ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Мощность: определение и формула. Мощность двс формула


Мощность момент — Энциклопедия журнала "За рулем"

Может ли бульдозер обогнать «формулу 1»? Может, но только на очень короткой дистанции

Как движется автомобиль 0.jpg

Часто эксперты автомобильных изданий, рассказывая о выдающейся динамике машины, в первую очередь превозносит огромный крутящий момент двигателя, оставляя мощности роль второго плана. Мол, благодаря именно моменту машина ровно и напористо разгоняется в широком диапазоне оборотов и скоростей. Особенно востребовано это качество на высших передачах, – ведь тяговые силы и ускорения на них в любом случае не столь велики, как на первой или второй передаче. А для безаварийного движения в потоке транспорта возможность быстро прибавить скорость зачастую играет судьбоносную роль. Ездить на таком автомобиле даже психологически легче. И все же, когда нужно быстрей разогнаться, что важней – мощность или крутящий момент?Сразу отметим: чаще всего эти два параметра «конфликтуют»… в головах журналистов, охотно повторяющих признанные публикой «истины» без какого-либо их анализа. На самом же деле смешно рассматривать мощность в отрыве от крутящего момента и наоборот. Первая показывает энергию, ежесекундно вырабатываемую двигателем, тогда как крутящий момент – всего лишь силовой фактор, показывающий, как нагружен при работе коленчатый вал. Крутящий момент может существовать и сам по себе, без мощности. Например, при неожиданной остановке перегруженного двигателя на крутом подъеме, в песке, при буксировке тяжелого прицепа в какой-то миг момент еще есть, а движения уже нет. А в некоторых механизмах можно обнаружить и длительно действующий на какой-нибудь вал момент, удерживающий его от поворота. Например, в рулевом механизме, когда мы лишь удерживаем управляемые колеса в нужных положениях, тогда как дорога пытается их нарушить. А самый типичный пример: пытаясь открутить «прикипевший» болт, ключ удлинили метровой трубой, – а болт ни с места. Момент огромный, а работа не идет. А коли нет работы – то нет и мощности.

Мощность момент 0.jpg

Тут впору вспомнить школьную физику. Нарисуйте круг радиуса R – это будет сечение вала – и приложите к нему «касательную» силу F. Крутящий момент этой силы М = F • R. За один оборот вала сила F пройдет путь 2πR – и выполнит работу: А = F • R • 2π = М • 2π. А работа за n оборотов: А = М • 2π • n. Если n – число оборотов в минуту, то работа за одну секунду – то есть, мощность – составит N = М • 2πn /60.Выражение 2π n /60 = 0,1047 n = ω – угловая скорость вала. Итак, N = М • 0,1047 n (Формула [1]). Но мы имеем дело не только с вращающимися деталями, но и движущимися линейно. В этом случае в формуле (1) момент М заменим силой F, а угловую скорость ω – линейной v. Получим: N = F • v (Формула [2]). Эти формулы равноправны. Замерив, например, тяговую силу колес, умножим на достигнутую машиной скорость – и найдем затрачиваемую мощность. Но если крутящий момент на ведущей оси умножить на угловую скорость колес, получим то же самое. Итак, мощность – это работа (или энергия) израсходованная или произведенная за 1 секунду. Конечно, о «законе сохранения энергии» знает каждый. Говоря по пионерски, она «не возникает из ничего», но и не исчезает, не оставив следа. Так, лишь около четверти тепловой энергии, получаемой двигателем от сгорания топлива, превращается в механическую, соответствующая мощность (эффективная) тратится на движение машины. Большая же часть полученной в цилиндрах двигателя теплоты идет на «обогрев» окружающего нас мира. Эффективная мощность тоже доходит до ведущих колес не вся – до 15 % ее может рассеять в виде тепла трение в узлах и агрегатах трансмиссии. Но для нас важней другое: если при открытом дросселе (или при полной подаче топлива в дизель) двигатель выдает на колеса сколько-то киловатт, то это – его «потолок». Никакими простыми механизмами вроде коробок передач, редукторов и т. п. превысить эту величину невозможно – этого «закон сохранения» не допустит. Итак, крутящий момент – это удобный для нас «инструмент», связывающий процессы в двигателе с трансмиссией машины и ведущими колесами. Но не более того! Ракетчики, например, запрягают пламя напрямую, получают гигантские тяги и мощности, но о крутящих моментах вспоминают лишь в расчетах турбонасосных агрегатов, – да и то, если двигатели не твердотопливные! Из формулы (1) видно, что для получения достаточной мощности вовсе не обязателен огромный крутящий момент, ведь в произведении два сомножителя. Почему бы, например, не увеличивать мощность при постоянном моменте, наращивая угловую скорость в каком-то диапазоне оборотов? При этом мощность растет по оборотам линейно. А постоянство момента в заданном диапазоне – не чудо, которым некоторые почему-то восторгаются, а всего лишь признак постоянства тяговых сил. Если пренебречь сопротивлением воздуха (к примеру, на первой передаче оно невелико), то и ускорение машины в этом диапазоне постоянное. Это довольно удобно для водителя. Но спросим себя: если бы в начале диапазона момент был таким же, а ближе к пресловутым «верхам» стал больше, стал бы с таким «подхватом» автомобиль хуже? – Вряд ли. Разве только что-нибудь нарушилось бы в смысле экологии. Мощность можно менять и при постоянных оборотах. Пример: мы ехали со скоростью 90 км/ч по горизонтальному шоссе, а с началом подъема, дабы сохранить скорость, пришлось больше открыть дроссель. Это увеличение момента в чистом виде. Итак, имеем дело с формулой (1). К примеру, перед нами скромный двигатель грузовика с моментом 35 кгм при оборотах 3000 в минуту. Какова мощность? Тут отметим, что в расчетах всегда важен правильный выбор единиц измерений параметров. Угловую скорость измеряют в 1/сек. А момент? – В старых единицах это кгм. Получаем: N = 35 кгм . 0,1047 . 3000 1/сек = 10993 кгм/сек ≈ 146,6 л.с. А в современной системе СИ: 35 кгм = 343,35 Нм. Тогда N = 343,45 Нм • 0,1047 • 3000 1/сек ≈ 107846 Вт. На всякий случай напомним, что 1 лс = 75 кгм/сек = 75 • 9,81 Нм/сек = 735,75 Вт. Поэтому 107846 Вт ≈ 146,6 л.с. А теперь прикинем мощность «формульного» двигателя с таким же скромным моментом, но при оборотах 18 тысяч! Результат – 880 л.с. (647 кВт), которые обеспечивают машине роскошную динамику. Никакого чуда нет: чем больше циклов совершит наш «моментик» за одну секунду, тем больше и совершенная им работа. Еще пример. В авиатехнике ныне практически господствуют газотрубинные двигатели. Повторив наш расчет для небольшого двигателя, с оборотами свободной турбины 40 тысяч в минуту, получим мощность около 1950 л.с. или 1438 кВт. Момент турбины невелик, но ведь воздушный винт приводится от нее не напрямую, а через редуктор, – а уж «мощи» ему хватает! Но вернемся к автомобилю. Как уже сказано, любому комфортней ездить на машине, у которой под капотом достаточно и мощности, и момента. Но многим приходится ездить на скромных авто, возможности коих, как нынче говорят, «очень бюджетные»! Всякий, кто не умеет вовремя переключать передачи, с ними испытывает неприятности. Значит, надо учиться, друзья. Ну а что делать владельцу авто с АКП? На смену недовольству двигателем зачастую приходят претензии к автомату. Нередко – справедливые, ведь у АКПП тоже случаются специфические болячки, требующие ремонта. Но часто они оказываются не обоснованными: современный автомобиль, насыщенный электроникой и настроенный изготовителем на строгое выполнение жестких экологических норм, вовсе не обязан подстраиваться под любую российскую лихость! Гусеничному трактору дернуться и оборвать сцепку – плевое дело. Это похоже на выстрел из ружья – можно на миг и «формулу I» опередить. А дольше – никак. Ружье от ракеты отличается принципиально: последняя сохраняет нужное ускорение достаточно долго. В свое время, при стартах к Луне гигант «Сатурн 5» массой свыше 3100 т отделялся от пускового устройства мягко, как пассажирский поезд, – с ускорением чуть больше 1 м/сек2. А минут через пять, по мере выгорания топлива, настолько «терял в весе», что его скорость перед выключением первой ступени составляла 3 км/сек. Низшая передача бульдозера крайне «коротка»: чуть «перекрутил» – тяга упала. А другие не лучше, – вон и «формула» уже растворилась за горизонтом, так что для серьезных игрищ «мощи» на гусеницах маловато.Если пренебречь разницей в КПД передач (она невелика), то на любой передаче машину движут одни и те же киловатты. Но движут по-разному. Момент и тяговая сила на ведущих колесах подчиняются «золотому правилу»: сколько процентов выиграешь в скорости, столько потеряешь в силе. Это показывают рис. 1 и 2. Если двигатель заведомо слаб, с ним сильно не разгонишься.

Мощность момент 1.jpg

Рис. 1. Величины мощности N1 ... N5 на ведущей оси не зависят от включенной передачи. Точки пересечения кривой Nсопр с кривыми N3, N4 и N5 дают информацию о максимальных скоростях автомобиля на этих передачах. Здесь самая скоростная на горизонтальной дороге в безветрие – четвертая.

Вся история современной транспортной техники – это непрерывная борьба за большие мощности. У наиболее знаменитых ракетоносителей они давно превысили 100 миллионов кВт. Это не ошибка - именно 100 000 000 000 Вт, или 100 ГигаВатт. И хотя притязания автомобилиста не столь велики, «прохватить» на динамичной машине всякий не прочь. Главные враги любителя скорости – не гаишники, а силы, тормозящие движение, – от этих не откупишься! Мощность сопротивления воздуха вкупе с мощностью шинных потерь показаны на рис. 1 линией Nсопр. (Желающие посчитать, могут воспользоваться следующими формулами. Nсопр. = Nw + Nf. Мощность аэродинамических потерь Nw для автомобиля весом 15000 Н при плотности воздуха 1,25 кг/м3, Сх = 0,3 и лобовой площади S = 2 • м2 составляет: Nw = (0,3 • 2 • 1,25)/2 • v3 = 0,375 v3 Вт. А мощность шинных потерь Nf = 0,015 • 15000 • v = 225 v Вт. При 100 км/ч Nсопр составляет лишь 14,5 кВт. А при 200 км/ч – 77 кВт. Разница впечатляет?)Колеса автомобиля, борясь с мощностями сил сопротивления, при максимальной скорости полностью расходуют мощность, получаемую от двигателя. Но ее характеристика (например, показанная кривой N4 на рис.1) при полностью открытом дросселе похожа на гору с округлой макушкой, тогда как характеристика мощности сопротивлений Nсопр. поднимается как крутая парабола. Чтобы полностью использовать арсенал мощности двигателя – и получить максимум скорости V4 (на горизонтальной трассе, без ветра), передаточное число трансмиссии и размер шин подбирают так, чтобы кривая Nсопр пересекла кривую N4 возле вершины. Максимальные скорости на третьей и пятой передачах (V3 и V5) существенно ниже. Но на спуске или с ветром вдогон выгодней может стать пятая передача, а на подъеме или с ветром в лоб – третья.Другие враги скорости – подъем дороги и встречный ветер. Подъем с углом всего 1,5% добавит к потерям в шинах еще столько же. Но еще коварней ветер. Его скорость сложится со скоростью машины относительно дороги, – и уже эту сумму в расчете затрат мощности надо возвести в куб! При скорости по спидометру 36 км/ч (10 м/сек) и ровном встречном ветре 5 м/сек мощность Nсопр вырастет лишь на 0,9 кВт, а вот при 180 км/ч (50 м/сек) – аж на 15,5 кВт. Но придуманный нами автомобиль так ехать не может… Маловато мощи! Максимальная скорость снизится почти на 20 км/ч.

Мощность момент 2.jpg

Рис. 2 - Так зависит крутящий момент (М1….М5) или тяговая сила (Fтяг 1 …Fтяг 5) на ведущей оси от включенной передачи. При коэффициенте сцепления шин с дорогой 0,7 ведущая ось, нагруженная половиной веса машины (Gавтом = 15000 н), может создать реальную тяговую силу не больше Fмакс. доп. = 5250 Н.

На рис.2 величины крутящего момента М1…М5, а заодно и теоретические тяговые силы F1…F5 на ведущей оси, показаны одними и теми же кривыми, – ведь тяговые силы пропорциональны моментам. Величины сил – на вертикальной оси справа. Но тут важно учесть следующее. Разгоняет машину не вся тяговая сила, а лишь избыточная – то есть разница между полной тяговой силой колес и сопротивлением воздуха. Отношение этой силы к весу машины академик Чудаков назвал динамическим фактором D. На первой передаче сопротивление воздуха мало, его можно не учитывать – считать, что машину разгоняет полная сила Fтяг.1. Но отталкиваться от дороги сильней, чем позволяет сцепление шин, невозможно! Если, например, ведущая ось несет половину веса машины – 7500 Н, то при коэффициенте сцепления φ = 0,7 тяговая сила не может превысить 35% ее веса. Это неплохо согласуется с такой официальной характеристикой любого автомобиля как предельно возможный угол подъема. С «моноприводом» трудно получить больше. Правда, у машины с задним приводом на подъемах ведущие колеса несколько догружаются весом машины, а вот передний тут невыгоден. Лучшая схема, но сложная и дорогая, – полный привод (конечно, не с такой скромной мощностью, как у «Нивы» или УАЗа!). Если избыточная сила (на первой передаче, например) слишком велика, машина «шлифует» дорогу. Дело нелепое, нужно перейти на следующую передачу. А вот при разработке нового авто конструктор учитывает высокую мощность двигателя и ее следствие – тяговые силы в передаточных числах трансмиссии. Передачи проектируются как достаточно «длинные», расширяющие диапазон скоростей при достаточных ускорениях. А это значит, что и при более высоких скоростях действуют нужные тяговые силы (или моменты) на колесах. Иначе говоря, реализуется весь арсенал мощности! Значит, она все же важнее.

Споры на тему влияния мощности-момента ведутся давно, и конца им не видно. Вроде бы сто раз уже объясняли самыми разными способами, что тут к чему, а воз и ныне там. Вызывает неподдельный интерес, откуда все же берется заблуждение и почему оно такое устойчивое?Причин видится две. Одна из них в том, что мощность есть функция от момента. Зависимость мощности от момента стоит барьером, который преодолеть оказывается непросто. Что странно. Поскольку очевидность того, что мощность есть функция не только от момента, но и от оборотов, не оспаривается, и тот факт, что у разных двигателей бывает весьма большой разброс по соотношению мощности к моменту, также не подвергается сомнению. То есть существует молчаливое согласие с тем, что мощность есть функция от двух аргументов - оборотов и момента, но при этом зависимость от оборотов как бы игнорируется. Почему?А в этом и есть вторая, главная причина заблуждения. И ключевая фраза здесь: "Человек совершенно может не иметь понятие про мощность.А вот разницу в ускорении на 3 и 4 передаче он вполне способен почувствовать." Ясно, что на динамику автомобиля оказывают большое влияние и передаточные числа КПП. На графике 1 видны кривые мощности двигателя, смещенные в зависимости от разных передаточных чисел и кривая сопротивлений. Видно, что с ростом передаточного числа динамика резко возрастает. Это очевидно и вопросов не вызывает. Странно, что не менее очевидный факт, что бОльшая часть времени при разгоне приходится вовсе не на 1 и 2 передачи, а на 3-4, при этом упускается из виду.При разгоне здравомыслящий водитель пользуется всеми четырьмя передачами и весьма широким диапазоном частот вращения двигателя. При этом редко задумывается о том, что динамика разгона на высокой скорости мала и плохо ощущается, но именно на нее и приходится львиная доля времени разгона (по той простой причине, повторю, что на высших передачах динамика хуже и потому занимает больше времени). Хорошо ощущается динамика разгона на низших передачах, в диапазоне низких и средних оборотов (дальше водитель двигатель раскручивает редко). И что выходит? А выходит, что "низовой", моментный двигатель дает ощущение уверенного и бодрого разгона по той простой причине, что легко и весело страгивает и начинает разгонять автомобиль. А по достижении скорости ощущения становятся слабыми, и оценить разницу в разгоне 100- и 120 сильного моторов на 4-5 передачах, способен не каждый. Потому и кажется, что момент определяет динамику. По ощущениям. А ощущениям человек склонен верить очень сильно, даже вопреки логике и здравому смыслу.

Проповедующие формулировку "скорость определяется мощностью, а динамика разгона - моментом двигателя" могут убедиться в своем заблуждении, решив простую задачу.Вводные1. Равномерный подъем на некоторую высоту равносилен равномерному ускорению, поскольку увеличивает потенциальную энергию тела mgh*. (что можно объяснить - чем с большей высоты упадет, тем сильней ударится).2. Поднимаем равномерно груз весом 75 кг на высоту 1 м за 1 с.3. Имеется черный ящик, в котором спрятан мотор неизвестной природы и, возможно, редуктор с КПД=1.Вопросы.1. Какая мощность должна быть в моторе, спрятанном внутри черного ящика?2. Какой момент должен быть в моторе, спрятанном внутри черного ящика?

Подъем указанного груз на нужную высоту за время аналогичен разгону по горизонтали той же массы с ускорением g0.5.Если ускорение определяется моментом - просто назовите цифруЕсли ускорение определяется мощностью - тоже просто назовите цифруЕсли цифру назвать не удается, значит параметр может быть самым разным и роли не играет.Вы можете разгонять тело с заданным ускорением (или поднимать его вверх), меняя крутящий момент по своей прихоти (и устанавливая каждый раз соответствующий редуктор). Вы можете отталкиваться от параметров редуктора, и всякий раз требуемый момент будет меняться и зависеть от передаточного отношения этого редуктора. Но всегда мощность будет оставаться одной и той же, неизменной величиной - для подъема груза 75 кг на 1 м за 1с понадобится ровно одна лошадиная сила или 0,73549875 кВт

Можно поступить и следующим образом.Берите любой момент, который причина разгона, берите любой редуктор и разгоните тело 75 кг до скорости 3.13 м/c за 1 с.Ограничение только по мощности - она не должна превышать 0.9 л.с.Есть ли решение у этой задачи? Если нет - то почему?Ответ.Задача не имеет решения по той простой причине, потому что невозможно обеспечить заданную динамику - для нее не хватит мощности. Каким бы ни был момент.Вывод. Момент двигателя для разгонной динамики не имеет значения, все решает мощность.

* Пояснение Вы поднимаете 75 кг получаете от этого энергию mgh. Она преобразуется так:поскольку a = V2 / 2h, а ускорение а у нас равно g, то V = (2hg)0.5.Кинетическая энергия тела E = mV2/2 = m2hg/2 = mgh.

Смотри также главу Как движется автомобиль

wiki.zr.ru

Мощность — Все формулы

Мощность — выражается как отношению работы, выполняемой за некоторый промежуток времени, к промежутку времени

\LARGE N=\frac{ A}{ t}

Из формулы следует, что в системе СИ единицей мощности является 1 Дж/с (джоуль в секунду). Эту единицу иначе называют ватт (Вт), 1 Вт= 1 Дж/с.

Мощность показывает, какая работа совершается за единицу времени

Если на движущееся тело действует сила, то эта сила совершает работу. Мощность в этом случае равна скалярному произведению вектора силы на вектор скорости, с которой движется тело:

\Large N=F\upsilon cos\alpha

Формула показывает связь между мощностью и скоростью при равномерном движении. Так же формула справедлива и для переменного движения, если под N понимать мгновенную мощность, а под V — мгновенную скорость). Если направление силы совпадает с направлением перемещения, то cos\alpha =1 и N=Fv.Тогда следует, что

F=\frac{N}{\upsilon }

\upsilon =\frac{N}{F}

Из этих формул видно, что при постоянной мощности двигателя скорость движения обратно пропорциональна силе тяги и наоборот. На этом основан принцип действия коробки скоростей (коробки перемены передач) различных транспортных средств.

В формуле мы использовали :

N — Мощность

 A — Выполненная работа

 t — Время, за которое выполнялась работа

 F — Сила, приложенная к телу

\upsilon — Скорость тела

\alpha — Угол между силой и скоростью

xn--b1agsdjmeuf9e.xn--p1ai

Как определить мощность электродвигателя? Мощность двигателя. Определить мощность двигателя.

Составляющие электромашины

Основой для электрической машины является правило электроиндукции с магнитной индукцией. Такой прибор включает в себя статор или как его называют константной частью (характерно для асинхронных, синхронных машин изменяющегося тока) или индуктора (для приборов константного тока) и ротора, его называют активной или движущейся частью (для асинхронных и синхронных машин изменяющегося тока) или якоря (приборов константного тока). В роли константной части для машин тока с малой мощью активно применяются магниты (неизменного состояния).

Строение электродвигателя

Мощность электродвигателя

Электрическая мощность – это физическая величина, которая характеризуется скоростью преобразования ну или передачи электрической энергии. Чтобы облегчить понимание движение тока электрики представляют, как передвижение жидкости по трубе, а напряжение – с разницей положения ярусов этой жидкости. Электричество, так же, осуществляя работу, передвигается от высокой возможности к низкой, как и жидкость. Значит мощь электрики это количество работы, некая совершается за 1 секунду, или быстрота выполнения самой работы. Сумма тока электрики, которая прокладывается сквозь поперечный разрез цепи на протяжении одной секунды, это и есть сила тока в самой цепи.

Отсюда вытекает, что мощность электрическая равна в пропорции напряжению и силе тока в цепи. Для определения мощи тока принята единица – ватт, сокращенно - Вт.Для физических подсчетов принято было применять стандартную формулу N=A/t, где N – мощность, A – работа, t – время.Существует много вариантов данной формулы с разными буквенными обозначениями.

Пример формулы расчета мощности как физической величины

Определить мощность двигателя

Если вы постоянно используете электромашины, то часто натыкались на шильдики в которых, по сути, указанно все характеристики, в том числе и варианты мощности. Если посмотреть изображение шильдика, то среди разных параметров можно увидеть и значение мощности. Как видно, против надписи максимальная мощность стоит значение 1000 Вт. Но это не его электрическая мощность, как часто думает потребитель.

На изображённом ниже шильдике показана максимально допустимая мощность электротока. Часто пишут на шильдике рекомендуемую мощность и обозначают её киловаттами.

Итак, как же возможно рассчитать используемую мощность определенного двигателя из собственной электрической сети. Для этого нужно смотреть и на другие показатели на том же шильдике исследуемого прибора - это КПД и cosφ. Где КПД, бывает обозначают аббревиатурой КПД, или буквой η. Сначала нужно учитывать связь полезной мощности механики на валу и КПД. Имея данные значения можно легко рассчитать мощность потребляемую двигателем из электрической сети. Узнаем по соотношению: Ра=Р/η. Но это еще не результаты. Нужно помнить, электроприборы потребляют из сети как активную, так и реактивную энергию. При расчётах используемой движком полной мощи, необходимо получить соотношение из треугольника мощностей.

Шильдик

Как определить мощность электродвигателя

Для того что бы просчитать мощность определенного электродвижка потребуется не мало: источник тока (сеть), линейка (штангенциркуль), динамометр, амперметр, табличка «зависимости неизменной движка С от количества полюсов».

Итак, перейдем к вариантам действий. А именно, для определения мощности электродвигателя:

Обратите внимание! Для каждого двигателя предназначена сеть на определенное количество фаз. Примером выступает трехфазный двигатель, который предназначен только для питания от трёхфазной сети переменного тока.

ogodom.ru

Урок физики "Мощность"

Разделы: Физика

Цели урока:

Ход урока

«И вечный бой! Покой нам только снится Сквозь кровь и пыль… Летит, летит степная кобылица И мнет ковыль… И нет конца! Мелькают вёрсты, кручи… Останови! …Покоя нет! Степная кобылица несется вскачь!»

А.Блок «На поле Куликовом» (июнь 1908 г). ( Слайд 1).

Урок сегодня я хочу начать с вопросов к вам. (Слайд 2).

1. Как вы думаете, имеет ли какое-то отношение лошадь к физике?

2. С какой физической величиной связана лошадь?

Мощность – правильно, это и есть тема нашего урока. Запишем ее в тетрадь.

Действительно, мощность двигателей автомобилей, транспортных средств до сих пор измеряют в лошадиных силах. Сегодня на уроке мы с вами узнаем всё о мощности с точки зрения физики. Давайте подумаем вместе и определим, что мы должны знать о мощности, как о физической величине.

Существует план изучения физических величин: ( Слайд 3).

  1. Определение;
  2. Вектор или скаляр;
  3. Буквенное обозначение;
  4. Формула;
  5. Прибор для измерения;
  6. Единица величины.

Этот план и будут целью нашего урока.

Начнем с примера из жизни. Вам необходимо набрать бочку воды для полива растений. Вода находится в колодце. У вас есть выбор: набрать при помощи ведра или при помощи насоса. Напомню, что в обоих случаях механическая работа, совершенная при этом будет одинаковой. Конечно же, большинство из вас выберут, насос.

Вопрос: В чем разница при выполнении одной и той же работы?

Ответ: Насос выполнит эту работу быстрее, т.е. затратит меньшее время.

1) Физическая величина, характеризующая быстроту выполнения работы, называют мощностью. ( Слайд 4).

2) Скаляр, т.к. не имеет направления.

3) N.

4)

5) [N] = [ 1 Дж/с] = [1Вт ]

Название этой единицы мощности дано в честь английского изобретателя паровой машины (1784г) Джеймса Уатта. ( Слайд 5).

6) 1 Вт = мощности, при которой за время 1 с совершается работа в 1 Дж. ( Слайд 6).

Самолеты, автомобили, корабли и другие транспортные средства движутся часто с постоянной скоростью. Например, на трассах автомобиль достаточно долго может двигаться со скоростью 100 км/ч. ( Слайд 7).

Вопрос: от чего зависит скорость движения таких тел?

Оказывается, она напрямую зависит от мощности двигателя автомобиля.

Зная, формулу мощности мы выведем еще одну, но для этого давайте вспомним основную формулу для механической работы.

Учащийся выходит к доске для вывода формулы. ( Слайд 8).

Пусть сила совпадает по направлению со скоростью тела. Запишем формулу работы этой силы.

1.

2.При постоянной скорости движения , тело проходит путь определяемой формулой

Подставляем в исходную формулу мощности: , получаем - мощность.

У нас получилась еще одна формула для расчета мощности, которую мы будем использовать при решении задач.

Эта формула показывает ( Слайд 9), что при постоянной мощности двигателя, изменением скорости можно менять силу тяги автомобиля и наоборот, при изменении скорости автомобиля можно менять силу тяги двигателя.

При N = const

v > , F <.

v < , F >.

Вопрос. Когда нужна большая сила тяги?

Ответ:

а)При подъеме в гору. Правильно, тогда водитель снижает скорость.

б) При вспашке земли тракторист движется с малой скоростью, чтобы была большая сила тяги. Для этого водитель, тракторист, машинист, токарь, фрезеровщик часто используют коробку передач, которая позволяет менять скорость. ( Слайд 10).

Мощность всегда указывают в паспорте технического устройства. И в современных технических паспортах автомобилей есть графа:

Мощность двигателя: кВт / л.с.

Следовательно, между этими единицами мощности существует связь.

Вопрос: А откуда взялась эта единица мощности? ( Слайд 11).

Дж. Уатту принадлежит идея измерять механическую мощность в «лошадиных силах». Предложенная им единица мощности была весьма популярна, но в 1948 г. Генеральной конференцией мер и весов была введена новая единица мощности в международной системе единиц – ватт. ( Слайд 12).

1 л.с. = 735,5 Вт.

1 Вт = ,00013596 л.с.

Эта единица мощности была изъята из обращения с 1 января 1980 г.

Примеры мощностей современных автомобилей. ( Слайд 13,14).

Различные двигатели имеют разные мощности.

Учебник, страница 134, таблица 5. [1]

Вопрос: А какова мощность человека?

Текс учебника, § 54. Мощность человека при нормальных условиях работы в среднем составляет 70-80 Вт. Совершая прыжки, взбегая по лестнице, человек может развивать мощность до 730 Вт, а в отдельных случаях и большую.[1]

Вопрос: А чем «живые двигатели» отличаются от механических? ( Слайд 15).

Ответ: Тем, что «живые двигатели» могут изменять свою мощность в несколько раз.

Закрепление материала.

1.Расскажите все, что вы знаете о мощности. Ответ по плану изучения физической величины.

2. Упр. 29, задача №6. ( Слайд 16).

Дано: СИ Решение:
m = 125кг   N = A / t
h = 70 см 0,7 м A = F s s = h
t = 0,3 с   F = P = mg
    N = mgh / t
N - ?   N = 125 кг · 9,8 Н/ кг · 0,7 м / 0,3 с= 2858,3 Вт ≈ 2,9 кВт

Ответ : N ≈ 2,9 кВт.

Домашнее задание: ( Слайд 17).

  1. § 54.
  2. Записать формулы мощности в таблицу формул.
  3. Упр. 29 (2,5) – 1 уровень.
  4. Упр. 29 (1,3) – 2 уровень.
  5. Упр. 29 (1,4) – 3 уровень.
  6. Задание 18 – на дополнительную оценку ( на листочках).

Литература:

  1. А.В. Перышкин «Учебник физики для 7 класса», Дрофа, Москва, 2006.
  2. А. Блок «На поле Куликовом».
  3. 1C: Школа Физика 7 класс

xn--i1abbnckbmcl9fb.xn--p1ai

Мощность и крутящий момент

Автолюбители постоянно спорят о том, чей двигатель мощнее, но не все знают, из чего складывается этот параметр

Двигатель

Всем знакомый термин «лошадиная сила» был предложен изобретателем Джеймсом Уаттом в восемнадцатом веке. Идея появилась у изобретателя, пока он наблюдал за лошадью, запряженной в машину, поднимавшую уголь из шахты. Расчеты показали, что одна лошадь способна за минуту поднять 150 кг угля на высоту 30 метров.

Н·м (Ньютон-метр) — единица измерения момента силы, входящая в международную систему единиц (СИ)

Лошадиная сила стала "несистемной" величиной для измерения мощности. Одна лошадиная сила равна 735,5 Вт (Ватт - системная единица измерения, названная в честь того же английского ученого). Впоследствии лошадиные силы стали применять для обозначения мощности двигателя автомобиля.

Крутящий момент

Чтобы автомобиль сдвинулся с места, "тягу" двигателя необходимо передать на ведущие колеса. На официальном научном языке "тяга" называется крутящим моментом, и мощность двигателя напрямую зависит от этой характеристики.

Характеристики Lamborghini Aventador LP1600-4 Mansory Carbonado GT 2014 года выглядят так: 1600 л.с. и 1200 Н/м крутящего момента при 6000 об/мин.

Крутящий момент это вектор силы, описывающий вращение объекта вокруг своей оси. Предельно упрощенно понятие можно представить как силу, с которой вращается объект, например, маховик двигателя. Завинчивая болт гаечным ключом, который с точки зрения физики является рычагом, рука прикладывает к болту силу - то есть крутящий момент.

При работе двигателя каждый поршень, двигаясь вниз, придает крутящий момент коленчатому валу. Ситуация осложняется тем, что, в силу особенностей конструкции двигателя, крутящий момент не постоянная величина. Он постепенно увеличивается на низких оборотах, затем стабилизируется, и на высоких оборотах вновь начинает снижаться. Обычно крутящий момент максимально стабилен в промежутке между 5000 и 6000 об/мин., поэтому при указании "максимального крутящего" момента используется именно этот режим вращения коленвала.

Мощность двигателя и ее связь с крутящим моментом

Мощность двигателя - физическая величина, которая вычисляется по простой формуле, в которой крутящий момент умножается на так называемую "угловую скорость", измеряемую в радианах. Строго говоря, формула для вычисления мощности автомобиля несколько сложнее, так как угловую скорость принято измерять не в радианах, а в оборотах в минуту. Тем не менее, зная, как перевести одну единицу в другую, вычислить мощность несложно.

Эластичность двигателя и связанные с ней изменения в мощности

Стоит обратить внимание на еще одну важную характеристику двигателя – его эластичность. Под эластичностью понимают соотношение максимальной мощности и крутящего момента. Проще говоря, чем ниже будут обороты двигателя в момент достижения максимального крутящего момента, тем ровнее будет тяга, и для увеличения скорости не придется понижать передачу, достаточно будет нажать на педаль газа.

Пересчёт кВт в лошадиные силы производится умножением киловатт мощности двигателя на множитель, равный 1,35962

 Можно проверить эластичность мотора, если засечь время разгона с 60 до 110 км/ч. Чем быстрее автомобиль будет разгоняться, тем эластичнее его двигатель. Не стоит забывать, что для сравнения нужны автомобили равные по весу и объему двигателя. Проще всего почувствовать разницу, если сравнивать одни и те же автомобили, укомплектованные разными по объему двигателями. В случае с двигателем 1,6 л., автомобиль будет ускоряться значительно ровнее, а двигатель 1,4 заметно «тормозит» при разгоне с 60 до 100 км/ч, и хорошая динамика наблюдается лишь по достижении более высоких оборотов. 

Влияние особенностей конструкции автомобиля на мощность и крутящий момент

Такие величины, как крутящий момент и мощность, могут варьироваться, исходя из конструктивных особенностей автомобиля. Множество факторов влияют на динамику разгона и максимальную скорость: вес автомобиля, конструкция трансмиссии, объем двигателя, величина клиренса, аэродинамические характеристики кузова и многое другое.

blamper.ru

формула и применение в физике

Для того, чтобы перетащить 10 мешков картошки с огорода, расположенного в паре километров от дома, вам потребуется целый день носиться с ведром туда-обратно. Если вы возьмете тележку, рассчитанную на один мешок, то справитесь за два-три часа.

Ну а если закинуть все мешки в телегу, запряженную лошадью, то через полчаса ваш урожай благополучно перекочует в ваш погреб. В чем разница? Разница в быстроте выполнения работы. Быстроту совершения механической работы характеризуют физической величиной, изучаемой в курсе физики седьмого класса. Называется эта величина мощностью. Мощность показывает, какая работа совершается за единицу времени. То есть, чтобы найти мощность, надо совершенную работу разделить на затраченное время.

Формула расчета мощности

И в таком случае, формула расчета мощности принимает следующий вид: мощность= работа/время , или

N=A/t,

где N – мощность,A – работа,t – время. 

Единицей мощности является ватт (1 Вт). 1 Вт – это такая мощность, при которой за 1 секунду совершается работа в 1 джоуль. Единица эта названа в честь английского изобретателя Дж. Уатта, который построил первую паровую машину. Любопытно, что сам Уатт пользовался другой единицей мощности – лошадиная сила, и формулу мощности в физике в том виде, в котором мы ее знаем сегодня, ввели позже. Измерение мощности в лошадиных силах используют и сегодня, например, когда говорят о мощности легкового автомобиля или грузовика. Одна лошадиная сила равна примерно 735,5 Вт.

Применение мощности в физике

Мощность является важнейшей характеристикой любого двигателя. Различные двигатели развивают совершенно разную мощность. Это могут быть как сотые доли киловатта, например, двигатель электробритвы, так и миллионы киловатт, например, двигатель ракеты-носителя космического корабля. При различной нагрузке двигатель автомобиля вырабатывает разную мощность, чтобы продолжать движение с одинаковой скоростью. Например, при увеличении массы груза, вес машины увеличивается, соответственно, возрастает сила трения о поверхность дороги, и для поддержания такой же скорости, как и без груза, двигатель должен будет совершать большую работу. Соответственно, возрастет вырабатываемая двигателем мощность. Двигатель будет потреблять больше топлива. Это хорошо известно всем шоферам. Однако, на большой скорости свою немалую роль играет и инерция движущегося транспортного средства, которая тем больше, чем больше его масса. Опытные водители грузовиков находят оптимальное сочетание скорости с потребляемым бензином, чтобы машина сжигала меньше топлива.

Нужна помощь в учебе?

Предыдущая тема: Механическая работа: определение и формула Следующая тема:&nbsp&nbsp&nbspПростые механизмы и их применение: рычаг, равновесие сил на рычаге

Все неприличные комментарии будут удаляться.

www.nado5.ru

Мощность и Момент — Автокадабра

Попробуем понять что такое момент и мощность, чем они отличаются, как они связаны, в чем измеряются. Выведем формулу соотношения мощности и момента. Сравним дизель с бензиновым двигателем. Выясним что в Nascar нужен момент, а в Formula 1 мощность. Рассмотрим графики характеристик идеального и нескольких реальных двигателей. Но для начала вспомним что из себя представляют по определению момент и мощность.

По науке

Для совершения работы нужно приложить силу. Например, для перемещения объекта на какое-то расстояние необходимо приложить силу, тем самым совершив работу по перемещению этого объекта. Сила это производная от работы по расстоянию. (В общем случае — производная это скорость изменения функции)

Работу можно выполнить за разное время, можно быстро, а можно медленно. Для характеристики времени выполнения работы вводят понятие мощности. Другими словами мощность характеризует скорость совершения работы. Чем быстрее выполняется работа, тем больше мощности нужно затрачивать. Мощность это производная от работы по времени.

Итак, когда сила применяется для линейного перемещения тела на расстояние это называют работой. Но, например, для вращения вала тоже нужно прикладывать силу, но линейного перемещения при этом не происходит. Такое перемещение называют угловым (поворот вала), а такую работу называют (вращающим или крутящим) моментом. То есть сила, приложенная к валу и вращающая его совершает работу. Момент это работа по вращению вала.

Применительно к ДВС

В ДВС воздушно-топливная смесь сгорающая в камере сгорания давит на пошнень с определенной силой и поршень вращает коленвал, создавая на нем крутящий момент. При этом коленвал вращается с определенной (угловой) скоростью. Развиваемая при этом мощность двигателя будет произведением момента на число оборотов (за единицу времени). Для увеличения мощности нужно увеличивать момент или увеличивать скорость вращения коленвала. Для увеличения момента нужно прикладывать больше силы к поршню, то есть сжигать больше топлива, но ведь мы итак работаем на оптимальном составе воздушно-топливной смеси и ее обогащение не даст улучшения. Но мы можем поджигать смесь чаще, увеличивая количество оборотов. Выходит что пик мощности всегда будет на высоких оборотах, пока он не упрется в конструктивные ограничения (зависание клапанов, слишком большие инерционные потери и т. д.). Повышение максимальных оборотов это один из способов достижения высокой мощности двигателя.

Что же лучше момент или мощность?

С одной стороны крутит именно момент. Так почему же, например, трактор, имея ошеломительный момент на колесах, совсем не валит? Дело в том, что момент можно легко изменять. Мы каждый день это делаем переключая передачи трансмиссии (у некоторых они переключаются сами), передавая при этом разный момент на колеса при неизменном моменте на валу двигателя. А что при этом происходит с мощностью? В силу того что мощность это произведение момента на угловую скорость, то мощность остается неизменной, ведь угловая скорость падает прямо пропорционально росту крутящего момента.

В итоге получается, чтобы совершить работу по перемещению автомобиля массой m из точки А в точку Б нужен достаточный момент (для преодоления сил трения и сопротивления качению), чтобы делать это быстро нужна мощность.

В чем измеряют

Хотя обычно принято мощность считать в ваттах, автомобилисты исторически используют [лошадиную силу], которая примерно равна 735 ваттам. То есть мощность двигателя в 100 л. с. соответствует 73,5 КВт, а двигатель заряженного авто с мощностью свыше 1000 л.с. соответствует почти одному МегаВатту.

Как соотносятся

Итак, формула для мощности: P = M • w, где P — мощность [Вт], M — момент [Н•м], w — угловая скорость [рад/с]. Приведя угловую скорость к оборотам в минуту получаем: RPM = 60 * w. Помня что лошадиная сила это 735 Вт, получаем соотношение для мощности в лошадиных силах: Pл.с. = M • RPM / 7018 Отметим, что на 7018 оборотах в минуту мощность и момент численно совпадают. Зная мощность можно определить момент и наоборот.

Графики характеристик

Для измерения характеристик двигателя используют динамометрический стенд. Хотя вернее будет сказать что он замеряет момент, а мощность высчитывают по приведенной выше формуле. В идеале двигатель должен иметь постоянный во всем диапазоне момент и, соответственно, линейно растущую мощность.

В реальных же условиях на малых оборотах наполняемость цилиндров не большая из-за малого разряжения, а на больших оборотах сказываются другие проблемы. Посмотрим на характеристики двигателя Renault K7M (Logan). Видно, что характеристика момента линейна лишь в небольшом диапазоне рабочих оборотов (этот диапазон называют полкой момента). Для увеличения полки момента используют различные решения. Для улучшения наполнения цилиндров применяют до пяти клапанов на цилиндр. На высоких оборотах кулачки распредвала настолько быстро открывают клапана, что пружины клапанов не успевают вернуть клапан в закрытое положение, говорят что клапана зависают. Для решения этой проблемы уменьшают массу клапанов, толкателей и пружин. Или, например, отказываются от пружин для закрытия клапанов (десмодромный механизм). В двигателях формулы 1 используют пневмопривод. Также на высоких оборотах клапана открываются на меньшее время, но при этом через двигатель приходится прогонять больший объем смеси. При этом оказывается полезным изменение фаз газораспределения и увеличение угла перекрытия впускных и выпускных клапанов для лучшей продувки цилиндров. Для этого служат системы типа VTEC, VVTI, Vanos и т.п. У каждого производителя они называются по-разному, но выполняют одну суть — смещают положение распредвалов относительно коленвала и относительно друг друга, позволяя изменять фазы газораспределения на нужных оборотах. Касательно нашего вопроса это позволяет увеличить момент на верхах, расширив полку момента.

Бензин или Дизель?

Бензин, как известно, имеет большую температуру горения и выделяет при этом больше энергии. Кроме того, дизельный двигатель имеет более ограниченный диапазон оборотов, стало быть большой мощности с дизеля не снять. Поэтому дизель оптимизирован под момент (длинные шатуны и большой ход поршня). А чтобы он хоть как-то ехал на него обычно устанавливают турбину, ведь дизель не имеет проблем с детонацией при увеличении степени сжатия. Приведу в пример характеристики двигателя Opel Z13DTH (Astra-H, Corsa-D) — это турбо-дизель с объемом 1.3 литра.

Двигатель имеет довольно малую мощность в 90 л.с. (на 4000 об/мин), но зато момент в 200 Нм. Тут будет уверенный подхват с низов, но малая максимальная скорость автомобиля (172 км/ч для Astra при 1250 кг массы). Малая мощность характеризуется резким падением момента на максимальных оборотах и, собственно, невысокими максимальными оборотами.

Nascar или Formula1?

Сравнение двигателей Nascar и Formula1 это сравнение момента и мощности. Сравним наскаровский V8 и формульный V8 (с 2006 до 2013 года) двигатели. Оба атмосферные, бензиновые. Объем двигателей различается более чем в два раза — 5.8 литров у Nascar против 2.4 литров у Formula1. Крутящий момент: Nascar — 706 (@7500) Н•м, Formula1 — 290 (@17000) Н•м. Однако максимальная мощность различается не столь существенно: 825 (@9000) и 755 (@19250) л.с. соответственно. За счет чего же формульный двигатель при более чем в два раза меньшем объеме выжимает сравнимую мощность? За счет максимальных оборотов. Формульный двигатель очень оборотистый — рабочие обороты доходят до 20000 оборотов в минуту, что позволяет ему имея малый момент иметь сравнительно большую мощность.

Максимальная мощность и максимальный момент

Что же означает максимальная мощность и когда она доступна. Все наверняка знают какую максимальную мощность, которую выдает их двигатель. И при сравнении разных авто количество кобыл под капотом является если не основным, то весьма существенным фактором. Возьмем, к примеру, бензиновый двухлитровый двигатель от Mazda Skyactiv. Мотор имеет мощность 155 л.с., правда на 6000 оборотах в минуту.

А как часто вы раскручиваете мотор до таких оборотов? Каков при этом будет расход топлива? Взяв "городской" диапазон оборотов 3-4 тыс. об/мин, с этого мотора можно снять мощность от 75 до 110 л.с., что в полтора раза ниже максимальной. Зато в этот диапазон оборотов входит максимум момента. Получается, что максимальный момент в городском цикле реализуется гораздо чаще, чем максимальная мощность. Последняя понадобится если мы решим участвовать в гонках, ну или хотя-бы выедем на автобан без скоростных ограничений. Кстати, красная зона у этого мотора начинается с 6500 об/мин и характеризуется падением мощности и значительным провалом в моменте. Не говоря о вреде таких оборотов для двигателя, можно однозначно сказать что езда на таких оборотах крайне неэффективна.

Резюмируя

В итоге имеем, что мощность это производная от момента. Двигатель развивает момент, а мощность характеризует скорость вращения вала при выдаваемом моменте. Мощность показывает максимальную скорость, которую сможет развить автомобиль. Момент же показывает "тяговитость", т.е. характеризует способность двигателя "тянуть" автомобиль, и чтобы понять насколько быстро двигатель тянет машину, вводят понятие мощности.

Мощность и момент на колесах (часть 2)

Использованные материалы: Характеристики ДВС Renault K7M Сравнение Nascar и Formula 1 Mazda Skyactiv Двигатель Opel Z13DTH

autokadabra.ru


Смотрите также