные двигатели весьма надёжны и эффективны и потому в ближайшее время стоит ожидать их дальнейшего совершенствования и развития.

 

Газотурбинные авиа двигатели

 

 

Принцип работы газотурбинного авиационного двигателя основывается на сжатии и нагреве газа, энергия которого впоследствии преобразуется в механическую работу, заставляя вращаться газовую турбину. Первые двигатели данного класса появились в Германии ещё в начале 40-х годов прошлого века, и на сегодняшний день они по-прежнему продолжают широко применяться в военной авиации, в частности устанавливаются на самолётах Су-27, МиГ-29, F-22, F-35 и т.д.

Газотурбинные авиа двигатели весьма эффективны на сравнительно небольших скоростях перемещения воздушных судов, и потому их применение в гражданской авиации также весьма обоснованно.

 

Турбовинтовые авиа двигатели

 

 

Турбовинтовые авиа двигатели представляют собой своеобразную разновидность газотурбинный авиационных двигателей, принцип действия которых основывается на том, что энергия горячих газов преобразуется во вращение винта, а около 10% от совокупной энергии превращается в толкающую реактивную струю.

Турбовинтовые авиа двигатели имеют хороший КПД и надёжны, что делает их эффективными и применимыми в гражданской авиации на многих воздушных судах.

 

Пульсирующие воздушно-реактивные авиа двигатели

 

 

Пульсирующие воздушно-реактивные двигатели не нашли применения в современной авиации из-за неудовлетворительной своей эффективности. Главной особенностью их функционирования является то, что работают они на принципе воздушно-реактивного двигателя. С той лишь разницей, что топливо в камеру сгорания подаётся периодически, создавая своеобразные импульсы, позволяющие двигать объект в заданном направлении.

Пульсирующие воздушно-реактивные двигатели эффективны лишь при однократном своём использовании, в последующих же случаях, их использование снижает и саму надёжность и увеличивает затраты.

 

Турбовентиляторные авиа двигатели

 

 

Принцип работы турбовентиляторных авиационных двигателей сводится к тому, что подаваемый за счёт вентилятора воздух. Обеспечивает полное сгорание топлива за счёт избытка кислорода, что делает такие авиа двигатели и более эффективными и в тоже время наиболее экологически чистыми. Применяются подобные турбовентиляторные авиа двигатели как правило на крупных авиалайнерах, так как практически всегда у них имеется большая конструкция за счёт необходимости нагнетания дополнительного объёма воздуха.

avia.pro

Десять машин с двигателями от самолетов и вертолетов — Селектор — Motor

Несмотря на то, что некоторые автопроизводители так или иначе связаны с авиацией, моторы от самолетов и вертолетов на машинах практически не встречаются. Причин тому масса: дороговизна, сложность обслуживания, ухудшение развесовки, узкий рабочий диапазон… Тем не менее, эти формальности не останавливают смелых и мечтательных инженеров по всему миру. Мы предлагаем вашему вниманию десять самых необычных автомобилей с авиационными двигателями.

Thrust SSC

Поскольку для установления рекордов скорости на суше управляемость особо не важна (в отличие от тягового усилия), большинство машин, которые в разные годы были (или пытались быть) самыми быстрыми на планете, оснащались именно авиационными двигателями. Higham Special, Napier-Campbell Blue Bird, Sunbeam 1000 hp и, конечно же, Thrust SSC – все они приводились в движение моторами от самолетов.

Силовая установка нынешнего рекордсмена Thrust SSC представляет собой два турбовентиляторных двигателя Rolls-Royce Spey, которые встречаются на истребителях F-4 Phantom II. Они позволили Thrust SSC достичь скорости 1228 километров в час. Автомобиль, который попытается побить этот рекорд – Bloodhound SSC, – тоже будет оснащен реактивным двигателем от самолета: Eurojet EJ200, установленный на Bloodhound, используется на истребителях Eurofighter Typhoon.

Mercedes-Benz T80

Претензии на звание быстрейшего в мире автомобиля в свое время были и у Mercedes. 750 километров в час – на такую скорость должен был выйти спроектированный Фердинандом Порше шестиколесный Mercedes-Benz T80, оснащенный 44,5-литровым двигателем Daimler-Benz DB 603 (модернизированная версия мотора истребителя Messerschmitt Bf 109). Построенный к 1939 году 3000-сильный автомобиль был полностью готов к испытаниям, но началась Вторая мировая война, которая поставила крест на установлении рекорда. К счастью, войну Т80 смог пережить (его хранили в железном контейнере в Австрии), но на попытку установки рекорда он так и не выехал. Сейчас Т80 является частью композиции музея Mercedes в Штутгарте.

Lotus 56

Впрочем, в разные годы предпринимались попытки научить ездить машины с двигателями от самолетов и вертолетов не только по прямой и бэнкингам. Одна из них – Lotus 56, полноприводный болид, который принимал участи в «Инди-500» 1968 года и нескольких гонках чемпионата Формулы 1 1971 года. Машина с газотурбинным двигателем ST6 (применяется на вертолете Sikorsky S-76) выиграла поул-позицию в «Инди» и чуть не стала победительницей гонки, но технические проблемы помешали триумфу команды Lotus.

В Формуле-1 модернизированный Lotus 56, получивший имя 56В, выступал гораздо хуже – лучшим результатом стало 8 место на скоростном Гран-При Италии, завоеванное Эмерсоном Фиттипальди. Lotus 56 печально известен тем, что стал роковой машиной для Майка Спенса.

Tucker Sedan

Устанавливались ли авиационные двигатели на серийные автомобили? Таких примеров единицы, и самый ярких из них – во многом революционный американский седан Tucker, известный также как Tucker Torpedo. В машине было реализовано множество инноваций (независимые подвески, дисковые тормоза четырех колес, травмобезопасные стекла и торпедо), а также использовался настоящий вертолетный двигатель Franklin O-335 – чаще всего он встречался на вертолете Bell 47. Вот только машин таких построили всего 51 штуку, большая часть из которых были оснащены именно таким мотором «Франклин».

Brutus

Куда чаще авиационные двигатели с автомобильными шасси пытались соединить простые автоэнтузиасты. Именно благодаря желанию, а не дальновидному инженерному расчету, на свет появился огнедышащий зверь Brutus, засветившийся в 18 сезоне программы Top Gear. Автомобиль был построен вскоре после Второй мировой войны с использованием рамы от American LaFrance 1908 года и 46,9-литрового самолетного V12 производства BMW 1925 года. Мотор развивает 500 лошадиных сил при 1500 оборотах в минуту и потребляет литр топлива на километр пробега.

Fiat Botafogo Special

Это, конечно, не знаменитый фиатовский «Мефистофель», но тоже выдающаяся страница инженерии довоенной эпохи. Fiat Botafogo Special был построен в 1917 году аргентинским гонщиком Адольфо Скандроглио. Изначально автомобиль, приводимый в движение авиационным 21,7-литровым мотором Fiat A.12, не имел даже тормозов, что стало причиной гибели Скандроглио в 1949-ом, но уже ближе к XXI веку автомобиль слегка модернизировали, добавив пару тормозных механизмов от Mercedes. Сегодня Botafogo Special владеет известный ведущий и автомобильный коллекционер Джей Лено, у которого в коллекции четыре машины с авиационными двигателями.

GM EcoJet

Например, такая. В 50-е годы прошлого века General Motors (да и вообще вся «Большая американская троица») всерьез считали, что за газотурбинными двигателями будущее. Увы, массовый характер идея так и не приобрела, зато была реализована в эксклюзивном автомобиле для того же Джея Лено. Построенный на базе «Корветта», суперкар EcoJet приводится в движение 650-сильным двигателем Honeywell LT-101, который встречается как на вертолетах Bell, так и на легких самолетах Cessna. Кузов купе, представленного в 2006 году, изготовлен из кевлара и карбона.

The Beast

В конце прошлого десятилетия о самодельном шутинг-брейке The Beast не писал только ленивый – настолько захватывающей была история автомобиля, которым владел Джон Додд. На заре своей жизни The Beast выглядел иначе (и даже нес на носу радиаторную решетку-колоннаду от Rolls-Royce), но после судебных исков от Rolls-Royce и пожара автомобиль существенно преобразился. Что осталось неизменным, так это 27-литровый двигатель Rolls-Royce Merlin под капотом «Зверя», который устанавливался на легендарные «Спитфайры» времен Второй мировой. Правда, в случае с The Beast двигатель не имеет нагнетателя, поэтому мощность силовой установки составляет «смешные» 800 лошадиных сил.

Allison Hot Rod

«В 50-е я увидел машину с авиационным двигателем. Тогда я пообещал себе, что и у меня когда-то будет такая же», – говорил в интервью Клифф Хикс, создатель хот-рода на полностью кастомной раме с 12-цилиндровым двигателем Allison за передней осью. Кузов машины был изготовлен из стеклопластика, множество компонентов было позаимствовано у автомобилей Ford. В итоге получился достаточно легкий и очень быстрый родстер – ведь отдача двигателя, который ставился на истребитель Lockheed P-38 Lightning, составляет более 1800 лошадиных сил!

Goggomobil

Разумеется, существует множество других проектов с использованием авиационных двигателей, в том числе и турбореактивных. Многие такие машины выступают в дрэг-рейсинге, где в мгновение ока пролетают дистанцию в четверть мили. Но мало какой подобный проект сравнится по безумию с этим Goggomobil, оснащенным 9-цилиндровым российским радиальным авиамотором М14П Ивана Михайловича Веденеева. Форсированный с 360 до 430 сил, двигатель превратил субкомпактный Goggomobil (да, это не Запорожец!) в огнедышащего дракона. \m

Иллюстрации: Из открытых источников

motor.ru

Cамолет с паровым двигателем | Журнал Популярная Механика

…Кстати, первую в истории официальную автогонку Париж — Руан 22 июля 1894 года выиграл автомобиль «Де Дион-Бутон» с паровым двигателем. В этом нет ничего удивительного, ведь на тот момент пар был самым распространенным источником энергии в мире. На пару работали станки и насосы, пар использовался на железной дороге и в промышленности, в быту и даже в сфере развлечений. И конечно, паровозы пытались заставить полететь. Иногда это даже удавалось.

Тим Скоренко

21 сентября 2009 21:41

На самом-то деле первый паролет успешно взлетел лишь в 1933 году, но количество попыток запустить в воздух паровую машину просто не поддается исчислению.

Изобретателем паролета является английский инженер Уильям Сэмюэл Хенсон (1812−1888). Блестящий механизатор и изобретатель, свой первый серьезный патент Хенсон получил в возрасте 23 лет — на машину для механизированного производства тесьмы. А в 1838 году он неожиданно увлекся авиацией, которой тогда, будем честны, просто не существовало. Естественно, никаких двигателей внутреннего сгорания и тем более реактивных не было, и единственным способом заставить тяжелую крылатую машину подняться в воздух была установка парового двигателя: от него приводились в движение массивные крылья самолета. Хенсон отдал много сил на создание как можно более легкого и компактного силового агрегата и в 1841 году его запатентовал. А полтора года спустя совместно со своим другом и компаньоном Джоном Стрингфеллоу он получил патент на настоящий самолет с паровым двигателем. Машина получила название «Воздушный паровой экипаж» (Aerial Steam Carriage), или сокращенно «Ариэль».

9 октября 1890 года паролет «Эол» конструкции Клемента Адера поднялся в воздух и преодолел около 50 м. Именно от этой даты отсчитывается история современной авиации.

По чертежам машина имела размах крыльев 48 м (общая площадь — 420 м2) и весила 1400 кг. По расчетам Хенсона и Стрингфеллоу «Ариэль» мог бы нести десять пассажиров и разгоняться до 75 км/ч при дальности полета в 1600 км.

Конечно, их расчеты были неверны — в основном за полным отсутствием мирового опыта самолетостроения. Они делали первые робкие шаги — все данные получались разве что экспериментальным путем.

Воздушный паровой экипаж Хенсона и Стрингфеллоу Воздушный паровой экипаж Хенсона и Стрингфеллоу Существовал ряд модификаций машины Хенсона. В изображенной модели мы видим нечто вроде киля; в полномасштабной машине место киля должна была занять пассажирская гондола.

В 1843 году Хенсон с рядом компаньонов организовал первую в мире авиакомпанию, которая так и называлась: Aerial Transit Company. Целью было собрать необходимую сумму для постройки самолета, но все уменьшенные модели машины, построенные в период с 1844 по 1847 год, оказались неудачными: не взлетела ни одна. Самолет даже в малом варианте был слишком тяжелым. В итоге Стрингфеллоу все-таки построил действующую модель, которая пролетела порядка 20 м (и приводилась в движение пропеллерами, а не взмахами крыльев), но к тому времени Хенсон уже окончательно разочаровался в бесперспективном проекте. Он женился, эмигрировал в США и расстался с авиацией. В мировой промышленности он известен в первую очередь как изобретатель безопасной бритвы.

Модель, изготовленная Стрингфеллоу, была способна к полету. Настоящий «Ариэль» так и не был завершен, поэтому о его полетных свойствах сказать ничего нельзя.

Неудача Можайского

В какой-то мере «культовый» самолет Александра Федоровича Можайского (1825−1890), столь любимый художниками и филателистами, тоже приводился в движение паром. Точнее, должен был приводиться.

Работать над проектом самолета капитан 1-го ранга Можайский начал уже немолодым человеком, в 1870-х, по увольнении из действующей армии. Впоследствии Можайский получил звание генерал-майора и даже контр-адмирала, но это было позже, а свой замечательный самолет Александр Федорович построил в 1882 году.

Самолет Можайского Самолет Можайского Александр Федорович Можайский, как позже и Клемент Адер, опирался в разработке аэродинамики своего самолета на летательные свойства воздушных змеев, которые конструировал и запускал в течение нескольких лет. Кроме того, Можайский предполагал, что тяжелый и медленный самолет должен иметь большую плоскость крыла. На рисунке изображена первая модификация самолета Можайского: винты расположены «внутри» крыльев. Для второй попытки запуска конструктор переместил винты назад, ближе к хвостовой части. Можайский работал методом проб и ошибок и, конечно, совершил целый ряд просчетов, которые сегодня видны невооруженным глазом: достаточно сделать самолетик из бумаги, для того чтобы понять, какая форма крыла была бы оптимальной.

В первую очередь конструкция Можайского была уникальна тем, что имела аж два паровых двигателя (по 20 и 10 л.с. соответственно). Характерно то, что почти все изобретатели XIX века в расчетах принимали очень низкую скорость полета (в случае Можайского — 40 км/ч), что вынуждало делать крылья оригинальных форм и с очень большой площадью поверхности. Огромные прямоугольные крылья, сложная система поддерживающих вант, три пропеллера — никто до Можайского не пытался сделать самолет таких размеров. Собственно, форму крыльев Можайский вывел из своих многочисленных опытов с воздушными змеями, которые проводил с 1873 года. В 1876 году он построил большой полупланер-полузмей, на котором поднялся в воздух (правда, планер за собой тянула лошадь, самостоятельно летать тот аппарат не мог).

Летом 1882 года самолет был готов. Паровые двигатели были выписаны из Англии. 20 июля Можайский продемонстрировал титаническую по тем временам конструкцию членам комиссии по военному делу — в основном для того, чтобы «выбить» дополнительные гранты на усовершенствование паролета. Но испытания прошли неудачно. Можайский — опять же из полного отсутствия мирового опыта самолетостроения — не снабдил свою машину устройствами против боковых кренов: никто и предположить не мог, что они нужны. Самолет, даже не успев приподняться в воздух, завалился на бок, и его огромное крыло «сложилось».

Тема паролетов широко распространена среди художников и 3D-моделистов, работающих в духе стимпанка, особенно «анимэшников». Например, приведенная работа носит название «Имперский паролет» и создана в 2008 году иллюстратором Nick Pl под влиянием романов Жюля Верна (на самом деле это не просто рисунок, а 3D-модель). Практически все фантастические паролеты из кино- и мультипликационных лент невероятно красивы, но совершенно невозможны технически. Впрочем, этого от них и не требуется.

Через полгода Можайский представил воздухоплавательному отделу Русского технического общества новую, усовершенствованную конструкцию самолета. Два года прошли в бюрократических отсылках Александра Федоровича из одного ведомства в другое, и лишь летом 1885 года были проведены повторные испытания при представителях армии и Русского технического общества. Испытания прошли точно так же, как и первые: самолет завалился на бок.

Вторая неудача серьезно «подкосила» изобретателя. Он продолжал заниматься доводкой конструкции, купил более мощные паровые двигатели, писал в министерства, но 21 марта 1890 года умер. После смерти Можайского самолет некоторое время стоял под открытым небом, после был разобран и хранился в сарае, а спустя несколько лет полностью сгорел при пожаре. Чертежей Можайского не сохранилось: все модели его самолета сделаны по рисункам и текстовым описаниям.

www.popmech.ru

Реактивная микроавиация: Турбо-модели | Журнал Популярная Механика

Многие конструкторы авиадвигателей были уверены, что построить настоящий турбореактивный двигатель для авиамоделей невозможно даже теоретически. Тем не менее такие двигатели не только существуют, но и летают более десяти лет.

МиГ-29 — один из самых популярных самолетов среди «реактивных» авиамоделистов. Эта любовь объясняется превосходной аэродинамикой прототипа

Самый сложный в мире набор для сборки реактивной модели МиГ-29 с двумя турбореактивными двигателями и гидравлической системой уборки шасси выпускает немецкая компания Composite-ARF. На разработку и доводку модели было потрачено три года. Цена набора без двигателей и радиоуправления — 8 500 евро. Точность изготовления моделей просто фантастическая! Скрупулезно имитируется все, вплоть до окалины на соплах истребителя

Jetcat P-160: серийный модельный турбореактивный авиадвигатель с отклоняемым вектором тяги и, собственно, тягой в 16 кг

Если бы не пилот рядом, реактивную модель на фотографии можно было бы легко принять за настоящий самолет

Самолет-легенда Blackbird SR-71

Накачка самолетной пневматической системы

Если бы не чемоданчики и люди на взлетной полосе, все это можно было бы принять за фотографию очереди самолетов на рулежной дорожке обычного аэродрома

Для управления реактивным самолетом используется аппаратура с максимальным количеством каналов. Многие моделисты конструируют такие пульты самостоятельно. Рекордсмен среди серийных пультов — 14-канальная Futaba

Легенда в мире реактивного моделизма, конструктор из Германии Питер Михель, прославился созданием многомоторных турбореактивных моделей-копий больших пассажирских авиалайнеров: Concorde, Ил-62, Boeing-747, Airbus A-380. Финансируют постройку этих дорогостоящих летающих моделей либо производители самолетов, либо пассажирские авиакомпании

Наши чемпионы: команда RUSJET со своим рекордным самолетом, завоевавшие «серебро» на Чемпионате мира 2007

Новейший сверхманевренный МиГ-29ОВТ застыл на взлетной полосе, слегка шевеля соплами двигателей с отклоняемым вектором тяги. Затем раздался свист турбин, и, присев, самолет начал стремительный разбег по взлетной полосе военного аэродрома. Взлет — и он свечой ушел в небо, после чего на глазах восхищенных зрителей начал крутить фигуры высшего пилотажа: кобру Пугачева, колокол, двойной кульбит и другие, названия которым даже еще не придуманы. Выполнив программу, истребитель зашел на посадку и плавно подкатил к лучшему шоу-пилоту Италии Себастьяно Сильвестре. Лишь тут стало видно, что МиГ хвостовым оперением едва достает пилоту до пояса.

Пионеры с огнетушителями

Запуск первых модельных турбореактивных двигателей, рассказывает нам пионер этой техники в России Виталий Робертус, напоминал небольшой подвиг. Для запуска была строго необходима команда из четырех человек. Они обступали модель самолета, первый — держа в руках водолазный баллон со сжатым воздухом, второй — баллон с бытовым газом, третий — огнетушитель побольше, а четвертый, с пультом управления, был собственно пилотом. Последовательность запуска была следующей. Сначала сжатым воздухом дули на крыльчатку компрессора, раскручивая его до 3000 оборотов в минуту. Потом подавали газ и поджигали его, пытаясь получить устойчивое горение в камерах сгорания. После этого надо было умудриться переключиться на подачу керосина. Вероятность благополучного исхода была крайне мала. Как правило, в половине случаев случался пожар, вовремя не срабатывал огнетушитель, и от турбореактивной модели оставались одни головешки. Бороться с этим на первоначальном этапе пытались простыми методами — увеличив команду запуска еще на одного человека с дополнительным огнетушителем. Как правило, после просмотра видеозаписей таких подвигов энтузиазм потенциальных турбореактивных моделистов быстро испарялся.

Отец модельного ТРД

Рождению модельных турбореактивных авиадвигателей, как, впрочем, и полноразмерных, мы обязаны германским инженерам. Отцом микротурбин принято считать Курта Шреклинга, создавшего простой, технологичный и дешевый в производстве двигатель еще лет двадцать назад. Примечательно, что он в деталях повторял первый немецкий турбореактивный двигатель HeS 3, созданный Пабстом фон Охайном в далеком 1939 году (см. статью на стр. 46). Одноконтурный центробежный компрессор, посаженный на один вал с одноконтурной же турбиной. Конструкция была сколь простой, столь и выдающейся. Шреклинг выбрал центробежный компрессор из-за простоты реализации и меньших требований по допускам — он обеспечивал вполне достаточное увеличение давления в 2,4−2,7 раза.

Крыльчатку компрессора Шреклинг делал из дерева (!), усиленного углеволокном. Самодельное колесо турбины было изготовлено из 2,5-миллиметровой жести. Настоящим инженерным откровением была камера сгорания с испарительной системой впрыска, где по змеевику длиной примерно в 1 м подавалось топливо. При длине всего в 260 мм и диаметре 110 мм двигатель весил 700 г и выдавал тягу в 30 Н! Это до сих пор самый тихий ТРД в мире, потому как скорость покидания газа в сопле двигателя составляла всего 200 м/с. Во все это верится с трудом — один человек в одиночку проделал путь, который на полстолетия раньше не могли осилить государства. Тем не менее двигатель Шреклинга был создан, на нем летали модели самолетов, и по лицензии производство наборов для самостоятельной сборки наладили несколько стран. Самым известным стал FD-3 австрийской фирмы Schneider-Sanchez.

Первыми полностью собранными серийными авиамодельными турбинами были JPX-Т240 французской фирмы Vibraye и японская J-450 Sophia Precision. Удовольствие было недешевым, одна «София» стоила в 1995 году $5800. И надо было обладать очень весомыми аргументами, чтобы доказать супруге, что турбина намного важнее, чем новая кухня, и что старое семейное авто вполне может протянуть еще пару лет, а вот с турбиной для самолетика ждать ну никак нельзя.

Почти космический корабль

Вторую революцию в мини-турбиностроении произвела немецкая компания JetCat. «Году в 2001-м в каком-то западном авиамодельном магазине мне в руки попался каталог Graupner, — вспоминает Виталий Робертус, — в нем я наткнулся на описание JetCat P-80 — турбины с автоматическим запуском. ‘Щелкните выключателем на передатчике, через 45 секунд турбина сама раскрутится, заведется и передаст управление на передатчик', уверял каталог. В общем, не поверив, но набрав необходимые $2500, я вернулся в Россию счастливым обладателем первого в стране модельного турбореактивного двигателя. Был счастлив несказанно, будто купил собственный космический корабль! Но самое главное — каталог не врал! Турбина действительно запускалась единственной кнопкой».

Умная турбина

Главное ноу-хау немецкой компании — электронный блок управления турбиной, разработанный Херстом Ленерцем. Как же работает современная авиационная турбина?

JetCat добавила к уже стандартной турбине Шреклинга электрический стартер, датчик температуры, оптический датчик оборотов, насос-регулятор и электронные «мозги», которые заставили все это вместе работать. После подачи команды на запуск первым включается электрический стартер, который и раскручивает турбину до 5000 оборотов. Далее через шесть форсунок (тоненькие стальные трубочки диаметром 0,7 мм) в камеру сгорания начинает поступать газовая смесь (35% пропана и 65% бутана), которая поджигается обычной авиамодельной калильной свечой. После появления устойчивого фронта горения в форсунки одновременно с газом начинает подаваться керосин. По достижении 45 000−55 000 оборотов в минуту двигатель переходит только на керосин. Затем опускается на малые (холостые) обороты (33 000−35 000). На пульте загорается зеленая лампочка — это означает, что бортовая электроника передала управление турбиной на пульт радиоуправления. Все. Можно взлетать.

Последний писк микротурбинной моды — замена авиамодельной калильной свечи на специальное устройство, распыляющее керосин, который, в свою очередь, воспламеняет раскаленная спираль. Подобная схема позволяет и вовсе отказаться от газа при старте. У такого двигателя два недостатка: увеличение цены и потребления электроэнергии. Для сравнения: керосиновый старт потребляет 700−800 мАч аккумулятора, а газовый — 300−400 мАч. А на борту самолета, как правило, стоит литий-полимерный аккумулятор емкостью в 4300 мАч. Если использовать газовый старт, то перезаряжать его в течение дня полетов не потребуется. А вот в «керосиновом» случае придется.

Внутренности

Реактивные самолеты стоят особняком в мире авиамоделизма, федерация реактивной авиации даже не входит в FAI. Причин много: и сами пилоты помоложе, и «входной билет» подороже, и скорости повыше, и самолеты посложнее. Турбинные самолеты маленькими не бывают — 2−2,5 м в длину. Турбореактивные двигатели позволяют развивать скорость от 40 до 350 км/ч. Можно и быстрее, но тогда непонятно, как управлять. Обычная скорость пилотирования составляет 200−250 км/ч. Взлет осуществляется на скорости 70−80 км/ч, посадка — 60−70 км/ч.

Такие скорости диктуют совершенно особые требования по прочности — большинство элементов конструкции в 3−4 раза прочнее, чем в поршневой авиации. Ведь нагрузка растет пропорционально квадрату скорости. В реактивной авиации разрушение неправильно рассчитанной модели прямо в воздухе — вполне обычное явление. Огромные нагрузки диктуют и специфические требования к рулевым машинкам: начиная от силы в 12−15 кгс до 25 кгс на щитках и закрылках.

Механизация самолета — отдельный разговор. Без механизации крыла скорость при посадке может составить 120−150 км/ч, что почти наверняка грозит потерей самолета. Поэтому реактивные самолеты оборудуют как минимум закрылками. Как правило, есть воздушный тормоз. На наиболее сложных моделях устанавливают и предкрылки, которые работают как при взлете-посадке, так и в полете. Шасси — разумеется, убирающееся — снабжается дисковыми или барабанными тормозами. Иногда на самолеты ставят тормозные парашюты.

Все это требует множества сервомашинок, которые потребляют массу электроэнергии. Сбой в питании почти наверняка приводит к катастрофе модели. Поэтому вся электропроводка на борту дублируется, дублируются и источники питания: их, как правило, два по 3−4 А. Плюс — отдельный аккумулятор для запуска двигателей.

Кстати, причиной гибели легендарной гигантской реактивной восьмимоторной копии B-52 были как раз неполадки электроники в полете. Десятки метров проводов внутри самолета начинают влиять друг на друга и вызывать паразитные наводки — полностью избежать их в такой сложной модели не удается.

Даже целая батарея сервомашинок не решает все самолетные проблемы: щитки, шасси, створки шасси и другие сервисные механизмы снабжены электронными клапанами, секвенсерами и пневмоприводами, которые запитываются от бортового баллона со сжатым воздухом в 6−8 атмосфер. Как правило, полной зарядки хватает на 5−6 выпусков шасси в воздухе.

На очень сложных и тяжелых моделях пневматика уже не работает — не хватает давления воздуха. На них применяют гидравлические тормозные системы и системы уборки шасси. Для этого на борту устанавливается небольшой насос, поддерживающий постоянное давление в системе. С чем так пока и не могут справиться моделисты, так это с постоянным подтеканием миниатюрных гидравлических систем.

Из коробки

Реактивные авиамодели — хобби не для начинающих и даже не для продвинутых авиамоделистов, а для профессионалов. Слишком велика цена ошибки, слишком трудно ее не совершить. Виталий, например, за пять лет разбил десять моделей. А ведь он серебряный призер чемпионата мира!

Самостоятельное изготовление готовой модели — дело дорогое, долгое (около трех лет) и кропотливое. Это практически изготовление настоящего самолета: с чертежами, аэродинамическими трубами и экспериментальными прототипами. Как правило, делают копии хорошо летавших «взрослых» самолетов в масштабе от 1:4 до 1:9, тут главное — уложиться в конечный размер от двух до трех метров. Простая копия летать будет плохо, если вообще будет летать — в аэродинамике простое масштабирование не работает. Поэтому, сохраняя пропорции, полностью пересчитывают профили крыла, рулевые поверхности, воздухозаборники и т. д. — недаром многие из реактивных моделистов заканчивали Московский авиационный институт. Но даже тщательный расчет не спасает от ошибок — требуется разбить от трех до пяти прототипов, прежде чем модель будет «вылизана». Первый прототип теряют, как правило, из-за проблем с центровкой, второй — с рулевыми поверхностями, прочностью и т. д.

Впрочем, большинство авиамоделистов собирают модели не для того, чтобы их строить, а для того, чтобы летать. Поэтому очень удачные модели тиражируются на современных заводах и продаются в качестве наборов для самостоятельной сборки. Самый авторитетный производитель — немецкая компания Composite-ARF, на заводе которой корпуса и крылья изготавливают на самом настоящем конвейере с немецким же качеством. В тройку лидеров также входят германо-венгерский AIRWORLD и американский BVM Jets. Сделанные из самых современных материалов — стекло- и углепластика, — наборы для изготовления турбореактивных самолетов по стоимости на порядок отличаются от аналогичных наборов для поршневого авиамоделизма: цены стартуют от Є2000. При этом, чтобы из набора сделать летающую модель, надо затратить огромное количество сил — новичкам это просто не под силу. Но оно и понятно — это же самый настоящий современный самолет. На соревнованиях, например, уже никого не удивишь моделями с двигателями с отклоняемыми векторами тяги. В отличие, увы, от строевых воинских частей, где таких самолетов днем с огнем не сыщешь.

Наши чемпионы

Реактивные авиамоделисты — это особая всемирная тусовка. Их главная организация, Международный комитет по реактивным моделям IJMC, раз в два года устраивает главное реактивное шоу — чемпионат мира. Впервые российская команда RUSJET принимала в нем участие в 2003 году в Южной Африке (50 участников). Потом была Венгрия-2005 (73 участника) и в этом году Северная Ирландия (100 участников).

IJMC, пожалуй, самая неформальная модельная ассоциация — кстати, не имеющая ничего общего с поршнево-планерной FAI. Попытка объединиться была, но после встречи стороны расстались без сожалений. «Реактивный комитет» более молодой и амбициозный, делает основной упор на шоу, «старенький» FAI — приверженец классики. Собственно, поэтому соревнования IJMC собирают свыше ста участников, а в некоторых древних дисциплинах FAI выступает пяток спортсменов. Но оставим разногласия федерациям, а сами вернемся к реактивной авиации.

Наиболее эффектный чемпионат мира по радиоуправляемым моделям-копиям проходит в два этапа, на каждом из них участник набирает 50% очков. Первый — это стендовая оценка модели, где судьи дотошно оценивают соответствие оригиналу, сравнивая выставленную модель с чертежами и фотографиями. Кстати, на последнем чемпионате мира, проходившем в Северной Ирландии с 3 по 15 июля 2007 года, наша команда RUSJET с копией BAe HAWK TMk1A 208 SQUADRON RAF Valley 2006 Display Team (таково полное название) на стенде набрала наибольшее количество очков. Но все, конечно, решают полеты. Каждый участник выполняет три зачетных полета, из которых два лучших идут в итоговый зачет. Не каждый самолет доживает до итогового зачета. В Африке разбились восемь моделей, в Венгрии — четыре, на нынешнем чемпионате — две. Кстати, RUSJET на своих первых двух чемпионатах потеряла модели как раз в катастрофах. Тем более значительным выглядит наше второе место в чемпионате мира этого года, где российским пилотам удалось перелетать немцев — непререкаемых авторитетов в малой реактивной авиации. «Это все равно что на ‘Формуле-1' объехать Шумахера», — говорит пилот RUSJET Виталий Робертус.

Ну что, понравилось? А ведь еще существуют турбовинтовые модели самолетов и турбореактивные вертолеты. Не верите? Я сам видел.

www.popmech.ru

Реактивный самолет

Реактивный самолет – это летательный аппарат, который осуществляет полет в воздухе за счет использования в своей конструкции воздушно-реактивных двигателей. Они могут быть турбореактивными, прямоточными, пульсирующего типа, жидкостными. Также реактивные самолеты могут быть укомплектованы двигателем ракетного типа. В современном мире самолеты с реактивными двигателями занимают большую часть всех современных летательных аппаратов.

Краткая история развития реактивных самолетов

Началом истории реактивных самолетов мира принято считать 1910 год, когда конструктор и инженер Румынии по имени Анри Конада создал летательный аппарат в основе с поршневым двигателем. Отличием от стандартных моделей было использование лопастного компрессора, который и приводил машину в движение. Особо активно конструктор начал утверждать в послевоенное время, что его аппарат был оснащен именно реактивным двигателем, хотя первоначально он заявлял категорически противоположное.

Изучая конструкцию перового реактивного самолета А. Конада, можно сделать несколько выводов. Первый – конструктивные особенности машины показывают, что расположенный впереди двигатель и его выхлопные газы убили бы пилота. Вторым вариантом развития мог быть только пожар на самолете. Именно об этом и говорил конструктор, при первом запуске огнем была уничтожена хвостовая часть.

Что касается самолетов реактивного типа, которые были изготовлены в 1940-е года, они имели совершенно другую конструкцию, когда двигатель и место пилота были удалены, и, как следствие, это повысило безопасность. В местах, где пламя двигателей соприкасалось с фюзеляжем, была установлена специальная жаростойкая сталь, что не приносило корпусу увечий и разрушений.

Первые прототипы и наработки

Конечно же, самолеты с турбореактивной силовой установкой имеют значительно больше преимуществ, нежели летательные аппараты с поршневыми двигателями.

Аппараты с ракетными двигателями

Самолеты с многокомпрессорным двигателем (их считают условно пригодными к полетам)

Первые успешные реактивные прототипы

Германия:

​Великобритания:

США:

СССР:

Сверхзвуковые реактивные самолеты

В гражданской авиации был создано только два пассажирских самолета с возможностью полета на сверхзвуковых скоростях. Первый был изготовлен на территории СССР в 1968 году и обозначался как Ту-144. Было изготовлено 16 таких самолетов, но после серии катастроф машина была снята с эксплуатации.

Второй пассажирский аппарат данного типа изготовила Франция и Великобритания в 1969 году. Всего было построено 20 самолетов, эксплуатация продолжалась с 1976 по 2003 год.

Рекорды реактивных самолетов

Грузовые:

Максимальная скорость полета

Будущие прототипы и разработки

Пассажирские:

Крупные:

Бизнес-класс:

Гиперзвуковые:

Управляемые лаборатории:

Беспилотные:

 

 

Классификация самолетов:

avia.pro


Смотрите также