ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Поршень двигателя внутреннего сгорания. Поршневой двс


Поршневая группа

Поршневая группа состоит из поршня в сборе, уплотнительных и маслосъемных колец, поршневого пальца. По конструктивным признакам различают поршни тронковые, для двигателей крейцкопфного типа и двустороннего действия.

Тронковые поршни соединяются с шатуном поршневым паль­цем. Для обеспечения газонепроницаемости полостей цилиндра поршень снабжают уплотнительными кольцами, а для предотвра­щения попадания масла в камеру сгорания — маслосъемными кольцами. Материалом для поршней служит чугун марок СЧ24-44 и СЧ28-48 и сталь. Поршни небольшого диаметра быстроходных двигателей можно изготовлять из алюминиевых сплавов (АЛ1, АЛ2, АК2, АК4). Такие поршни имеют малый вес и небольшие температурные напряжения в днище; недостатки поршней — не­значительная износостойкость и большой коэффициент теплового линейного расширения.

Тронковый поршень

Поршень (рис. 139) состоит из нижней направляющей части — тройка или юбки 1 и верхней части — головки поршня 3 с поршне­выми кольцами 2. Конфигурация камеры сгорания двигателя, тип продувки, расположение в крышке клапанов и форсунки опреде­ляют форму днища поршня 4. Днище поршня может иметь вогну­тую, двояковогнутую, выпуклую и другую формы. Некоторые формы днищ поршней показаны на рис. 140. При диаметре поршня более 400 мм головку поршня выполняют съемной. Разъемная конструкция позволяет уменьшить стоимость поршня, так как только головку изготовляют из дорогостоящего жаропрочного ма­териала, и облегчает ремонт поршня. Головку крепят к тройку болтами или шпильками.

В некоторых конструкциях поршня внутреннюю поверхность днища для предохранения от нагарообразования и защиты голов­ного подшипника от теплового излучения закрывают мембраной; для увеличения жесткости днище снизу подкрепляют ребрами, ко­торые одновременно улучшают его охлаждение.

Поршневые пальцы и способы их фиксации

Поршневой палец 1 (рис. 141) размещен в приливах (бобыш­ках) 2 и фиксируется от осевого смещения пружинными кольцами 3. Пальцы закрепляются стопорным болтом 6 либо свободно вращаются — пальцы плавающего типа. Пальцы плавающего типа более распространены у быстроходных двигателей. Бронзовые втулки 4, запрессованные в бобышки чугунного поршня, являются подшипниками для поршневого пальца плавающего типа. Пальцы изготовляют из малоуглеродистой стали 15 или 20 с последующей цементацией и шлифованием или из легированной стали 15ХМА, 12МХ2А, 18ХНМА, 20Х и др. с последующей закалкой. В некото­рых конструкциях поршней с целью предотвращения соприкосно­вения пальца с зеркалом цилиндра ставят алюминиевые за­глушки 5 грибовидной формы.

Поршневые кольца располагают в канавках, проточенных в теле поршня. Поршневые кольца делятся на уплотнительные и маслосъемные. Уплотнительные кольца 2 (см. рис. 139) обеспечи­вают плотность поршня в цилиндре, предотвращают прорыв газов в картер двигателя и способствуют отводу тепла от головки поршня через втулку цилиндра охлаждающей воде. Маслосъемные кольца 6 и 7 (см. рис. 139) служат для удаления излишнего масла с зеркала цилиндра, что уменьшает нагарообразование в цилиндре, и не допускают проникновения масла в камеру сго­рания. Материалом для изготовления колец служит чугун СЧ24-44, реже сталь. Кольца изготовляют самопружинящими с разрезом-замком, обеспечивающим заводку кольца в канавку поршня и воз­можность теплового расширения кольца. Число уплотнительных колец шесть—три, маслосъемных три—одно. Уплотнительные кольца, как правило, прямоугольного сечения, рабочая поверхность кольца и поверхность зеркала цилиндра параллельны.

Поршневые кольца

В от­личие от уплотнительных (компрессионных) маслосъемные кольца имеют скос (рис. 142, а), с помощью которого масло удаляется из зеркала цилиндра и через специальные каналы 5 (см. рис. 139) в поршне стекает в картер. Необходимо особо быть вниматель­ным при монтаже маслосъемных колец, не допуская установки кольца скосом вниз, так как тогда масло будет попадать в камеру сгорания. Зазоры между поршневыми кольцами и стенками ка­навки в радиальном направлении равны 0,5—1,0 мм, по высоте 0,15—0,066 мм.

Типы замков поршневых колец показаны на рис. 142, б. При установке колец на поршень необходимо стыки (замки) распола­гать в разных положениях по окружности во избежание утечки газов. Поршневые кольца поршней двухтактных двигателей для предохранения от проворачивания и попадания замка в район рас­положения окоп стопорят фиксаторами.

Поршни двигателей

Поршень крейцкопфного двигателя соединяется с шатуном, штоком и крейцкопфом. В этом случае поршень крепят к штоку жестко специальным фланцевым соединением (рис. 143). Поршень крейцкопфного двигателя разгружен от боковых усилий и не имеет тронка.

Охлаждаемый поршень

На рис. 144 показан составной охлаждаемый поршень крейц­копфного двигателя, имеющего штампованную вставку из алюми­ниевого сплава АК6. Поршень состоит из трех основных частей: головки 1, отлитой из высокопрочного жаростойкого чугуна, кор­пуса 3 из перлитного чугуна и вставки 2. В поршнях новейшей конструкции пазы (канавки) под уплотнительные кольца хроми­руют или завальцовывают чугунными противоизносными коль­цами. Общий вид поршня, крейцкопфа и шатуна с подшипником приведен на рис. 145.

Шарнирное охлаждение поршней

Для достижения нормальных условий работы поршня необхо­димо обеспечить его охлаждение и прежде всего головки. Наибо­лее надежным средством снижения температуры головки яв­ляется искусственное охлаждение. При диаметрах цилиндра в двухтактных двигателях свыше 250 мм, а в четырехтактных свыше 400 мм применяют масляное охлаждение поршня. Охлаждение во­дой используют редко, так как требуется тщательное герметизи­рующее устройство, предотвращающее попадание воды в масло картера. Наиболее распространена телескопическая и шарнирная системы подачи охлаждающей жидкости под давлением в закры­тую полость поршня.

Ползун крейцкопфного двигателя

Штоки крейцкопфных двигателей выполняют стальными ко­ваными, круглого сечения, часто пустотелыми. В верхней части они имеют фланцы для крепления с поршнем, а нижней пяткой или хвостовиком 4 (рис. 146) соединяются с поперечиной 7 и фик­сируются гайкой 2. В состав крейцкопфа входят: стальной или чугунный ползун, опорные рабочие поверхности а и б которого покрыты тонким слоем антифрикционного сплава. Ползун, скользя по параллели картера, передает последней боковые усилия и та­ким образом разгружает поршень. Поверхность а передает боко­вые усилия при работе двигателя на передний ход, поверхность б, значительно меньшая по площади,— на задний ход. Ползун кре­пят болтами к стальной поперечине 3. Поперечина имеет цапфы 1, которые охватываются головным подшипником шатуна. В двига­телях, длительное время работающих на задний ход (буксиры, ле­доколы), ползуны выполняют двусторонними. По каналу 5 масло поступает на охлаждение поршня, а по каналу 6 — на смазку ра­бочих поверхностей ползуна.

Параллель крейцкопфного двигателя

На рис. 147 показана параллель крейцкопфного двигателя.

vdvizhke.ru

Свободно поршневой двигатель внутреннего сгорания

 Свободно поршневой двигатель внутреннего сгорания

Схема действия свободно-поршневого генератора горячего газа (СПГГ)

Свободно-поршневой двигатель внутреннего сгорания (СП ДВС) - двигатель внутреннего сгорания, в котором отсутствует кривошипно-шатунный механизм, а ход поршня от нижней мёртвой точки в верхней мёртвой точки осуществляется под действием давления воздуха, сжатого в буферных ёмкостях, пружины или веса поршня. Указанная особенность позволяет строить только двухтактные СП ДВС. СП ДВС могут использоваться для привода машин, совершающих возвратно-поступательное движение (дизель-молоты, дизель-прессы, электрические генераторы с качающимся якорем), могут работать в качестве компрессоров или генераторов горячего газа.

Преимущественное распространение получила схема СП ДВС с двумя расходящимися поршнями в одном цилиндре. Поршни кинематически связаны через синхронизирующий механизм (рычажный или реечный с паразитной шестерней). В отличии от кривошипно-шатунного механизма синхронизирующий механизм воспринимает только разность сил, действующих на противоположные поршни, которая при нормальной работе СП ДВС стремится к нулю. Один поршень управляет открытием впускных окон, а другой - выпускных. Поршни компрессора и поршни буферных ёмкостей жёстко связаны с соответствующими поршнями двигателя.

К достоинствам свободно-поршневых ДВС относится сравнительная простота их конструкции, хорошая уравновешенность, долговечность, компактность. Недостатки - сложность пуска и регулирования, неустойчивость работы на частичных нагрузках (с развитием микропроцессорных систем управления последний недостаток стал неактуальным).

Wikimedia Foundation. 2010.

Смотреть что такое "Свободно поршневой двигатель внутреннего сгорания" в других словарях:

dic.academic.ru

Поршневой двигатель - это... Что такое Поршневой двигатель?

ПОРШНЕВОЙ ДВИГАТЕЛЬ (ПД), двигатель, в котором основную функцию по преобразованию энергии рабочего тела (пар, вода, жидкое топливо, газовая смесь) в механическую выполняет поршень. Возвратно-поступательное движение поршня или непосредственно используется для осуществления работы (в свободно-поршневых двигателях, пневматических молотах и др.), или с помощью специального, чаще всего кривошипно-шатунного, механизма преобразуется во вращательное движение вала двигателя.

Известны гидравлические, пневматические, а также тепловые П. д. внешнего и внутреннего сгорания. По своему назначению П. д. делятся на транспортные (авиационные, танковые, автомобильные, тракторные, судовые), стационарные и специальные; по роду применяемого топлива — на газовые, твёрдотопливные и двигатели жидкого топлива; по способу наполнения цилиндра свежим зарядом, а также по способу осуществления рабочего цикла — на двух — и четырёхтактные. Многообразны конструктивные признаки и особенности П. д. Для общей характеристики конструктивных форм указывают, как правило, расположение осей цилиндров относительно оси вала. По этому признаку различают П. д. однорядные, двухрядные (V-образные и оппозитные), трёхрядные (W-образные), четырёхрядные (Х-образные, Н-образные) и многорядные (звездообразные). Наибольшее распространение получили тепловые П. д. внутреннего сгорания (ПДВС), в которых топливо сжигается в специальных расположенных внутри двигателя камерах (цилиндрах). ПДВС классифицируют: по типу системы охлаждения (жидкостное, воздушное), способу воспламенения рабочего тела (от искры, самовоспламенение, способу смесеобразования (внутреннее, внешнее), рабочему объёму (литражу), по расположению клапанов (верхнее, нижнее) и т. п. Двигатели с внешним смесеобразованием, в свою очередь, разделяют на карбюраторные, насосно-карбюраторные, в которых жидкое топливо впрыскивается во впускной трубопровод, где и образуется горючая смесь, и газосмесительные. Смесь воздуха с топливом в цилиндрах П. д. этого типа воспламеняется, как правило, от электрической искры. Среди них наиболее распространены карбюраторные четырёхтактные двигатели жидкостного охлаждения, применяемые главным образом для автомобилей. К двигателям с внутренним смесеобразованием относят П. д., в которых горючая смесь образуется непосредственно внутри цилиндра.

В П. д. с низкой степенью сжатия воздуха она может зажигаться либо от электрической искры, либо от раскалённого тела на поверхности камеры сжатия (калоризатора). В двигателях с высокой степенью сжатия рабочее тело самовоспламеняется при достижении определённой температуры. Двигатели этого типа (дизели) широко применяются в грузовых автомобилях, тракторах, самоходной военной технике, тепловозах, на судах.

Общим недостатком всех П. д. является прерывистость рабочего процесса и возвратно-поступательное движение элементов поршневой группы, вызывающее значительные инерционные моменты и силы, а также износ деталей в результате трения. Меньшей удельной массой и меньшими потерями на трение обладают газотурбинные двигатели, пришедшие на смену П. д. в современной авиации. Получают развитие также бесшатунные П. д. и роторно-поршневые двигатели с вращательным движением поршня. Технические характеристики П. д. совершенствуются путём повышения габаритной и литровой мощности, уменьшения удельного расхода топлива, увеличения надёжности двигателей в целом, а также их деталей, устройств, механизмов и систем.

voennaya.academic.ru

Поршень двигателя внутреннего сгорания

 

Поршень ДВС содержит головку с выполненными в ней по меньшей мере двумя канавками для установки поршневых колец, юбку и бобышки с отверстиями под поршневой палец. Головка имеет днище, включающее огневой пояс, расположенный над первым поршневым кольцом. Поршень изготовлен из композиционного материала, состоящего из матричного алюминиевого сплава, включающего кремний в количестве 11-26 об.%, и упрочнителя в виде частиц карбида кремния или оксида алюминия или смеси частиц карбида кремния и оксида алюминия. Технический результат - снижение массы поршня, улучшение его теплового состояния, повышение надежности и износостойкости. 3 з.п. ф-лы, 1 ил., 2 табл.

Изобретение относится к машиностроению, более конкретно к двигателестроению, и может быть использовано в поршневых двигателях внутреннего сгорания (ДВС) с искровым зажиганием и дизельных.

Традиционно поршни ДВС изготавливают из легированных силуминов эвтектоидного (11-13% Si) и заэвтектоидного (10 - 25% Si) составов. При этом в зависимости от типа и назначения ДВС, уровня его форсирования и ресурса применяют ту или иную технологию формообразования поршневых заготовок: кокильное литье, жидкую штамповку, штамповку в режиме сверхпластичности и изотермическую штамповку в закрытом штампе, что в совокупности с типом используемого поршневого сплава обеспечивает определенный уровень прочностных, теплофизических, усталостных и термоусталостных, а также трибологических свойств сплава в изделии. В то же время показано, что применяемые поршневые сплавы и технологии формообразования заготовок поршней не в полной мере отвечают современным требованиям, предъявляемым к поршням форсированнных ДВС (Платонов В.Н., Малькевич А.В., Попов В.М. "Технологические аспекты прочности силуминов, предназначенных для изготовления поршней". - Двигателестроение, 1991, N 6, с. 42-44). Фирма Mahle GmBH (Германия). Один из основных производителей поршней в Европе, обобщила опыт проектирования и изготовления поршней ДВС с искровым зажиганием и дизельных различного назначения из силуминов (Брошюра MAHLE, Kleine, Kolbenkunde, Ausgabe 1979, s. 13-14, MAHLE GMBH 7000 Stuttgart 50 (Bad Cannstott). В результате обобщения определились соотношения основных конструктивных элементов поршней в зависимости от диаметра цилиндра двигателя, некоторые из которых в соответствии с обозначениями на представленном чертеже приведены в табл. 1. Проведенный авторами анализ конструктивных элементов поршней современных автомобильных ДВС показал, что они полностью соответствуют приведенным в табл. 1 соотношениям. Результат анализа приведен в табл. 2. ВАЗ-21083 - двигатель с рабочим объемом 1,5 л, четырехцилиндровый, 8-ми клапанный. ЗМЗ-406.10 - новый двигатель производства Заволжского моторного завода с рабочим объемом 2,3 л четырехцилиндровый, 16-ти клапанный. 4G63 - (Mitsubischi, Япония) двигатель с рабочим объемом 2,0 л, четырехцилиндровый, 16-ти клапанный. 4D68 (Mitsubishi, Япония) двигатель с рабочим объемом 2,0 л, четырехцилиндровый, 8-ми клапанный. Эти соотношения, определяющие конструкцию поршней и базирующиеся на возможностях традиционных поршневых сплавов уже не удовлетворяют производителей ДВС, которые сконцентрировали свои усилия на решении следующих проблем: повышении износостойкости, термической и механической прочности, снижении потерь на трение в сопряжениях "поршень - поршневые кольца - цилиндр", снижении массы поршня, уменьшении поверхности трения, обеспечивающем в комплексе повышение долговечности двигателя при одновременном форсировании, включая различные способы наддува, а также снижение расхода топлива и токсичности. Этого можно достигнуть применением новых композиционных материалов и различными конструкторско-технологическими мероприятиями. Положение верхнего поршневого кольца относительно днища поршня имеет существенное значение и оказывает влияние на многие показатели двигателя. С одной стороны, первое кольцо желательно размещать как можно выше (ближе к днищу поршня), так как при этом уменьшается "вредный объем", т.е. объем гашения, образованный кольцевым зазором между цилиндром, поршнем и верхним поршневым кольцом, в котором процесс сгорания практически не происходит. Это основной источник углеводородов, выделяемых двигателями с искровым зажиганием (Wentwort J., "Piston and Piston Ring Variables Affect Exhaust Hydrocarbon Emissions", SAE paper 680109, January, 1968). Так же более мягко протекают процессы перекладки поршня, уменьшаются шум вибрации двигателя. С другой стороны, предельное по высоте положение первого кольца определяется из ряда условий, влияющих на распределение температур в головке поршня, таких как теплопроводность поршневого сплава, величины радиальных зазоров между головкой поршня и цилиндром, в свою очередь зависящих от коэффициента линейного температурного расширения материала поршня и др. Кольцо принято размещать в зоне головки поршня с температурой 220 - 240oC, при этом ограничениями являются прочность и твердость поршневого сплава при этих температурах и начало интенсивного коксования масла, приводящее к залеганию кольца в канавке. В соответствии с табл.1 положение первого кольца для ДВС с искровым зажиганием определяется из соотношения h=(0,08 - 0,12)D, а для дизельных h= (0,15 - 0,20)D. Несмотря на это, в поршнях ДВС с искровым зажиганием канавка верхнего компрессионного кольца подвержена повышенному износу и ограничивает работоспособность поршня. В настоящее время разработаны и применяются методы упрочнения верхних канавок: упрочнение плазменным переплавом зоны канавки с легированием, лазерное упрочнение и ряд др. Однако при этом вопрос о перемещении 1-го кольца ближе к днищу поршня не ставится (Полунин В.И. и др. "Взаимосвязь износостойкости, твердости и структуры некоторых поршневых материалов в зоне верхней поршневой канавки". Тезисы докладов Международной конференции "Проблемы развития автомобилестроения в России", 23-24 октября 1996, ОАО АвтоВАЗ, г. Тольятти, с. 26-28). В поршнях форсированных дизельных двигателей (при литровой мощности выше 14,7 кВт/л), в которых нагрузки от газовых сил на 1-е кольцо существенно выше, канавка верхнего компрессионного кольца традиционно выполняется во вставке из аустенитного чугуна "нирезист", залитой в головку поршня. По опыту эксплуатации зарубежных автомобилей двигателей упрочнение зоны канавки для верхнего поршневого кольца вставками позволяет обеспечить ресурс поршней от 400 до 900 тыс. км пробега автомобиля. В то же время установка вставки усложняет технологию изготовления поршня и его себестоимость (значительный брак по качеству заливки), увеличивает массу поршня (Щурков В.Е. Повышение надежности цилиндропоршневой группы зарубежных автомобилей двигателей. М.: ЦНИИТЭИавтопром, 1990, с. 35). Известно применение рядом фирм для зонального армирования наиболее нагруженных зон поршней дизельных двигателей: канавки 1-го или 1-го и 2-го компрессионных колец, кромки камеры сгорания в поршне, композиционных материалов, в которых матрица - алюминиевый сплав, а упрочнитель - короткие керамические волокна Al2O3 или Al2O3 + SiO2, или нитевидные кристаллы SiC. Армирование керамическими волокнами улучшает механические характеристики (прочность, предел текучести) базового алюминиевого сплава, особенно при повышенных температурах, снижает коэффициент линейного температурного расширения, повышает износостойкость. Так, фирма Toyota (Япония) применила вставку из керамических волокон Al2O3 для упрочнения канавки 1-го кольца в поршне дизельного двигателя с турбонаддувом (патент СССР N 1176849, кл. F 02 F 3/00, 1985). Фирма Mahle GmBH реализована аналогичное техническое решение для усиления керамическими волокнами Al2O3, SiC или Si3N4 кромки камеры сгорания в поршне дизельного двигателя (Versturkung von Aluminiumkolben durch Keramikfasern. "MTZ: Motortechn. Z. ", 1986, 47, N 3, 88) Упрочнение днища поршня и канавки 1-го кольца предложено фирмой Kolbens-Schmidt AG (Германия) (патент Германии N 3822031, кл. F 02 F 3/02, 1990). Недостатком данных технических решений в применении к деталям, работающим в условиях термоциклического нагружения, например к поршню ДВС, является различие в коэффициентах линейного температурного расширения материалов поршня и зон, армированных керамическими волокнами с малой теплопроводностью (Al2O3, Al2O3 + SiO2), в то же время наиболее дешевых. Так, согласно расчетным и экспериментальным исследованиям вариантов конструкции дизельного поршня с армированием днища керамическими волокнами Al2O3, проведенным фирмами Ricardo-ITI и JP Industries (США) (An Investigation of Structural Effects of Fiber Matrix Reinforcement in Aluminlum Diesel Pistons. Keribar R., Morel T., Toaz M.W. "SAE Techn, Pap. Ser." 1990, N 0536, 1-20), и расчетного исследования, выполненного авторами, установлено, что в связи с разницей в коэффициентах линейного температурного расширения материала, армированного керамическими волокнами, и базового алюминиевого сплава в результате термоциклического режима нагружения поршня на границе раздела композиционного материала и базового алюминиевого сплава возникают касательные напряжения, превышающие пределы текучести как базового сплава, так и композиционного материала при рабочих температурах поршня. Это приводит к возникновению трещин на границе раздела материалов и разрушению поршня. В данных исследованиях это имело место при объемном содержании керамических волокон более 10%. Такое ограничение по количеству вводимого в поршневой сплав упрочнителя накладывает соответственно ограничения на свойства получаемого композиционного материала. Тенденция постоянного форсирования двигателей по параметрам рабочего процесса и в первую очередь дизельных за счет применения турбонаддува приводит к резкому росту нагрузок от действия газовых сил на элементы поршня: бобышки поршневого пальца, днище поршня. В этих условиях обеспечение работоспособности поршня в целом требует применения специальных технических решений, направленных на повышение прочности элементов поршня, зачастую приводящих к нежелательному увеличению массы поршня и связанных с ним деталей (поршневого пальца, шатуна). Так, соотношение диаметров поршневых пальцев двигателей с искровым зажиганием и дизельных (при одинаковых диаметрах цилиндров) составляет 1,2-1,25. Такое увеличение диаметра поршневого пальца дизельного двигателя вызвано, с одной стороны, необходимостью увеличения его прочности жесткости, а, с другой стороны, определяется допустимыми напряжениями смятия для алюминиевого сплава поршня при рабочих температурах в зоне бобышек от действия поршневого пальца. Известны технические решения по повышению работоспособности бобышек поршня дизельного двигателя. В частности, предлагается устанавливать в бобышках поршня втулки из высокопрочных медных сплавов с применением горячей посадки (Izumi Tomoaki, Suzuki Yoshihiro /Найнэн Кикан. - Intern. Combust. Engine. 1989, 28, N 12, c. 69-74) или заливать в бобышки вставки из легкого сплава, армированного волокнами Al2O3, ориентированным параллельно плоскости днища поршня (заявка ФРГ N 3639806, кл. F 02 F 3/00, 1988). Обеспечивая работоспособность бобышек поршня, эти решения увеличивают трудоемкость изготовления поршня и его себестоимость. Применение для изготовления поршня материала, обладающего более высокими, чем базовые сплавы, прочностными и трибологическими свойствами, позволило бы в определенных пределах уменьшить диаметр поршневого пальца и его массу, а также массу поршня и верхней головки шатуна, т.е. массу возвратно-поступательно движущихся частей кривошипно-шатунного механизма двигателя. На днище поршня действуют совместно механические нагрузки от сил давления газов и термические нагрузки, обуславливаемые высоким уровнем температур и температурных градиентов. Исходя из этого толщина днища поршня, в значительной мере определяющая массу поршня, устанавливается такой (см. табл. 1), чтобы обеспечить прочность поршня и передачу цилиндрической части поршня интенсивных тепловых потоков. Уменьшение толщины днища поршня и соответственно его массы возможно за счет применения для изготовления поршня материала, обладающего комплексом свойств (прочность, жаропрочность, сопротивление усталостным и термоусталостным нагрузкам, теплопроводность, коэффициент линейного температурного расширения, трибологические характеристики), превосходящих аналогичные свойства для базовых поршневых сплавов. Во многом эту задачу решает технология армирования днища поршня керамическими волокнами, но это решение имеет ограничение, отмеченное выше. Существуют изотропные композиционные материалы с матрицей из алюминиевых сплавов, в том числе силуминов, содержащие в качестве упрочнителя частицы Al2O3, SiC, TiC, B4C с различными регламентированными размерами в виде порошка, равномерно распределенного в объеме матричного материала (Композиционные материалы. Справочник. Под. ред. д.т.н. Д.М. Карпиноса, Киев: Наукова Думка, 1985, гл. 5, гл. 7). Физико-механические свойства композиционных материалов этого типа определяются свойствами алюминиевого сплава и применяемых керамических частиц, размерами и процентным содержанием частиц в композиционном материале. В результате варьирования матричным сплавом, типом упрочнителя, размерами и количеством частиц, вводимых в матричный сплав, возможно изменять свойства композиционного материала в достаточно широких пределах. При этом представляется возможным добиваться получения комплексов свойств композиционного материала, приближенных к необходимым для поршней ДВС различного исполнения (с искровым зажиганием и дизельных), с различным уровнем форсирования, надежности и ресурса. Известно об изготовлении фирмой Duralcan (США) поршней для двигателей внутреннего сгорания из композиционного материала. Известный поршень, принятый за прототип, содержит головку с днищем и выполненными в ней по меньшей мере двумя канавками для установки поршневых колец, юбку и бобышки с отверстиями под поршневой палец и изготовлен из композиционного материала, состоящего из матричного алюминиевого сплава, включающего 9,5-10,5 об.% кремния (Si), и упрочнителя в виде частиц карбида кремния (SiC) размером 10 - 12 мкм. Отмечено, что отливки из данного композиционного материала имеют лучшие свойства, чем у базовых сплавов, в частности: модуль упругости выше на 35%, износостойкость выше в 3 раза, коэффициент линейного температурного расширения ниже примерно на 25%, а прочность выше, особенно при рабочих температурах. Вместе с тем, об изменениях конструкции поршня, которые могли бы быть реализованы в связи с применением композиционного материала с улучшенными свойствами, не сообщается. Кроме того, той же фирмой разработаны модификации композитов с применением частиц Al2O3 размером 8 - 15 мкм, но при этом используются матричные алюминиевые сплавы не поршневого назначения, предназначенные для получения заготовок деталей давлением [1]. Однако известный поршень вследствие его изготовления из композиционного материала, состоящего из матричного алюминиевого сплава с низким процентным содержанием кремния, характеризуется увеличением его массы и массы смежных с поршнем деталей, снижением надежности и износостойкости. В основу изобретения поставлена задача снижения массы поршня и массы смежных с поршнем деталей, улучшения теплового состояния поршня, повышения его надежности и износостойкости, уменьшения "вредного объема", определяемого кольцевым зазором над первым поршневым кольцом, снижения выбросов CHx, шума и вибраций. Поставленная задача решается тем, что в поршне двигателя внутреннего сгорания, содержащем головку с днищем и выполненными в ней по меньшей мере двумя канавками для установки поршневых колец, юбку и бобышки с отверстиями под поршневой палец и изготовленном из композиционного материала, состоящего из матричного алюминиевого сплава, включающего Si, и упрочнителя в виде частиц SiC, согласно изобретению матричный алюминиевый сплав композиционного материала включает Si в количестве 11 - 26 об.%, а в качестве упрочнителя также использованы частицы Al2O3 или смесь частиц SiC и Al2O3. Такая комбинация матричного поршневого сплава с большим интервалом процентного содержания кремния в его составе и вводимого упрочнителя в виде частиц SiC или Al2O3 или их смеси обеспечит улучшение основных физико-механических свойств базовых поршневых алюминиевых сплавов в широком диапазоне и позволит получать композиционные материалы со свойствами, достаточно близко подобранными для поршней различного конкретного назначения. Так, использование частиц SiC обеспечит (в зависимости от матричного сплава) увеличение теплопроводности композиционного материала, что благоприятно влияет на условия работы поршней ДВС с искровым зажиганием; использование частиц Al2O3 обеспечит уменьшение теплопроводности композиционного материала (в зависимости от содержания частиц), что желательно для некоторых исполнений поршней дизельных двигателей; комбинируя количественное соотношение частиц SiC и Al2O3 в смеси представляется возможным в более широких пределах управлять теплопроводностью композиционного материала. Поставленная задача решается также тем, что расстояние от днища головки до верхней кромки канавки первого поршневого кольца может составлять 0,05 - 0,075 диаметра поршня для двигателя с искровым зажиганием и 0,12 - 0,16 диаметра поршня для дизельного двигателя. Поставленная задача решается также тем, что толщина днища головки может составлять 0,07 - 0,085 диаметра поршня для двигателя с искровым зажиганием и 0,125 - 0,15 диаметра поршня для дизельного двигателя. Поставленная задача решается также тем, что диаметр отверстий в бобышках под поршневой палец может составлять 0,22 - 0,26 диаметра поршня для двигателя с искровым зажиганием и 0,29 - 0,35 диаметра поршня для дизельного двигателя. На чертеже представлен поршень ДВС (с искровым зажиганием и дизельного), разрез. Предлагаемый поршень содержит головку 1 с выполненными в ней по меньшей мере двумя канавками 2 для установки поршневых колец (не показаны), юбку 3 и бобышки 4 с отверстиями 5 под поршневой палец (не показан). Головка 1 имеет днище 6, включающее огневой пояс 7, расположенный над первым поршневым кольцом. Поршень изготовлен из композиционного материла, состоящего из матричного алюминиевого сплава, включающего Si в количестве 11 - 26 об.%, и упрочнителя в виде частиц SiC или Al2O3 или смеси частиц SiC и Al2O3. Размер частиц SiC и Al2O3 может составлять 12 - 50 мкм. Количество частиц предпочтительно составляет 10 -30 об.%. Расстояние h от днища 6 головки 1 предлагаемого поршня до верхней кромки канавки 2 первого поршневого кольца (высота огневого пояса 7) может составлять 0,05 - 0,075) диаметра D поршня для двигателя с искровым зажиганием и 0,12 - 0.16 диаметра D поршня для дизельного двигателя. Толщина S днища 6 головки 1 может составлять 0,07 - 0,085 диаметра D поршня для двигателя с искровым зажиганием и 0,125 - 0,15 диаметра D поршня для дизельного двигателя. Диаметр d отверстий 5 в бобышках 4 под поршневой палец может составлять 0,22 - 0,26 диаметра D поршня для двигателя с искровым зажиганием и 0,29 - 0,35 диаметра D поршня для дизельного двигателя. Предлагаемый поршень работает обычным образом. Выполнение поршня из композиционного материала в соответствии с предложенными соотношениями данных конструктивных размеров обеспечивает снижение его массы на 20-30% и соответственно массы смежных с поршнем деталей, что значительно уменьшает инерционные нагрузки в кривошипно-шатунном механизме и тем самым повышает надежность и ресурс. С другой стороны, это дает возможность форсировать двигатель по частоте вращения при том же уровне нагрузок. Кроме того, положение канавки поршневого кольца, определяемое приведенными соотношениями, обеспечивает в совокупности с уменьшенным радиальным зазором по огневому поясу головки поршня (за счет снижения коэффициента линейного температурного расширения композита) уменьшение "вредного объема" над первым поршневым кольцом в среднем на 75%, что ведет к снижению вредных выбросов CHx в отработавших газах бензиновых двигателей, обеспечивает более спокойное протекание перекладок поршня и как следствие снижает вибрацию и механический шум двигателя на 30-40%.

Формула изобретения

1. Поршень двигателя внутреннего сгорания, содержащий головку с днищем и выполненными в ней по меньшей мере двумя канавками для установки поршневых колец, юбку и бобышки с отверстиями под поршневой палец и изготовленный из композиционного материала, состоящего из матричного алюминиевого сплава, включающего кремний, и упрочнителя в виде частиц карбида кремния, отличающийся тем, что матричный алюминиевый сплав композиционного материала включает кремний в количестве 11 - 26 об.%, а в качестве упрочнителя также использованы частицы оксида алюминия или смесь частиц карбида кремния и оксида алюминия. 2. Поршень по п.1, отличающийся тем, что расстояние от днища головки до верхней кромки канавки первого поршневого кольца составляет 0,05 - 0,075 диаметра поршня для двигателя с искровым зажиганием и 0,12 - 0,16 диаметра поршня для дизельного двигателя. 3. Поршень по п.1 или 2, отличающийся тем, что толщина днища головки составляет 0,07 - 0,085 диаметра поршня для двигателя с искровым зажиганием и 0,125 - 0,15 диаметра поршня для дизельного двигателя. 4. Поршень по любому из пп.1 - 3, отличающийся тем, что диаметр отверстий в бобышках под поршневой палец составляет 0,22 - 0,26 диаметра поршня для двигателя с искровым зажиганием и 0,29 - 0,35 диаметра поршня для дизельного двигателя.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3

www.findpatent.ru

Поршневая группа: поршень

Поршневую группу образует поршень в сборе с комплектом уплотняющих колец, поршневым пальцем и деталями его крепления. Назначение поршневой группы состоит в том, чтобы:

1) воспринимать давления газов и через шатун передавать эти давления на коленчатый вал двигателя;

2) уплотнять надпоршневую полость цилиндра как от прорыва газов в картер, так и от излишнего проникновения в нее смазочного масла.

Функции уплотнения, выполняемые поршневой группой, имеют большое значение для нормальной работы поршневых двигателей. О техническом состоянии двигателя судят по уплотняющей способности поршневой группы. Например, в автомобильных двигателях не допускается, чтобы расход масла из-за угара его вследствие избыточного проникновения (подсоса) в камеру сгорания превышал 3% от расхода топлива. При выгорании масла наблюдается повышенная дымность отработавших газов и двигатели снимаются с эксплуатации вне зависимости от удовлетворительности мощностных и других его показателей.

Поршневая группа работает в сложных температурных условиях с циклическими резко изменяющимися нагрузками при ограниченной смазке и недостаточном теплоотводе вследствие трудностей охлаждения. Поэтому детали поршневой группы имеют наиболее высокую тепловую напряженность, что обязательно учитывается при выборе их конструкции и материала. Элементы поршневой группы обычно разрабатывают с учетом назначения и типа двигателей (стационарные, транспортные, форсированные, двухтактные двигатели, дизели и т. д.), но общее их устройство в двигателях тронкового типа остается сходным.

Поршни. Поршень состоит из двух основных частей: головки I и направляющей части II (рис. 1, а).

 

Рисунок 1

Направляющую (тронковую) часть обычно называют юбкой поршня. С внутренней стороны она имеет приливы — бобышки 8, в которых просверливают отверстие 9 для поршневого пальца. Для фиксации пальца в отверстиях 9 протачивают канавки 10, в которых размещают детали, запирающие палец. Нижнюю кромку юбки часто используют в качестве технологической базы при механической обработке поршня. С этой целью она снабжается иногда точно растачиваемым буртиком 6. С внутреннего торца 5 буртика снимают металл при подгонке поршня по весу в случаях, если вес поршня после обработки превышает норму, принятую для данного двигателя. В зоне выхода отверстий под поршневой палец на внешних стенках юбки 11 делают местные углубления 4, вследствие чего стенки этих зон не соприкасаются со стенками цилиндра и не трутся о них, образуя так называемые холодильники.

Юбка служит не только направляющей частью поршня, ее стенки воспринимают также силы бокового давления N6, что увеличивает силу их трения о стенки цилиндра и повышает нагрев поршня и цилиндра.

Для обеспечения свободного перемещения поршня в цилиндре прогретого и нагруженного двигателя между направляющей его частью (юбкой) и стенками цилиндра предусматривают зазор. Величина этого зазора определяется из условий линейного расширения материала поршня и цилиндра при нормальном тепловом состоянии двигателя. Перегрев поршня опасен, так как приводит к захватыванию и даже к аварийному заклиниванию его в цилиндре. Опыт свидетельствует, что излишне большие зазоры между поршнем и стенками цилиндра тоже не желательны, поскольку это ухудшает уплотняющие свойства поршневой группы и вызывает стуки поршня о стенки цилиндра. Работа автомобильного двигателя со стуками поршней не допускается.

Головка поршня имеет днище 1 и несет уплотняющие поршневые кольца, которые размещают на боковых ее стенках 11 в канавках 2, разделяемых друг от друга перемычками 12. Нижняя канавка снабжается дренажными отверстиями 3, через которые со стенок цилиндра отводят смазочное масло с тем, чтобы предотвратить его проникновение (подсос) в камеру сгорания. Диаметр дренажных отверстий составляет примерно 2,5—3 мм. При меньшем размере они быстро загрязняются и выходят из строя. Поршни изготовляют с несколькими рядами дренажных отверстий, располагая их под поршневыми кольцами, а также рядом с ними на специально проточенных поясках (лысках).

Днище головки поршня является одной из стенок камеры сгорания и воспринимает поэтому большие давления газов, омывается открытым пламенем и раскаленными до температуры 1500—2500°С газами. Для увеличения прочности днища и повышения общей жесткости головки ее боковые стенки 11 снабжают массивными ребрами 13, связывающими стенки и днище с бобышками 8. Ореб-ряют иногда и днище, но чаще всего оно выполняется гладким, с переменным сечением, постепенно утолщающимся к периферии, как показано на рис. 1, а. При таком сечении улучшается тепло-отвод от днища и уменьшается температура его нагрева.

Высокий нагрев днища вообще нежелателен, так как это ухудшает весовое наполнение цилиндров и приводит к снижению мощности двигателя из-за повышенного подогрева свежего заряда от соприкосновения с чрезмерно горячей поверхностью днища. В карбюраторных двигателях возможны при этом преждевременные вспышки и появление разрушительного детонационного сгорания.

Днища поршней в двигателях автомобильного, тракторного и мотоциклетного классов изготовляются плоскими, выпуклыми, вогнутыми и фигурными (см. рис. 1, а, г—к). Форма их выбирается с учетом типа двигателя, камеры сгорания, принятого смесеобразования и технологии изготовления поршней.

Самой простой и технологически целесообразной является плоская форма днища (см. рис. 1, а). Такая форма находит применение в различных двигателях и особенно широко используется в автомобильных и тракторных двигателях, в которых камера сгорания, или основной ее объем, располагается в головке цилиндра. Плоские днища имеют относительно малую поверхность соприкосновения с раскаленными газами, что положительно сказывается на их тепловой напряженности.

Сравнительно несложную геометрическую форму имеют также выпуклые и вогнутые днища (см. рис. 1, г, д). Выпуклая форма придает днищу большую жесткость и уменьшает возможное нагаро-образование (масло, проникающее в камеру сгорания, с выпуклого днища легко стекает, но выпуклое днище всегда бывает более горячим, чем плоское). Вогнутая форма днищ облегчает общую компоновку сферических камер сгорания, но создает благоприятные условия для повышенного нагарообразования. Масло, проникающее в камеру сгорания, накапливается здесь в наиболее горячей центральной зоне днища. Поэтому в четырехтактных двигателях выпуклые и особенно вогнутые днища находят ограниченное применение. Однако в двухтактных двигателях с контурно-щелевой, продувкой, где выпуклые и вогнутые формы днищ облегчают организацию продувки цилиндров, они широко используются. В двухтактных двигателях используются также и фигурные днища с козырьками-отражателями или дефлекторами (см. рис. 1, г), обеспечивающими заданное направление потоку горючей смеси при продувке цилиндров.

Фигурные днища с различного рода вытеснителями (см. рис. 1, ж) применяют и в четырехтактных карбюраторных двигателях. При необходимости днища с вытеснителями легко позволяют видоизменять или уменьшать камеру сгорания. С этой целью применяют иногда и выпуклые днища, как, например, в двигателе МЗМА-412. В последнее время для автомобильных карбюраторных двигателей стали применять фигурные днища, позволяющие полностью или частично размещать камеру сгорания в головке поршня (см. рис 1, з). Карбюраторные двигатели с камерой сгорания в поршне обладают хорошими показателями и являются перспективными.

Поршни автомобильных и тракторных дизелей в зависимости от принятого смесеобразования строят как с плоскими, так и с фигурными днищами. Часто днищу придают форму (см. рис. 1, и), соответствующую форме факелов топлива, распыли-ваемого через многодырчатую форсунку, расположенную в центре камеры сгорания. Широко распространены фигурные днища, форма которых предопределяется принятой для дизеля камерой сгорания с частичным или полным размещением ее в головке поршня. На рис. 1, к в качестве примера показана камера сгорания ЦНИДИ (Центральный научно-исследовательский дизельный институт, г. Ленинград), обеспечивающая работу двигателя с хорошими показателями.

Головка поршня по сравнению с юбкой в любом случае имеет более высокую рабочую температуру, а следовательно, и больше, чем юбка, увеличивается в размерах. Поэтому диаметр ее Dr всегда делают меньше диаметра юбки Dю. У поршней автомобильных двигателей эта разница составляет в среднем 0,5 мм. Боковым стенкам головки придают форму цилиндра или усеченного конуса с малым основанием у днища или же выполняют их ступенчатыми. Размеры при этом выбирают так, чтобы стенки головки в горячем состоянии на режиме максимальной мощности двигателя не соприкасались со стенками цилиндра. Тем не менее головку считают уплотняющей частью поршня, имея в виду, что стенки ее вместе с поршневыми кольцами, как будет показано ниже, образуют уплотняющий лабиринт. В некоторых конструкциях на стенках головки делают проточку 14, изменяющую направление теплового потока у верхнего поршневого кольца.

На днище поршня иногда делают технологическое центровочное отверстие 15, для размещения которого при отсутствии оребрения предусматривают специальный прилив. Если центровка днища не предусмотрена конструкцией, то поршень при обработке на станках крепят с использованием отверстий 9 в бобышках. Базовой поверхностью в обоих случаях является точно обработанный буртик 6 или просто поясок 18, растачиваемый непосредственно в стенках 7 юбки (см. рис. 1, б). Для этих же целей бобышки часто снабжаются приливами 16 и технологическими отверстиями 19 (см. рис. 1, в). При отсутствии буртика 6 подгонка поршней по весу осуществляется за счет снятия металла с торцов 17 приливов 16 на бобышках.

Поршневая группа совершает возвратно-поступательное движение, вследствие чего подвергается воздействию сил инерции. Опытами и расчетами установлено, что максимальная величина сил инерции на больших скоростных режимах работы составляет значительную долю от газовых сил.

Таким образом, на поршень действует комплекс различных силовых и тепловых нагрузок в условиях, неблагоприятных для смазки и охлаждения. Являясь базовой деталью поршневой группы и наиболее напряженным элементом кривошипно-шатунного механизма, поршень должен обладать высокой прочностью, теплопроводностью, износостойкостью и при этом иметь наименьший вес. С учетом этого и выбирают конструкцию и материал поршней.

Для двигателей автомобильного типа поршни изготовляют в основном из алюминиевых сплавов и чугуна. Применяются также чугун, сталь и магниевые сплавы.

Поршни из чугуна прочны и износостойки. Благодаря небольшому коэффициенту линейного расширения чугуна они могут работать с относительно малыми зазорами, обеспечивая хорошее уплотнение цилиндра даже в двигателях, имеющих большую тепловую напряженность (двухтактные и др.). Однако чугун имеет довольно большой удельный вес (7,3 г/см3, или 7,3-10^3 н/м3), что приводит к переутяжелению изготовленных из него поршней. В связи с этим область применения чугунных поршней ограничивается сравнительно тихоходными двигателями, где силы инерции возвратно движущихся масс не превосходят одной шестой от силы давления газа на днище поршня. Чугун имеет еще и низкую теплопроводность, поэтому нагрев днища у чугунных поршней достигает 350÷400°С. Такой нагрев нежелателен особенно в карбюраторных двигателях, поскольку это служит причиной возникновения детонации.

Указанные недостатки чугунных поршней в определенной мере присущи и стальным поршням. Однако стенки стальных поршней значительно тоньше стенок чугунных поршней, но сложность отливки удорожает их производство. Стальные поршни не получили распространения в автомобилестроении.

Потеряли практическую ценность и поршни из магниевых сплавов, основу которых составляет магнии, сплавленный с 5—10% алюминия. Такие сплавы отличаются малым удельным весом (1,8 г/см3, или 1,8-10^3 н/м3), но не обладают нужной прочностью.

Подавляющее большинство быстроходных карбюраторных двигателей и дизелей автомобильного типа снабжается поршнями, изготовленными из алюминиевых сплавов. Основу их составляет алюминий, сплавленный с медью (6—12%) или кремнием (до 23%). В зависимости от марки алюминиевые поршневые сплавы содержат в небольших (1,0—2,5%) количествах никель, железо, магний, а иногда до 0,5% титана. Особенно широко применяют теперь силумины — алюминиевые сплавы, содержащие примерно 13% кремния. Внедряются сплавы с 20 — 22% кремния.

Большим достоинством алюминиевых поршневых сплавов является то, что они примерно в 2,6 раза легче чугуна, обладают в 3—4 раза большей теплопроводностью и хорошими антифрикционными свойствами. Благодаря этому вес изготовленных из этих сплавов гак называемых алюминиевых поршней, как минимум, на 30% бывает легче чугунных, хотя стенки их по соображениям прочности делаются толще последних. Нагрев днища алюминиевых поршней обычно не превышает 250°С, что способствует лучшему наполнению цилиндров и в карбюраторных двигателях позволяет несколько увеличивать степень сжатия при работе на данном сорте топлива. Поэтому мощностные и экономические показатели двигателей при переходе на алюминиевые поршни улучшаются. Появляется возможность форсирования двигателей с целью повышения их мощности путем увеличения числа оборотов коленчатого вала.

Недостатками алюминиевых поршневых сплавов являются: большой коэффициент линейного расширения (примерно в 2 раза больший, чем у чугуна), значительное уменьшение механической прочности при нагреве (нагрев до температуры 300°С снижает их прочность на 50—55% против 10% у чугуна) и сравнительно малая износостойкость. Однако современные методы производства и конструкции алюминиевых поршней позволяют использовать алюминиевые сплавы для поршней любых быстроходных автомобильных двигателей.

Необходимое повышение механической прочности и износостойкости поршней из алюминиевых сплавов в зависимости от состава последних в определенной мере достигается путем одно- или многоступенчатой термической обработки. Например, в течение 12— 14 часов поршни выдерживают в нагревательной печи при температуре 175—200°С (близкой к рабочей). После завершения такого искусственного старения твердость поршней с 80 единиц по Бринеллю повышается до НВ 110—120 и резко увеличивается их долговечность.

Недопустимые для нормальной работы поршневой группы большие зазоры между стенками цилиндра и юбкой алюминиевого поршня, обусловливаемые высоким коэффициентом линейного расширения алюминиевых сплавов, устраняются применением рациональной конструкции для элементов поршня. Опыт показывает, что правильно спроектированные алюминиевые поршни могут работать с очень малыми зазорами, не вызывая стука даже в холодном состоянии. Достигается это с помощью компенсационных прорезей или вставок, которыми снабжают стенки юбки, приданием юбке овальной или овально-конусной формы, путем изолирования рабочей (направляющей) ее зоны от более горячей части поршня головки и принудительным охлаждением последней.

В практике автомобилестроения часто применяют сразу несколько дополняющих друг друга мероприятий. Основными из них являются:

1) разрез юбки по всей ее длине (рис. 2, а). Такой разрез, как правило, делают косым так, что верхний и нижний участки его перекрываются. Косой разрез не оставляет следа на стенках цилиндра и позволяет разрезанным стенкам юбки при их нагреве сходиться (сближаться) за счет уменьшения ширины прорези, обеспечивая тем самым свободное перемещение горячего поршня в цилиндре. Чтобы увеличить пружинящие свойства разрезанных стенок и уменьшить температуру их нагрева, юбка в этой зоне отделяется от головки широкой горизонтальной прорезью, которая обычно проходит по канавке нижнего поршневого кольца, как показано на рис. 2, а. Горизонтальная прорезь в данном случае является одновременно изолирующей, защищающей юбку от теплового потока, идущего со стороны более горячей головки, и дренажной, позволяющей отводить масло со стенок цилиндра.

 

Рисунок 2

Юбка с разрезом на всю ее длину выполняется цилиндрической а ширину прорези выбирают так, чтобы полностью исключалась возможность захватывания горячего поршня в цилиндре. Рассмотренный метод несколько снижает жесткость поршня и пригоден только для карбюраторных двигателей. Он используется в известном отечественном двигателе ЗИЛ-120, где тепловые зазоры между поршнем и цилиндром составляют 0,08—0,10 мм.

Поршни с полностью разрезанной юбкой устанавливаются в цилиндр так, чтобы разрезанная сторона юбки не нагружалась боковыми силами при рабочем ходе;

2) разрез юбки не на полную ее длину, а в виде Т- и П-образных прорезей (рис. 2, б, в). Такие прорези сочетаются с овальной формой юбки. Величина овала составляет 0,3—0,5 мм, причем большая ось его располагается перпендикулярно к оси поршневого пальца как показано на рис. 2. Вследствие этого юбка соприкасается со стенками цилиндра только в плоскости качания шатуна узкими полосками и при нагреве может свободно расширяться в обе стороны по оси поршневого пальца, увеличивая зону своего контакта с цилиндром.

В поршнях с Т- и П-образными разрезами изолирующие горизонтальные прорези между юбкой и головкой делают с обеих сторон бобышек, поэтому тепловой поток от головки направляется непосредственно на бобышки и не оказывает интенсивного влияния на нагрев стенок юбки в зоне их контакта с цилиндром. Эти виды прорезей придают юбке пружинящие свойства, облегчая этим деформацию ее стенок. Чтобы не допустить появление трещин на концах прорезей в связи с деформацией стенок, их засверливают, как показано на рис. 2.

Поршни с овальной, частично разрезанной юбкой обладают достаточной прочностью и обеспечивают удовлетворительную работу поршневой группы автомобильных двигателей с очень малыми тепловыми зазорами, составляющими в среднем 0,02—0,03 мм. Часто юбке таких поршней придают не только овальную, но и конусную форму, располагая большой диаметр усеченного конуса по нижней кромке юбки. Величина конусности составляет примерно 0,05 мм;

3) компенсационные вставки, ограничивающие тепловое расширение юбки в плоскости качания шатуна (рис. 2, г, д, е). Вставки применяются различной конструкции, но чаще всего они представляют собой пластины инварные или стальные, связывающие стенки юбки с бобышками поршня. Чтобы уменьшить при этом температуру нагрева юбки, последняя с двух сторон бобышек отделяется от головки поперечными изолирующими прорезями.

Инварные вставки, содержащие около 35% никеля, имеют весьма низкий коэффициент линейного расширения (в 10—11 раз меньший, чем у алюминиевых поршневых сплавов). С их помощью зазор между юбкой поршня и стенками цилиндра практически удается сохранять неизменным как в холодном, так и прогретом состоянии двигателя. Поршни с ииварными вставками обычно имеют развитые- холодильники и свободно расширяются только в направлениях оси поршневого пальца (см. рис. 2, д), не изменяя рассматриваемого зазора.

В настоящее время широко применяют более дешевые вставки из нелегированной стали, которые заливаются в бобышки так, что вместе с тонким слоем основного алюминиевого сплава поршня они образуют биметаллические пары (см. рис. 2, г). Вследствие разности коэффициентов линейного расширения стали и алюминиевого сплава при нагреве таких стенок они деформируются и придают юбке овальную форму, изгибаясь наружу в разные стороны по оси поршневого пальца, т. е. в сторону развитых холодильников. Такие поршни называются «автотермик». Они обладают хорошими эксплуатационными качествами, имеют повышенную прочность и жесткость, поэтому могут использоваться даже в дизелях.

Компенсационные вставки обеспечивают удовлетворительна ю работу поршневой группы с зазорами менее 0,02 мм. Иногда компенсационные вставки выполняются также в виде различных стальных колец, которые заливаются в верхнюю часть юбки, как показано на рис. 2, е.

Чтобы исключить ошибки при установке поршня в цилиндр, на одной из его бобышек отливают метку-надпись «назад», т. е. эта бобышка должна быть расположена со стороны маховика двигателя. Иногда для этой цели используется стрелка-указатель.

Цилиндрическая головка поршня с плоским днищем снабжена тремя канавками под поршневые кольца, причем в нижней канавке сделаны дренажные отверстия, а поперечные изолирующие прорези размещены под этой поршневой канавкой. Юбку поршня изготовляют с овальностью 0,36 мм и конусностью в пределах 0,013— 0,038 мм. По цилиндрам поршни подбираются с зазором 0,012— 0,024 мм.

Правильность подбора зазора проверяется ленточным щупом с размерами 0,05 X 13 мм, который устанавливают под углом 90° к оси поршневого пальца (при снятых поршневых кольцах).

Поршни дизелей работают с большей, чем в карбюраторных двигателях, механической и тепловой напряженностью, поэтому им придают форму, обеспечивающую возможно высокую прочность и жесткость. Они изготовляются сравнительно толстостенными литыми или штампованными (Штампованные или кованые поршни из легких сплавов бывают прочнее соответствующих литых и предпочтительно применяются в форсированных дизелях) со сплошной юбкой, т. е. с юбкой, не имеющей разрезов, прерывающих тепловые потоки и облегчающих деформацию стенок. Вследствие этого юбка всегда имеет повышенную температуру нагрева, что вынуждает устанавливать поршни в цилиндры с довольно большими зазорами. Для уменьшения этих зазоров юбку выполняют овальной или овально-конусной конструкции. В отдельных случаях днище и стенки головки поршня для уменьшения их нагрева дополнительно охлаждают струйкой масла, которое через форсунку, расположенную в головке шатуна, подастся на внутренние стенки головки.

Следовательно, поршни из легких сплавов с перазрезной (сплошной) юбкой, хотя и обладают повышенной прочностью и жесткостью, но обеспечивают удовлетворительную работу поршневой группы с зазорами, в 5—10 раз превышающими зазоры, которые в сопоставимых условиях допускаются для овально-конусных юбок с компенсационными прорезями и вставками.

 

Источник: Райков И.Я., Рытвинский Г.Н. Двигатели внутреннего сгорания, 1971 г.

Newer news items:

Older news items:

azbukadvs.ru


Смотрите также