Посвящается 100-летиюспециальности “Двигатели внутреннего сгорания” в МГТУ им. Н.Э. Баумана
КОНСТРУИРОВАНИЕ
Ä
ÂÑ
Авторский коллектив
Чайнов Николай Дмитриевич,
заслуженный деятель науки РФ, доктор технических наук, профессор
Иващенко Николай Антонович,
заслуженный деятель науки РФ, доктор технических наук, профессор
Краснокутский Андрей Николаевич,
кандидат технических наук, доцент
Мягков Леонид Львович,
кандидат технических наук, доцент
МОСКВА
«МАШИНОСТРОЕНИЕ»
2008
ДЛЯ ВУЗОВ
КОНСТРУИРОВАНИЕ
ДВИГАТЕЛЕЙ
ВНУТРЕННЕГО
СГОРАНИЯ
Под редакцией заслуженного деятеля
науки РФ, доктора технических наук,
профессора Н.Д. Чайнова
Допущено Министерством образования и науки Российской Федерации в качестве учебника для студентов высших учебных
заведений, обучающихся по специальности “Двигатели внутреннего сгорания” направления подготовки “Энергомашиностроение”
МОСКВА
«МАШИНОСТРОЕНИЕ»
2008
УДК 621.43 (075.8) ББК 31.365я73
К65
Р е ц е н з е н т ы: д р техн. наук, проф. кафедры ДВС Ярославского государственно го технического университета, заслуж. деят. науки и техники РФ ведущий специа лист – советник директора ОАО "Автодизель" В.Р. Гальговский; д р техн. наук, проф., зав. кафедрой "Комбинированные двигатели внутреннего сгорания" Рос сийского университета дружбы народовН.Н. Патрахальцев.
Конструирование двигателей внутреннего сгорания: Учебник К65 для студентов высших учебных заведений, обучающихся по специальности "Двигатели внутреннего сгорания" направле ния подготовки "Энергомашиностроение" / Н.Д. Чайнов, Н.А. Иващенко, А.Н. Краснокутский, Л.Л. Мягков; под. ред.
Н.Д. Чайнова. М.: Машиностроение, 2008. 496 с., ил.
ISBN 978 5 217 03409 3
Учебник написан коллективом преподавателей кафедры "Поршневые двигатели" МГТУ им. Н.Э. Баумана – ведущей кафедры страны, отметив шей в 2007 г. 100 летие с начала подготовки специалистов по двигателям внутреннего сгорания.
Изложены основы конструирования и современные методы прочност ного анализа поршневых и комбинированных двигателей внутреннего сго рания, дан анализ конструкций современных отечественных и зарубежных двигателей, рассмотрены перспективы их развития. Наряду с традиционны ми методами расчетов на прочность базовых деталей двигателей представле ны современные численные методы анализа теплового и напряженно де формированного состояний элементов двигателей с применением совре менных информационных технологий.
Для лучшего усвоения материала учебник прекрасно иллюстрирован, в том числе цветными рисунками.
ББК 31.365я73
Чайнов Н.Д., Иващенко Н.А. и др., 2008 ISBN 978 5 217 03409 3 ОАО "Издательство "Машиностроение", 2008
Глава 1
ОСНОВЫ КОНСТРУИРОВАНИЯ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ
1.1.Общие предпосылки
кразработке нового двигателя
Необходимость создания нового двигателя определяется условиями рынка, отражающими потребности различных потребителей в двигате лях определенного типа с необходи мыми технико экономическими по казателями, включая рыночную стоимость двигателя. При разработ ке новых конструкций широко ис пользуется принцип типоразмерно го ряда, позволяющий при наличии минимального числа основных раз меров двигателя, в частности, одно го диаметра цилиндров за счет из менения их числа, а также степени форсирования двигателя по пара метрам рабочего процесса обеспе чить значительный диапазон выра батываемых мощностей. При этом появляются большие возможности в отношении унификации отдель ных узлов и деталей, а следователь но, организации их специализиро ванного производства и повышения качества двигателей. Идея мощност ного ряда нашла применение в практике ведущих отечественных и зарубежных фирм производителей (ОАО "Коломенский завод" – дви гатели ряда ЧН26/26, ОАО "Автоди зель" (Ярославский моторный за вод) – двигатели Ч(Н) 13/14; Ч(Н) 14/14, КАМАЗ – двигатели Ч(Н) 12/12, Ч(Н) 12/13 и др.)
Жизненный цикл современного двигателя составляет около 25 лет, на протяжении которых конструк ция двигателя может быть модер низирована в соответствии с появ
ляющимися новыми требованиями к ее технико экономическим и, прежде всего, экологическим пока зателям.
Ускорение процесса создания и сокращение сроков модернизации двигателей возможно на базе ши рокого и систематического приме нения математического моделиро вания в двигателестроении.
Реализация с помощью новей шей вычислительной техники не прерывного процесса разработки исходных вариантов конструкции, их расчетного анализа с выбором оптимального варианта, изготов ления технической документации и производства отдельных деталей с помощью современных обраба тывающих центров стало нормой в практике передовых двигателе строительных фирм.
Сколько бы совершенным не был процесс воплощения последователь ности перечисленных стадий созда ния детали, узла и всего двигателя в целом, успех в большой степени оп ределяется выбором ряда основных параметров и соотношений, вклю чая схемные решения, которые вы полняются разработчиком.
1.2. Компоновочные схемы поршневых двигателей
Под компоновочной схемой порш невого двигателя (в рамках принятой кинематической схемы) понимается прежде всего взаимное расположе ние рабочих цилиндров и их число. Наибольшее распространение в со временных ДВС получил кривошип но шатунный механизм (КШМ) пе
Продолжение табл.
|
|
|
|
|
|
|
|
|
|
| Число цилиндров | Область |
|
|
|
| Cхема | в ряду (вдоль ко | |||||||
|
|
|
| применения | ||||||||
|
|
|
|
|
|
|
|
|
|
| ленчатого вала) | |
|
|
|
|
|
|
|
|
|
|
|
| |
5. Х образная |
|
|
|
|
|
|
|
| Быстроходные | |||
|
| |||||||||||
|
|
|
|
|
|
|
|
|
|
|
| четырехтактные |
|
|
|
|
|
|
|
|
|
|
|
| двигатели специ |
|
|
|
|
|
|
|
|
|
|
|
| ального назначе |
|
|
|
|
|
|
|
|
|
|
|
| ния |
|
|
|
|
|
|
|
|
|
|
| До 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6. Звездообразная |
| То же | ||||||||||
(семилучевая звезда) |
|
| ||||||||||
|
|
|
|
|
|
|
|
|
|
| До 8 |
|
|
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7. Звездообразная |
| Авиационные | ||||||||||
(девятилучевая звезда) |
| четырехтактные | ||||||||||
| двигатели воз | |||||||||||
|
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
|
|
| душного охлажде |
|
|
|
|
|
|
|
|
|
|
|
| ния |
|
|
|
|
|
|
|
|
|
|
| До 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Двухвальные двигатели |
| |||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
8. Двухрядная с параллельным расположением |
| Тепловозные дви | ||||||||||
цилиндров |
| гатели | ||||||||||
|
|
|
|
|
|
|
|
|
|
| До 6 |
|
|
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
studfiles.net
Технический прогресс в области конструирования и постройки любительских малолитражных двигателей в последние годы стал особенно ощутим. Первопроходцем любительского моторостроения в нашей стране был Л. Комаров (СЮТ города Златоуста), который в 1962 году сконструировал, изготовил и успешно испытал на построенном им же микросамолете «Малыш» двухцилиндровый двигатель мощностью около 35 л. с., на 80% состоявший из деталей от мотоцикла «ИЖ-56».
Двигатель оказался настолько удачным, что у Л. Комарова сразу появилось много последователей. В редакцию поступали письма с сообщениями о том, что в разных уголках нашей страны создаются подобные — притом более интересные, более совершенные — двигатели, успешно эксплуатируемые любителями на самых разнообразных машинах: микроавтомобилях и мотонартах, микросамолетах и микровертолетах.
Большой вклад в любительское моторостроение внесли омские инженеры Г. Белошапкин и В. Буянов. Они не только построили отличный образец двухцилиндрового оппозитного двухтактного двигателя из деталей «ИЖ-56», но и сумели обеспечить подробной технической документацией многих любителей, заинтересовавшихся этим мотором. (Описание было опубликовано в № 8 нашего журнала за 1972 г.)
Следующим этапом стала постройка почти одновременно трехцилиндровых двигателей, опять же на базе мотоциклетных деталей, В. Столярчуком из Бреста, москвичом О. Кучеренко и коллективом учащихся Арсеньевского машиностроительного техникума под руководством А. Е. Яковлева. Интересно отметить, что В. Столярчук и О. Кучеренко являются лауреатами Всесоюзного смотра научно-технического творчества молодежи — передовыми боевого отряда умельцев «мастеров — золотые руки».
Логичным продолжением этой большой творческой работы должно было стать появление оппозитного четырехцилиндрового двигателя. Почему именно оппозитного, а не звездообразного или с рядным расположением цилиндров, законно спросит читатель.
Ответить на этот вопрос в двух словах невозможно. Придется перелистать страницы истории отечественного и мирового моторостроения для того, чтобы понять неослабевающий интерес конструкторов-мотористов к этой схеме. Четырехцилиндровая «оппозитка» с воздушным охлаждением — наиболее удобный двигатель для установки на мотоциклы, микровертолеты и микросамолеты, аэросани и амфибии, аппараты на воздушной подушке и низкопланы.
А при оборудовании принудительным охлаждением такой двигатель очень хорошо вписывается в конструкцию микроавтомобиля и микроавтобуса (в последнем случае благодаря малой высоте он может быть установлен под пол машины, в салоне же освободится много полезной площади). Оппозитные двигатели допускают высокую степень форсирования, так как цилиндры можно крепить к картеру сквозными анкерными болтами.
«КВАРТЕТ» ЦИЛИНДРОВ В. ФЕДОРОВА И Ю. СЛЕПОГО. КОМПОНОВОЧНАЯ СХЕМА ДВИГАТЕЛЯ:
А — ВИД СВЕРXУ: 1 — магнето «КАТЭК», 2 — хвостовик коленвала для привода магнето, 3 — шарикоподшипник коленвала, 4 — большая шестерня выходного вала редуктора, 5 — болт крепления половинок картера, 6 — головка цилиндра, 7 — цилиндр, 8 — поршень, 9 — картер, 10 — крышка резьбовая, 11 — шейка коленвала, 12 — шатун, 13 — шатун противолежащего цилиндра, 14 — шейка коленвала, 15 — крышка резьбовая противолежащего коленвала, 16 — шарикоподшипник коленвала, 17 — ведущая шестерня. 18 — сальник коленвала (на схеме показана только одна группа цилиндров).
Б — ВИД ПО ЛИНИИ РАЗЪЕМА КАРТЕРА (повернуто на 90): 1 — ведущая шестерня, 2 — хвостовик коленвала, 3 — выходной вал редуктора. 4 — хвостовик противолежащего коленвала, 5 — ведущая шестерня, 6 — большая шестерня выходного вала редуктора.
Советские конструкторы уделили достаточно внимания разработке оппозитных двигателей. Еще накануне Великой Отечественной войны на базе подвесного лодочного мотора «ЛМ-7» Рыбинского моторного завода был создан двухцилиндровый двигатель воздушного охлаждения «ЛМ-8» для аэросаней и микросамолетов (называвшихся в то время «авиетками»). При рабочем объеме 500 см3 этот двигатель развивал 22 л. с. Для того времени очень неплохие показатели, особенно если учесть, что «ЛМ-8» не требовал высокооктанового топлива. В послевоенные годы двухтактный двухцилиндровый оппозитный двигатель появился на одном из новых мотоциклов. Затем двигатели подобного рода, соответствующим образом усовершенствованные, применялись на легких вертолетах «КА-10» конструкции Н. И. Камова. В настоящее время доводка и освоение оппозитных двигателей ведутся на ряде специализированных предприятий в СССР и за рубежом.
Всемирно известными стали четырехцилиндровые оппозитные модели двигателей таких фирм, как «Лайкоминг» и «Континенталь», «Фольксваген» и «БМВ». Унифицировав ряд важнейших деталей, ведущие мировые фирмы выпускают оппозитные двигатели в большом ассортименте по мощности, с гарантируемой взаимозаменяемостью узлов и механизмов в рамках не только одного «семейства» двигателей, но и различных серий.
Сегодня мы предлагаем вниманию читателей конструкцию многоцелевого четырехцилиндрового, двухтактного карбюраторного двигателя мощностью 70 л. с., разработанную и воплощенную в металле молодыми московскими инженерами В. Федоровым и Ю. Слепым. Два друга — летчики-планеристы. Двигатель построен ими для мотопланера собственной конструкции.
Новый двигатель — на испытательном стенде. Сейчас он будет запущен, и его конструктор, молодой московский инженер В. Федоров, переживет несколько счастливых минут, так хорошо знакомых людям творческого труда!
Этот «квартет» цилиндров является логическим продолжением семейства самодельных двигателей, созданных в последние годы энтузиастами технического творчества в различных уголках нашей страны. Напомним: «квартет»
В. Н. Федорова — первый четырехцилиндровый двигатель оппозитного типа, построенный в любительских условиях.
Что же представляет собой «квартет»? Это четыре одноцилиндровых мотоциклетных двигателя, соединенных в общем корпусе. Коленчатые валы, шатуны, поршни, цилиндры, головки цилиндров — от серийного мотоцикла «MZ-250», выпускаемого в ГДР.
Корпус, симметричный относительно средней вертикальной плоскости разъема, состоит из четырех частей. Он отлит из сплава АЛГ-9, после чего обработан на фрезерных и шлифовальных станках. Предварительно была изготовлена деревянная модель, на которой производилась сборка всей цилиндровой группы. Детали корпуса соединяются между собой шестью 12-мм шпильками и восемью 8-мм болтами, образуя четыре отдельные кривошипные камеры и картер шестерен редуктора. Выходные цапфы коленвалов укорочены, и на них насажены шестерни, находящиеся в постоянном зацеплении с большой шестерней выходного вала. Коэффициент редукции і = 0,44.
ТЕХНИЧЕСКИЕ ДАННЫЕ МАЛОЛИТРАЖНЫХ МНОГОЦЕЛЕВЫХ ДВИГАТЕЛЕЙ ЛЮБИТЕЛЬСКОЙ ПОСТРОЙКИ
Рабочие циклы в противолежащих цилиндрах одинаковые, в соседних — смещены на 180° поворота коленвала. На двигателе установлены два карбюратора того же мотоцикла «MZ-250». Каждый обслуживает два соседних цилиндра. Зубчатая передача смазывается маслом МС, заливаемым в полость редуктора. Зажигание осуществляется от двух двухискровых агрегатных магнето типа «КАТЭК», установленных непосредственно на хвостовиках коленвалов с противоположной редуктору стороны. Конструкция выхлопной системы определяется типом машины, на которой будет эксплуатироваться двигатель. Так, например, при установке его на микросамолет вполне достаточны короткие патрубки, сделанные по месту, чтобы отработанные газы не попадали в кабину. Однако во всех случаях следует располагать выхлопные трубы таким образом, чтобы они не создавали вредного перегрева деталей двигателя и достаточно охлаждались сами встречным потоком воздуха.
Характерной особенностью всех перечисленных двигателей является применение большого количества стандартных деталей и агрегатов от серийно выпускаемых промышленностью мотоциклов и мотороллеров. Это значительно упрощает конструирование, ускоряет и удешевляет постройку опытных образцов, открывая широкие возможности эксперимента, поиска оптимальных решений. Таким образом, работа, проделанная конструкторами-любителями, приобретает большое значение.
Уже сейчас можно сделать некоторые интересные сопоставления и выводы для дальнейшей работы в этом направлении. Они помогут правильно ориентироваться как при разработке новых типов двигателей, так и при запуске в промышленное производство уже проверенных в любительской практике моделей.
Анализируя работу, проделанную энтузиастами технического творчества в области специального малолитражного моторостроения, можно с уверенностью сказать, что они создали образцы наиболее перспективных типов многоцелевых двигателей внутреннего сгорания («классического» типа) — двух-, трех-и четырехцилиндровых. По основным параметрам, в первую очередь по мощности и удельному весу, они в значительной мере соответствуют тем требованиям, которые предъявляют к ним конструкторы микроавтомобилей, микросамолетов, АВП и другой самоходной техники, с одной стороны, и заполняют разрыв, который существует сейчас между двумя группами серийно выпускаемых двигателей промышленного производства, с другой.
В связи с этим возникает логичный вопрос: целесообразно ли создание более мощных двигателей любительской конструкции? Видимо, нет, и вот по каким причинам: дальнейшее повышение мощности может быть достигнуто либо за счет увеличения рабочего объема цилиндров в уже апробированной схеме, либо за счет увеличения числа цилиндров в блоке. Однако оба эти направления не сулят хороших результатов.
Более правильный путь — это повышение удельной мощности при одновременном снижении веса. Именно здесь конструкторов ожидает еще много неиспользованных возможностей, таких, например, как настроенное всасывание и выхлоп, применение прямоточных карбюраторов и т. п.
Очень перспективно использование в конструкции самодельных двигателей агрегатов подвесных лодочных моторов. При небольших габаритах и весе их силовые головки имеют достаточно высокую литровую мощность и вполне удовлетворительный моторесурс. Они могут найти применение на всякого рода машинах, допускающих использование жидкостного охлаждения.
Первую удачную разработку подобного рода сделал один из старейших энтузиастов технического творчества, педагог А. С. Абрамов, построивший детский микроавтомобиль с двигателем 0т подвесного лодочного мотора «Прибой». Мы надеемся, что у А. С. Абрамова найдутся последователи, и просим наших читателей сообщать о своих опытах применения силовых агрегатов лодочных моторов на микроавтомобилях, мотонартах и другой самоходной технике, а также об использовании блоков этих моторов для постройки многоцилиндровых самодельных двигателей. Наиболее интересные корреспонденции будут опубликованы в журнале.
Г. МАЛИНОВСКИЙ, В. ФЕДОРОВ
Заметили ошибку? Выделите ее и нажмите Ctrl+Enter, чтобы сообщить нам.
modelist-konstruktor.com
Микулин Александр Александрович (1895-1985)Советский конструктор авиационных двигателей, академик АН СССР (1943), генерал-майор-инженер (1944), Герой Социалистического Труда (1940). Учился в МВТУ, ученик Н.Е. Жуковского. С 1923 работал в Научном автомоторном институте (с 1925 главный конструктор), с 1930 в ЦИАМ, с 1936 на авиамоторном заводе им. М.В. Фрунзе. В 1935-55г.г. преподавал в МВТУ и ВВИА. В начале 30-х г.г. под руководством Микулина создан первый советский авиационный двигатель жидкостного охлаждения М-34, на базе которого в дальнейшем построен ряд двигателей различной мощности и назначения. Двигателями типа М-34 (АМ-34) оснащались рекордные самолёты АНТ-25, бомбардировщики ТБ-3 и многие другие самолёты. Двигатель АМ-35А устанавливался на истребителях МиГ-1, МиГ-3, бомбардировщиках ТБ-7 (Пе-8). Во время войны Микулин руководил созданием форсированием двигателей АМ-38Ф и АМ-42 для штурмовиков Ил-2 и Ил-10. В 1943-55 г.г. Микулин – главный конструктор опытного авиамоторостроительного завода № 30 в Москве. Климов Владимир Яковлевич (1892 – 1962)Академик АН СССР, Герой Социалистического Труда, лауреат Государственной премии СССР, инженер генерал-майор. В.Я. Климов учился в лаборатории автомобильных двигателей, которую возглавлял академик Е.А. Чукадов. С 1918 по 1924 годы он являлся заведующим лаборатории лёгких двигателей в НАМИ НТО СССР, преподавал в МВТУ, Ломоносовском институте и Академии военно-воздушного флота. В 1924-м его направляют в Германию для закупки и приёмки двигателя BMW-4 (в лицензионном производстве М-17). С 1928 по 1930 гг. он находится в служебной командировке во Франции, где также занимается закупкой двигателя Юпитер-7 фирмы Гном-Рон (в лицензионном производстве М-22). С 1931 по 1935 годы Владимир Яковлевич возглавляет отдел бензиновых двигателей вновь созданного ИАМ (позже ВИАМ) и руководит кафедрой проектирования двигателей МАИ. В 1935 году, в качестве Главного конструктора завода №26 в Рыбинске, направляется во Францию для переговоров о приобретении лицензии на производство 12-цилиндрового, V-образного двигателя Испано-Суиза 12 Ybrs, который в СССР получил обозначение М-100. Развитие этого двигателя – двигатели ВК-103, ВК-105ПФ и ВК-107А в годы войны устанавливались на всех истребителях Яковлева и на бомбардировщике Петлякова Пе-2. В конце войны Климовым был разработан двигатель ВК-108, но он так и не поступил в серийное производство. Швецов Аркадий Дмитриевич (1892 - 1953)Советский конструктор авиационных двигателей, д.т.н., (1940), генерал-лейтенант инженерно-технической службы (1948). Родился 12(24).01.1892, в пос. Нижние Серги, ныне Свердловской обл. В 1921 г. окончил МВТУ. В 1925–1926 годах создает в содружестве с металлургом Н.В.Окромешко пятицилиндровый звездообразный авиационный мотор М-11, который по результатам испытаний побеждает в конкурсе на двигатель для учебных самолетов и становится первым отечественным серийным авиационным двигателем воздушного охлаждения. В 1934 г. назначается Главным конструктором Пермского моторостроительного завода (1934). В период с 1934 по 1953 год под руководством А.Д. Швецова было создано семейство поршневых двигателей воздушного охлаждения, охватывающее всю эпоху развития этого типа двигателей, от пятицилиндрового М-25 мощностью 625 л.с. до 28-цилиндрового АШ-2ТК мощностью 4500 л.с. Двигатели этого семейства устанавливались на самолеты Туполева, Ильюшина, Лавочкина, Поликарпова, Яковлева, внесшие определяющий вклад в дело завоевания господства в воздухе в Великой Отечественной войне. Двигатели с маркой АШ (Аркадий Швецов) с большой пользой служили и служат до сих пор в мирное время. В 30-е гг. под руководством Швецова созданы двигатели М-22, М-25, М-62, М-63 для истребителей И-15, И-16 и др.; в 40-е гг. — ряд поршневых звездообразных двигателей воздушного охлаждения последовательно возрастающих мощностей семейства АШ: АШ-62ИР (для транспортных самолётов Ли-2, Ан-2), АШ-82, АШ-82ФН (для истребителей Ла-5, Ла-7, бомбардировщика Ту-2, пассажирских самолётов Ил-12, Ил-14), двигатели для вертолёта М.Л.Миля Ми-4 и др. Швецов создал школу конструкторов двигателей воздушного охлаждения. Депутат Верховного Совета СССР 2–3-го созывов. Герой Социалистического Труда (1942). Лауреат Сталинских премий (1942, 1943, 1946, 1948). Награжден 5 орденами Ленина, 3 др. орденами, а также медалями. Золотая медаль «Серп и Молот», пять Орденов Ленина, Орден Суворова 2 степени, Орден Кутузова 1 степени, Орден Трудового Красного Знамени, медаль «За доблестный труд в Великой Отечественной войне 1941–1945 гг.». Умер 19.03.1953 г. в Москве. |
www.airpages.ru
Люлька Архип Михайлович (1908-1984) — крупный ученый, конструктор авиационных двигателей. Стоял у истоков развития реактивной авиации.
В 1931 г. окончил Киевский политехнический институт и начал свою деятельность инженера-исследователя в Харьковском институте промышленной энергетики, затем перешел на Харьковский турбинный завод.
С 1933 г. А. М. Люлька начал работать в области авиации, которой посвятил всю свою жизнь, став академиком АН СССР в 1968 г.
В 1937 г. молодой конструктор впервые в Советском Союзе высказал и обосновал идею создания турбоком-прессорного воздушно-реактивного двигателя. Таким образом, он являлся пионером рождения реактивной авиации.
С 1946 г. А. Люлька стал руководителем одного из конструкторских бюро авиамоторостроения. Вместе с сотрудниками своего коллектива создал реактивные двигатели.
В 1940 г. А. Люлька создал свой первый реактивный двигатель — РД-1 с осевым компрессором и кольцевой камерой сгорания. Тяга двигателя составляла 0,7 кН. В 1943-1944 гг. был сконструирован реактивный двигатель С-18 с тягой 1,25 кН. Это были по сути опытные образцы. Двигатели не нашли практического применения, но дали громадный опыт, необходимый в дальнейших разработках.
Работы А. Люльки были известны еще во время Великой Отечественной войны.
В 1944 г. он получил правительственное задание на создание отечественного реактивного двигателя.
Первый советский реактивный двигатель был сконструирован и изготовлен в 1945 г. — ТР-1 с тягой 1,3 кН.
В 1947 г. появился усовершенствованный ТР-1. Его использовали конструкторы самолетов П. О. Сухой и С. В. Ильюшин. Этот мотор устанавливался на двухмоторном самолете П. О. Сухого — Су-11, была достигнута скорость полета 900 км/ч. Двигатель А. М. Люльки ТР-1 был установлен в том же году на самолете С. В. Ильюшина. Ил-22. Экспериментальный четырехмоторный самолет в серию не пошел.
В 1946 г. был создан очередной двигатель конструктора — ВДР-5 (ТР-3) с тягой, равной 45 кН. Двигатель АЛ-5 (тяга 50 кН) в 1951 г. был установлен на самолет С. В. Ильюшина Ил-30. Удалось достигнуть скорости полета 1000 км/ч. На самолете Ил-46 было установлено два двигателя АЛ-5, была показана скорость горизонтального полета 928 км/ч на высоте 3000 м.
На самолете со стреловидным крылом конструкции С. В. Ильюшина Ил-54 были использованы двигатели ТР-7 (АЛ-7) с тягой 65 кН.
Двигатель АЛ-5 был установлен также на истребитель С. А. Лавочкина Ла-190, достигнута скорость полета 1190 км/ч (1951 г.).
Самолет А. Н. Туполева Ту-98 с двигателями А. М. Люльки АЛ-75 на высоте 12 000 м показал скорость полета 1238 км/ч. Еще на одном самолете А. Н. Туполева были установлены двигатели А. М. Люльки — Ту-110 (пассажирский самолет на 100 мест). Известные авиаконструкторы О. К. Антонов и Г. М. Бериев также использовали двигатели А. Люльки.
Не всем двигателям А. М. Люльки была уготована большая и блистательная жизнь (как, например, английскому НИН-ВК1), так же как и самолетам, в которых они устанавливались. Причин тому было много. Одна из них — сильная конкуренция зарубежных работ. Отечественные двигатели уступали трофейным и лицензионным до середины 1950-х гг.
А. М. Люлька внес большой вклад в создание и развитие реактивной авиации. Помимо двигателей, результатами его труда явились теоретические положения, научные обобщения, частные разработки. Многие из них, в частности схема двухконтурного двигателя, применялись при конструировании авиационных двигателей в других конструкторских бюро.
Avia.pro
avia.pro