ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Будущее ДВС: гибриды или усовершенствование двигателей. Двс будущее


Детонационный двигатель - будущее российского двигателестроения

В действительности вместо постоянного фронтального пламени в зоне сгорания, образуется детонационная волна, несущаяся со сверхзвуковой скоростью. В такой волне сжатия детонируют топливо и окислитель, этот процесс, с точки зрения термодинамики повышает КПД двигателя на порядок, благодаря компактности зоны сгорания.

Интересно, что ещё в 1940 году советский физик Я.Б. Зельдович предложил идею детонационного двигателя в статье «Об энергетическом использовании детонационного сгорания». С тех пор над перспективной идеей работали многие учёные из разных стран, вперёд выходили то США, то Германия, то наши соотечественники.

Летом, в августе 2016 года российским учёным удалось создать впервые в мире полноразмерный жидкостный реактивный двигатель, работающий на принципе детонационного сгорания топлива. Наша страна наконец-то за многие постперестроечные годы установила мировой приоритет в освоении новейшей техники.

Чем же так хорош новый двигатель? В реактивном двигателе применяется энергия, выделяемая при сжигании смеси при постоянном давлении и неизменным пламенном фронте. Газовая смесь из топлива и окислителя при горении резко повышает температуру и столб пламени, вырывающийся из сопла, создаёт реактивную тягу.

При детонационном горении продукты реакции не успевают разрушиться, потому что этот процесс в 100 раз быстрее дефларгации и давление при этом стремительно увеличивается, а объём остаётся неизменным. Выделение такого большого количества энергии действительно может разрушить двигатель автомобиля, поэтому такой процесс часто ассоциируется со взрывом.

В действительности вместо постоянного фронтального пламени в зоне сгорания, образуется детонационная волна, несущаяся со сверхзвуковой скоростью. В такой волне сжатия детонируют топливо и окислитель, этот процесс, с точки зрения термодинамики повышает КПД двигателя на порядок, благодаря компактности зоны сгорания. Поэтому специалисты так рьяно и приступили к разработке этой идеи.

В обычном ЖРД, по сути, являющейся большой горелкой, главное не камера сгорания и сопло, а топливный турбонасосный агрегат (ТНА), создающий такое давление, чтобы топливо проникло в камеру. К примеру, в российском ЖРД РД-170 для ракет-носителей «Энергия» давление в камере сгорания 250 атм и насосу, подающему окислитель в зону сгорания приходиться создавать давление в 600 атм.

В детонационном двигателе давление создаётся самой детонацией, представляющую бегущую волну сжатия в смеси топлива, в которой давление без всякого ТНА уже в 20 раз больше и турбонасосные агрегаты являются лишними. Чтобы было понятно, у американского «Шаттла» давление в камере сгорания 200 атм, а детонационному двигателю в таких условиях надо всего лишь 10 атм для подачи смеси – это как велосипедный насос и Саяно-Шушенская ГЭС.

Двигатель на основе детонации в таком случае не только более простой и дешёвый на целый порядок, но гораздо мощнее и экономичнее, чем обычный ЖРД.

На пути внедрения проекта детонационного двигателя встала проблема совладения с волной детонации. Это явление непросто взрывная волна, которая имеет скорость звука, а детонационная, распространяющаяся со скоростью 2500 м/сек, в ней нет стабилизации фронта пламени, за каждую пульсацию обновляется смесь и волна вновь запускается.

Ранее русские и французские инженеры разрабатывали и строили реактивные пульсирующие двигатели, но не на принципе детонации, а на основе пульсации обычного горения. Характеристики таких ПуВРД были низкими и когда двигателестроители разработали насосы, турбины и компрессоры, наступил век реактивных двигателей и ЖРД, а пульсирующие остались на обочине прогресса. Светлые головы науки пытались объединить детонационное горение с ПуВРД, но частота пульсаций обычного фронта горения составляет не более 250 в секунду, а фронт детонации обладает скоростью до 2500 м/сек и частота его пульсаций достигает несколько тысяч в секунду. Казалось невозможным воплотить на практике такую скорость обновления смеси и при этом инициировать детонацию.

В СЩА удалось построить такой детонационный пульсирующий двигатель и испытать его в воздухе, правда, проработал он всего 10 секунд, но приоритет остался за американскими конструкторами. Но уже в 60-х годах прошлого века советскому учёному Б.В. Войцеховскому и практически в то же время и американцу из университета в Мичигане Дж. Николсу пришла идея закольцевать в камере сгорания волну детонации.

ЖРД
Как работает детонационный ЖРД

Такой ротационный двигатель состоял из кольцевой камеры сгорания с форсунками, размещёнными по её радиусу для подачи топлива. Волна детонации бегает как белка в колесе по окружности, топливная смесь сжимается и выгорает, выталкивая продукты сгорания через сопло. В спиновом двигателе получаем частоту вращения волны в несколько тысяч в секунду, работа его подобна рабочему процессу в ЖРД, только более эффективно, благодаря детонации смеси топлива.

В СССР и США, а позже в России ведутся работы по созданию ротационного детонационного двигателя с незатухающей волной для понимания процессов, происходящих внутри и для этого была создана целая наука —  физико-химическая кинетика. Для расчёта условий незатухающей волны нужны были мощные ЭВМ, которые создали лишь в последнее время.В России над проектом такого спинового двигателя работают многие НИИ и КБ, среди которых двигателестроительная компания космической промышленности НПО «Энергомаш». На помощь в разработке такого двигателя пришёл Фонд перспективных исследований, ведь финансирование от Министерства обороны добиться невозможно – им подавай только гарантированный результат.

Тем не мене на испытаниях в Химках на «Энергомаше» был зафиксирован установившийся режим непрерывной спиновой детонации – 8 тысяч оборотов в секунду на смеси «кислород – керосин». При этом детонационные волны уравновешивали волны вибрации, а теплозащитные покрытия выдержали высокие температуры.

Но не стоит обольщаться, ведь это лишь двигатель-демонстратор, проработавший весьма непродолжительное время и о характеристиках его ещё пока ничего не сказано. Но основное в том, что доказана возможность создания детонационного горения и создан полноразмерный спиновой двигатель именно в России, что останется в истории науки навсегда.

Видео: «Энергомаш» первым в мире испытал детонационный жидкостный ракетный двигатель

 

The following two tabs change content below. Vladimir

Информация об авторе

Vladimir

Рекомендуем к просмотру

comments powered by HyperComments

aviarf.ru

ДВС это прошлое или будущее?

   Читать оригинал публикации на 1gai.ru   

Как долго будут существовать двигатели внутреннего сгорания?

Двигатели внутреннего сгорания в том или ином виде доминировали на протяжении почти 100 лет. Это был основной механизм приведения в движение автомобиля на протяжении всего XX века. В наши дни он по-прежнему имеет огромное преимущество перед конкурирующими системами, несмотря на развитие альтернативы.

Конечно, прогресс не стоит на месте и даже в самом начале повторной попытки завоевания рынка альтернативными гибридными системами и электромоторами, экологические моторы показывают свои определенные преимущества. Тем не менее работающие по циклу Отто двигатели внутреннего сгорания все еще крепко стоят на ногах. Никто в мире не придумал подобную систему, которая имела бы такой же коэффициент действия, надежность, удобство и автономность. Это лишь часть причин, по которым ДВС продолжают оставаться доминирующими долгожителями и в начавшемся XXI веке. Есть немалая вероятность того, что за счет своей приспосабливаемости, бензиновые и дизельные моторы смогут прижиться и в будущем.

Выносливый ДВС

"Мы полностью убеждены в том, что двигатели внутреннего сгорания будут основным источником, приводящим в движение автомобили", сказал Вольфганг Бройер, исполнительный вице-президент BU Engine Systems. Он поведал свой взгляд на развитие технологий в ближайшие годы.

"Да, мы видим электрификацию, мы серьезно работаем над этим во всех направления, так сказать, и да, мы также считаем, что в конечном итоге полностью электрических транспортных средств будет большинство," сказал Бройер, "но мы не уверены в том, что это произойдет до 2025 года" объяснив, что это происходит из-за того, что данная технология просто не готова к прорыву. Электромобили может быть чище и эффективнее, чем его бензиновые соперники, но они до сих пор имеют слишком много компромиссов.

Возьмите Nissan Leaf к примеру. Это чисто электрический автомобиль является впечатляющим технологичным ноу-хау. На бумаге у него отличный диапазон передвижения. На одной зарядке он может преодолеть внушительное расстояние. На практике, максимальный километраж до остановки электрокара составляет в среднем 107 миль (170 км), что просто недостаточно для многих автомобилистов.

Обучить старую собаку новым трюкам

Еще одна причина для дальнейшего доминирования бензиновых и дизельных двигателей является то, что они не стоят на месте. Автопроизводители и компании-поставщики продолжают продвигать технологии вперед, делают данные энергетические установки чище, более «плавными» и эффективными.

"Теперь, следующая вещь, которая приходит в ДВС- переменная степень сжатия," сказал собеседник. То, что может быть достигнуто путем изменения цикла Аткинсона, который задерживает закрытие впускных клапанов двигателя для повышения теплового коэффициента полезного действия. Технология переменной степени сжатия может повысить эффективность использования топлива на 2- 3 процента, что в мире техники является огромным прорывом.

Переход к 48-вольтовым электрических системам обеспечит дополнительные преимущества эффективности в ближайшие годы. Подумайте об этой технологии, как о недорогом мосту между гибридами и обычными автомобилями. Реализация на практике этих более мощных электрических систем позволяет добиться многочисленных преимуществ. Периферические системы, такие как компрессоры кондиционирования воздуха, масляные и водяные насосы смогут работать на электричестве вместо топлива. Кроме того, эти системы могут позволить автомобилю, достигнув крейсерской скорости ехать с выключенным двигателем, еще больше сокращая потребление.

Смотрите также: Лучшие двигатели 2015 года

Переход к 48 вольтам позволяет также применить разработанные Continental инновации. К примеру технологию «e-charging», так называемую электронную зарядку. Эта технология посылает поток воздуха на лопасти турбины турбокомпрессора, который позволяет ему вращаться очень быстро даже при низких оборотах двигателя, что значительно сокращает турбояму. E-зарядка дебютирует на новой Audi SQ7, которая оснащена усовершенствованным дизельным двигателем и 48-вольтовой электроникой.

48-вольтовые системы могут повысить реальную эффективность использования топлива на целых 20 процентов, и при этом при гораздо более низкой стоимости по сравнению с гибридными технологиями.

Не стоит забывать о базисе. Исходной части двигателя внутреннего сгорания не исчерпала заложенного в нее потенциала. Еще много манипуляций можно сделать с основой ДВС. Главная тенденция по этой части уже просматривается, уменьшение объема и установка наддува и турбин на двигатели. *

*Стоит обратить внимание, что при уменьшении объема моторов, их мощность действительно год от года увеличивается. Но возникает другая проблема, надежность малолитражных и очень мощных агрегатов снижается. Ввиду того, что технологии не сильно обкатаны, всплывают инженерные просчеты, часты поломки. Ресурс подобных двигателей невозможно назвать большим.

Изменение объема двигателей и навешивание на них многочисленных турбин. Это лишь верхушка айсберга. Важные работы проходят по снижению трения компонентов, уменьшению насосных потерь. Управление температурным режимом в целом, еще одна большая тема, которая находится в разработке.

Системы утилизации тепла можно встретить на некоторых гоночных автомобилях и коммерческих транспортных средствах. Могут ли они стать мейнстримом? Бройер не испытывает оптимизма по этому поводу. В легковых автомобилях подобного функционала не будет еще долго, из-за вопросов стоимости и массивности.

В дополнение ко всему вышесказанному, разработчики долгое время прорабатывали систему воспламенения топлива от сжатия для бензиновых двигателей. В теории задумка имеет потенциал, чтобы значительно сократить расход топлива, хотя, возможно, на практике мы этого не увидим. По крайней мере с сегодняшними технологиями.

Помимо этого, сжигание обедненной топливной смеси имеет множество других проблем. Если вы выходите за пределы узкого окна в котором происходит воспламенение от сжатия, это означает, что вы теряете все преимущества. Кроме того, при этом двигатель будет выбрасывать даже большее количество NO, для нейтрализации которого потребуются дополнительные системы контроля выбросов, автоматически увеличивающие стоимость автомобиля и эффективность.

В ближайшие годы, заявил специалист, "Мы считаем, что тенденция к развитию бензинового турбо двигателя будет продолжаться". Будет улучшаться качество двигателей, развиваться технологии. Лишь в 2011 году Фордом был запущен 1.0 литровый трехцилиндровый двигатель EcoBoost. Но уже сейчас он заслужил множество хвалебных отзывов и показал свою состоятельность.

В течение следующих 5- 6 лет мы увидим увеличение количества турбированных двигателей на рынке в два раза к сегодняшнему объему.

Это означает, что развитие традиционных, атмосферных установок уже резко замедлилось. Дальше- больше.

Дизель мертв?

Конечно, повышение доступности двигателей внутреннего сгорания является одним из способов повышения эффективности использования топлива, но продолжающийся дизельный скандал Фольксваген до сих пор вызывает вопросы. "Никто из нас не ожидал, что что-то подобное произойдет," сказал Бройер.

Ущерб, нанесенный репутации дизельного двигателя еще не определён в этой точке, но некоторые специалисты не испытывают оптимизма. "У меня больше нет серьезных надежд на дизельное топливо в США," сказал он. "Оно никогда не имело большой доли на рынке, но я думаю, что этот скандал Volkswagen не помог продвинуть дизельные дела вперед".

Он сказал, что количество дизелей действительно никогда не переходило за долю рынка в 2,5% в Штатах, даже в коммерческих автомобилях это доля была невелика. Наверное, двигатели, работающие на ДТ останутся лишь на грузовых автомобилях и автобусах.

Что важнее, крутящий момент или лошадиные силы

Раздув скандал и выведя VW на чистую воду, американцы нанесли сокрушительный удар по имиджу VW в своей стране. Тем не менее в Европе и других странах мира, в том числе и в России, особой неприязни к чадящим моторам население не испытывает. Проблемы у немецкого автогиганта конечно же большие, но как они их будут решать и насколько это будет продуктивно, ответить на данный вопрос сейчас не в состоянии ни один аналитик. Иски к VW идут один за другим, некоторые из них составляют миллиарды долларов. А ведь помимо судебных тяжб, немцам потребуется физически решить экологическую неполноценность моделей.

В общем, развязка самого громкого скандала в автомобильном мире последних десятилетий еще впереди. Если дизель выдержит натиск критики, то у него будет не менее блистательное будущее, чем у бензинового собрата.

Будущее

ДВС по многим причинам останутся с нами в ближайшем будущем, их постепенно начнут вытеснять электрические транспортные средства (причем со временем электромоторы могут перейти и на коммерческие или даже грузовые автомобили). Распространение электрических автомобилей неизбежно. В глобальном масштабе, по мнению аналитиков, к 2025 году количество электрических транспортных средств едва дойдет до 2%, а скорее всего даже будет меньше данного порога. Это небольшое количество, но, вероятно, это шаг в правильном направлении, подытожили они.

"Я думаю, что есть понимание того, что вы можете сделать более полезные вещи с нефтью, чем его сжигание," сказал Бройер. "В конце концов, речь идет об использовании наших ресурсов настолько эффективно, насколько это возможно".

lenta.co

Будущее ДВС: гибриды или усовершенствование двигателей

Будущее ДВС: гибриды или усовершенствование двигателей?

гидридная система модернизация ДВСОграничения по вредным выбросам все сильнее давит на кошелек европейских автопроизводителей. Некоторые из них собираются решать проблему "экологического" соответствия своей продукции с помощью гибридных модификаций. В данной статье мы рассмотрим способы повышения эффективности традиционных двигателей и есть ли у них будущее?
Гибриды - будущее двигателестроения?
Автомобильная Европа отстает от японских конкурентов по части внедрения новых технологий, и ситуация с гибридными силовыми агрегатами лишнее тому подтверждение. В свете постоянного ужесточения экологических требований эта проблема приобретает еще и прикладной экономический оттенок, который в самом ближайшем будущем обещает стать доминирующим.

Сегодня главная задача гибридов — это не улучшение экологических характеристик автомобилей (это лишь «побочный» положительный эффект), а сохранение (причем на максимально долгий срок) конвейерного производства ДВС с кривошипно-шатунным механизмом. Причем постоянные изменения норм выбросов можно расценивать как катализатор этого процесса.

Действительно, суммы, которые нужно потратить на повышение эффективности работы ДВС и внедрение электромотора в привод, несоизмеримы. Разработка конструкций с изменяемой степенью сжатия двигателя или регулировкой фаз газораспределения без использования распредвалов уже долгое время находятся в начальной стадии. Занимаются этим, как правило, либо небольшие инжиниринговые фирмы, либо очень небедные производители.

Двигатели с изменяемой степенью сжатия
Если автомобильная Европа пытается усовершенствовать свои гибридные двигатели, то японские производители пошли другим путем, а именно улучшили эффективность традиционного двигателя. Они это сделали за счет поднятия степени сжатия до 14:1, что ранее не удавалось ни одному из производителей и было просто невозможно. К тому же, они заявляют, что с данной степенью сжатия могут работать, как бензиновый, так и дизельный двигатели, причем на обычном 95-ом бензине. Как это вообще возможно?

Один из важных недостатков бензиновых моторов с искровым зажиганием — относительно невысокая степень сжатия. Если ее поднять с нынешних 10:1 до 12,5:1, то эффективность использования теплоты сгоревшего топлива возрастет сразу процентов на шесть. Но чем сильнее мы сжимаем поршнем воздух с парами бензина, тем выше риск взрывного неконтролируемого самовоспламенения смеси — это детонация, страшный враг двигателя: ударные нагрузки, перегрев, разрушение поршней и колец. Не зря «среднестатистическая» степень сжатия даже наисовременнейших бензиновых агрегатов редко поднимается выше 11:1.

двигатель SkyActiv со степенью сжатия 14:1На самом деле все просто: дело в снижении так называемой средней температуры цикла. Чем «холоднее» горючая смесь в камере сгорания, тем сильнее ее можно сжать без риска возникновения детонации. Думаете, японцы решили охлаждать всасываемый воздух? Нет, инженеры наоборот, занялись системой выпуска.

Этот прием давно известен по гоночным моторам — «настроенные» выпускные каналы по схеме 4-2-1, в которых порции выхлопных газов из всех четырех цилиндров не «толкаются» друг с другом, а строго поочередно вылетают в атмосферу. При чем здесь температура цикла? «Настроенный» выпуск за счет газодинамического наддува улучшает продувку цилиндров — в них остается меньше горячих отработавших газов, которые неизбежно подмешиваются к свежему воздуху на такте впуска и поднимают температуру в конце такта сжатия.

Как уверяют инженеры, если долю выхлопа снизить с обычных 8% до 4%, то степень сжатия можно безболезненно поднять на три единицы. А за счет охлаждения воздуха при распыле бензина прямо в цилиндр — сжатие можно увеличить еще на единичку.

Чтобы реализовать продвинутый газообмен, пришлось раскошелиться на фазовращатели на обоих распредвалах — и впускном, и выпускном. А вдобавок с помощью компьютерного моделирования придумать еще кучу всяких ухищрений. К примеру, чтобы улучшить «термоизоляцию» камеры сгорания, диаметр цилиндра пришлось уменьшить с нынешних 87,5 мм до 83,5 мм, соответственно увеличив ход поршня.

Длинноходность способствует увеличению крутящего момента на низких оборотах, вдобавок тягу «на низах» улучшают непосредственный впрыск и увеличение степени сжатия — и возникает эффект, который именуют downspeeding: в противовес общепринятому нынче «даунсайзингу». Мол, мотор настолько хорошо тянет «внизу», что среднестатистические обороты при езде снижаются на 15% — и это дает больший эффект по части снижения расхода бензина и выбросов СО2 даже по сравнению с турбомотором с уменьшенным до 1,4 л рабочим объемом.

Дизели с изменяемой степенью сжатия
В двигателе, построенном Рудольфом Дизелем 120 лет тому назад, впрыск топлива с самого начала был непосредственным — топливо, распыленное в сжатом воздухе, самовоспламеняется от нагрева. Для этого степень сжатия должна быть в полтора-два раза выше, чем у бензиновых моторов с искровым зажиганием.

У атмосферных дизелей она превышает 20:1, у двигателей с турбонаддувом лежит в пределах 16—18:1. Однако инженеры решили добиться беспрецедентно низких для легкового дизелестроения 14:1.

Зачем? Как уверяют японцы, в обычных турбодизелях давление и температура в цилиндрах в конце такта сжатия настолько велики, что впрыскиваемая струя дизтоплива просто не успевает равномерно перемешаться с воздухом. Из-за неполного сгорания растет содержание в выхлопе ядовитых окислов азота и частичек сажи, которые надо дожигать и фильтровать.

Гибриды или усовершенствование двигателей?
Иными словами, пол-Европы носится с идеей электрического гибрида, а японцы наоборот усовершенствуют традиционные двигатели. Надо полагать, что каждый производитель в отдельности успешно развивает это направление. По крайней мере, те, что представили на мировых автосалонах соответствующие концепты. Поделиться с друзьями:
Статьи по теме:

sto39.ru

Детонационный двигатель — будущее российского двигателестроения

Детонационный двигатель — будущее российского двигателестроения

Детонационные двигатели заменят ядро газотурбинных / Фото: finobzor.ru

В действительности вместо постоянного фронтального пламени в зоне сгорания, образуется детонационная волна, несущаяся со сверхзвуковой скоростью. В такой волне сжатия детонируют топливо и окислитель, этот процесс, с точки зрения термодинамики повышает КПД двигателя на порядок, благодаря компактности зоны сгорания.

Интересно, что ещё в 1940 году советский физик Я.Б. Зельдович предложил идею детонационного двигателя в статье «Об энергетическом использовании детонационного сгорания». С тех пор над перспективной идеей работали многие учёные из разных стран, вперёд выходили то США, то Германия, то наши соотечественники.

Летом, в августе 2016 года российским учёным удалось создать впервые в мире полноразмерный жидкостный реактивный двигатель, работающий на принципе детонационного сгорания топлива. Наша страна наконец-то за многие постперестроечные годы установила мировой приоритет в освоении новейшей техники.

Чем же так хорош новый двигатель? В реактивном двигателе применяется энергия, выделяемая при сжигании смеси при постоянном давлении и неизменным пламенном фронте. Газовая смесь из топлива и окислителя при горении резко повышает температуру и столб пламени, вырывающийся из сопла, создаёт реактивную тягу.

1а.jpeg

Детонационный двигатель / Фото: sdelanounas.ru

При детонационном горении продукты реакции не успевают разрушиться, потому что этот процесс в 100 раз быстрее дефларгации и давлении при этом стремительно увеличивается, а объём остаётся неизменным. Выделение такого большого количества энергии действительно может разрушить двигатель автомобиля, поэтому такой процесс часто ассоциируется со взрывом.

В действительности вместо постоянного фронтального пламени в зоне сгорания, образуется детонационная волна, несущаяся со сверхзвуковой скоростью. В такой волне сжатия детонируют топливо и окислитель, этот процесс, с точки зрения термодинамики повышает КПД двигателя на порядок, благодаря компактности зоны сгорания. Поэтому специалисты так рьяно и приступили к разработке этой идеи.В обычном ЖРД, по сути, являющейся большой горелкой, главное не камера сгорания и сопло, а топливный турбонасосный агрегат (ТНА), создающий такое давление, чтобы топливо проникло в камеру. К примеру, в российском ЖРД РД-170 для ракет-носителей «Энергия» давление в камере сгорания 250 атм и насосу, подающему окислитель в зону сгорания приходиться создавать давление в 600 атм.

В детонационном двигателе давление создаётся самой детонацией, представляющую бегущую волну сжатия в смеси топлива, в которой давление без всякого ТНА уже в 20 раз больше и турбонасосные агрегаты являются лишними. Чтобы было понятно, у американского «Шаттла» давление в камере сгорания 200 атм, а детонационному двигателю в таких условиях надо всего лишь 10 атм для подачи смеси — это как велосипедный насос и Саяно-Шушенская ГЭС.

Двигатель на основе детонации в таком случае не только более простой и дешёвый на целый порядок, но гораздо мощнее и экономичнее, чем обычный ЖРД.На пути внедрения проекта детонационного двигателя встала проблема совладения с волной детонации. Это явление непросто взрывная волна, которая имеет скорость звука, а детонационная, распространяющаяся со скоростью 2500 м/сек, в ней нет стабилизации фронта пламени, за каждую пульсацию обновляется смесь и волна вновь запускается.

Ранее русские и французские инженеры разрабатывали и строили реактивные пульсирующие двигатели, но не на принципе детонации, а на основе пульсации обычного горения. Характеристики таких ПуВРД были низкими и когда двигателестроители разработали насосы, турбины и компрессоры, наступил век реактивных двигателей и ЖРД, а пульсирующие остались на обочине прогресса. Светлые головы науки пытались объединить детонационное горение с ПуВРД, но частота пульсаций обычного фронта горения составляет не более 250 в секунду, а фронт детонации обладает скоростью до 2500 м/сек и частота его пульсаций достигает несколько тысяч в секунду. Казалось невозможным воплотить на практике такую скорость обновления смеси и при этом инициировать детонацию.

В СЩА удалось построить такой детонационный пульсирующий двигатель и испытать его в воздухе, правда, проработал он всего 10 секунд, но приоритет остался за американскими конструкторами. Но уже в 60-х годах прошлого века советскому учёному Б.В. Войцеховскому и практически в то же время и американцу из университета в Мичигане Дж. Николсу пришла идея закольцевать в камере сгорания волну детонации.

2а.jpg

Изображение: sdelanounas.ru

Как работает детонационный ЖРД

Такой ротационный двигатель состоял из кольцевой камеры сгорания с форсунками, размещёнными по её радиусу для подачи топлива. Волна детонации бегает как белка в колесе по окружности, топливная смесь сжимается и выгорает, выталкивая продукты сгорания через сопло. В спиновом двигателе получаем частоту вращения волны в несколько тысяч в секунду, работа его подобна рабочему процессу в ЖРД, только более эффективно, благодаря детонации смеси топлива.

В СССР и США, а позже в России ведутся работы по созданию ротационного детонационного двигателя с незатухающей волной, пониманию процессов, происходящих внутри, для чего была создана целая наука физико-химическая кинетика. Для расчёта условий незатухающей волны нужны были мощные ЭВМ, которые создали лишь в последнее время.

В России над проектом такого спинового двигателя работают многие НИИ и КБ, среди которых двигателестроительная компания космической промышленности НПО «Энергомаш». На помощь в разработке такого двигателя пришёл Фонд перспективных исследований, ведь финансирование от Министерства обороны добиться невозможно — им подавай только гарантированный результат.

Тем не мене на испытаниях в Химках на «Энергомаше» был зафиксирован установившийся режим непрерывной спиновой детонации — 8 тысяч оборотов в секунду на смеси «кислород — керосин». При этом детонационные волны уравновешивали волны вибрации, а теплозащитные покрытия выдержали высокие температуры.

Но не стоит обольщаться, ведь это лишь двигатель-демонстратор, проработавший весьма непродолжительное время и о характеристиках его ещё пока ничего не сказано. Но основное в том, что доказана возможность создания детонационного горения и создан полноразмерный спиновой двигатель именно в России, что останется в истории науки навсегда.

МОСКВА, издание "Сделано у нас"12

Оригинал

www.arms-expo.ru

Водородный двигатель – будущее наших автомобилей

Проблема топливных ресурсов – одна из актуальнейших на сегодняшний день, а с течением времени она будет только усугубляться. Нефтепродукты, среди которых бензин – один из самых потребляемых, не только дорожают с завидной регулярностью, но и в недалёком будущем обещают стать товаром весьма дефицитным. Потому уже сейчас понятно: будущее – за альтернативными видами топлива. Водородный двигатель – вот то самое ноу-хау, которое обещает решить многие проблемы автомобилистов. И самое приятное то, что сделать подобный агрегат, вырабатывающий энергию для машины из воды, можно самостоятельно, как говорится, собственными силами!

Кстати, двигатель «от воды», как и многие чудеса научно-технического прогресса, пришёл к нам с Запада. «Газ Брауна», а именно так называют автомобильный водород, добывают в процессе электролиза. В Америке уже много лет существуют и продаются довольно элементарные установки, позволяющие водителю сэкономить чуть ли не 50 процентов топлива. А люди, разбирающиеся в технике и не забывшие школьный курс физики и химии, собирают водородный генератор своими руками.

От теории к практике

Пробная водородная установка может выглядеть следующим образом. Под капот автомобиля устанавливается небольшая ёмкость с водой – контейнер или сосуд. Эта ёмкость играет роль водородных топливных ячеек. Вода обычная, из крана. В неё насыпается чайная ложечка катализатора, сода, затем погружаются пластины из нержавейки – 2-3 штуки. Проводами пластины соединены с аккумулятором. Когда включается зажигание, начинается процесс химической реакции, и водородный двигатель вырабатывает соответствующий газ. А шланг с водородом монтируется в воздуховод следом за фильтром.

Как и в любом агрегате, в нашем двигателе важно всё установить правильно и в нужной последовательности. Когда установка завершена, из воды путём электролиза добываются кислород и водород. Происходит реакция расщепления молекул воды на водородные и кислородные атомы. Смесь газов по впускному коллектору втягивается в топливный бак машины, там смешивается с бензином и далее сгорает как обычное топливо.

Какую выгоду приносит водородный двигатель, если бензин всё равно нужен, спросите вы? Большую, даже если пока ваше авто ещё не работает на чистом водороде. Обогащение бензина кислородом и водородом способствует более полной выработке горючего, что в разы повышает производительность работы двигателя. Это значит, что если раньше на 100 км, к примеру, вы расходовали 5 литров бензина, то теперь их хватит на 130-150 километров! Неплохо, да?

И ещё о плюсах

Когда-то люди мечтали делать деньги из воздуха, т.е. из «ничего». Водородный двигатель позволяет из другого «ничего» – из воды – получать топливо. Преимущества водородного топлива таковы:

Дальнейшие задачи и перспективы

На сегодняшний день практически все автомобильные концерны – BMW, Honda, Opel, Ford и другие – заняты разработкой водородных двигателей разной модификации с перспективой внедрения их в серийное производство и постепенный переход от бензиновых на газовые виды топлива. Задачи конструкторно-технического характера следующие:

Эти и другие задачи находятся в стадии интенсивного решения, и в недалёком будущем большинство авто будет бегать на водородных двигателях не только самодельных, но и заводских.

fb.ru

Будущее ДВС: гибриды или усовершенствование двигателей

Совершенствование двигателей внутреннего сгорания (ДВС) едва-едва поспевает за предъявляемыми к ним требованиями. С одной стороны, потребители с мечтами об одновременно мощном и экономичном моторе, с другой — экологи, ужесточающие нормы токсичности. А в завершение — геологи, все настойчивее напоминающие об истощении запасов «черного золота». Одним из вариантов решения этой проблемы являются гибридные силовые установки, состоящие из обычного ДВС и электродвигателя. В отличие от электромобилей и автомобилей на топливных элементах, которые все еще остаются «автомобилями будущего», гибриды уже с 1997 года выпускаются серийно.

Давайте сравним автомобиль с обычным ДВС и электромобиль. Обыкновенный автомобиль способен проехать без дозаправки четыре-пять сотен километров и при этом отравить атмосферу некоторым объёмом вредных веществ. Заправочных станций предостаточно в любом регионе, и пополнить запасы топлива можно за считанные минуты. Электромобиль может проехать на одном заряде батарей порядка 80-160 км. Он экологически чист, бесшумен и практически безупречен до того момента, пока не наступает очередь подзарядки аккумуляторов. У существующих в наше время «электрических» машин этот процесс длится несколько часов.

Гибридные автомобили берут все лучшее от обоих моторов: ДВС и электрического. Достоинство первого – в удобном энергоносителе, жидком топливе, а второго – в выдающихся моментных характеристиках. В отличие от ДВС, электромотор не нужно заводить и «раскручивать». Он может «стоять и ждать» не потребляя энергии. Но как только дали ток – сразу получили максимальную тягу на колесах. Электродвигатель эффективнее двигателя внутреннего сгорания в режиме частых стартов и стопов (т.е., при езде в городском цикле). Двигатель внутреннего сгорания, наоборот, более эффективен на постоянных, оптимальных для данного двигателя оборотах.

В гибриде оба двигателя работают друг на друга. ДВС крутит генератор и питает энергией электромотор. Тот, в свою очередь, позволяет ДВС работать без резких разгонных нагрузок, в наиболее благоприятных режимах. Практически все современные гибриды имеют систему рекуперации или, по-русски, «возврата энергии». Суть ее в том, что при торможении или при движении машины накатом, электродвигатели начинают крутиться от колес и работать как генераторы, заряжая батарею. Отсюда – меньший износ, экологичность и экономичность (особенно в городском цикле.)

Итак, перед нами технологичный прогрессивный автомобиль, в котором нивелируются недостатки и объединяются достоинства двух моторов. Но. рано хлопать в ладоши, и послушаем, что говорят скептики.

Гибридные автомобили сложнее и дороже традиционных автомобилей с двигателями внутреннего сгорания. Аккумуляторные батареи имеют небольшой диапазон рабочих температур, не любят морозов, подвержены саморазряду, срок службы их ограничен несколькими годами. А «экономность» гибрида прямо связана с состоянием АКБ. Кроме того, существует проблема утилизации отработанных батарей. Гибриды дороже в ремонте, да и за сам ремонт возьмется далеко не каждый. Кроме того, высокую экологичность и экономичность гибридов многие тоже ставят под сомнение. Так, ряд тестов, проведенных авторитетными автомобильными изданиями, показал, что гибриды дают заметную экономию топлива только в городе, при движении же в смешанном цикле незначительно, а за городом существенно проигрывают современным дизелям. Почетное звание «Самый экологичный автомобиль года» в 2007 и 2008 годах присуждалось также автомобилям с дизельными моторами.

Рассмотрим подробнее, какими бывают и как устроены гибриды.

По степени гибридизации их делят на «умеренные»,«полные» и plug-in. «Полный» в состоянии двигаться лишь на электричестве, не потребляя топлива. «Умеренный» всегда задействует ДВС, а электромотор подключается, если требуется дополнительная мощность. Гибрид с подзарядкой (plug-in hybrid) — такой гибрид можно включать в розетку для подзарядки. В результате обладатель подобного гибрида получает все преимущества электрического автомобиля, без самого большого недостатка: ограниченного пробега на одном заряде. Когда электрический заряд заканчивается, подключается ДВС и автомобиль превращается в обычный гибрид.

По принципу взаимодействия электрической и топливной составляющих авто, гибридные приводы принято разделять на три вида: последовательный, параллельный и последовательно-параллельный.

Это — самая простая гибридная конфигурация. ДВС используется только для привода генератора, а вырабатываемая последним электроэнергия заряжает аккумуляторную батарею и питает электродвигатель, который и вращает ведущие колеса. Это избавляет от необходимости в коробке передач и сцеплении. Для подзарядки аккумулятора также используется рекуперативное торможение. Свое название схема получила потому, что поток мощности поступает на ведущие колеса, проходя ряд последовательных преобразований. От механической энергии, вырабатываемой ДВС в электрическую, вырабатываемую генератором, и опять в механическую. При этом часть энергии неизбежно теряется. Последовательный гибрид позволяет использовать ДВС малой мощности, причем он постоянно работает в диапазоне максимального КПД, или же его можно совсем отключить. При отключении ДВС электродвигатель и батарея в состоянии обеспечить необходимую мощность для движения. Поэтому они, в отличие от ДВС, должны быть более мощными, а, значит, они имеют и большую стоимость. Наиболее эффективна последовательная схема при движении в режиме частых остановок, торможений и ускорений, движении на низкой скорости, т.е. в городе. Поэтому используют ее в городских автобусах и других видах городского транспорта. По такому принципу работают также большие карьерные самосвалы, где необходимо передать большой крутящий момент на колеса, и не требуются высокие скорости движения.

Здесь ведущие колеса приводятся в движение и ДВС, и электродвигателем (который должен быть обратимым, т.е. может работать в качестве генератора). Для их согласованной параллельной работы используется компьютерное управление. При этом сохраняется необходимость в обычной трансмиссии, и двигателю приходится работать в неэффективных переходных режимах. Момент, поступающий от двух источников, распределяется в зависимости от условий движения: в переходных режимах (старт, ускорение) в помощь ДВС подключается электродвигатель, а в устоявшихся режимах и при торможении он работает как генератор, заряжая аккумулятор. Таким образом, в параллельных гибридах большую часть времени работает ДВС, а электродвигатель используется для помощи ему. Поэтому параллельные гибриды могут использовать меньшую аккумуляторную батарею, по сравнению с последовательными. Так как ДВС непосредственно связан с колесами, то и потери мощности значительно меньше, чем в последовательном гибриде. Подобная конструкция достаточно проста, но ее недостатком является то, что обратимая машина параллельного гибрида не может одновременно приводить в движение колеса и заряжать батарею. Параллельные гибриды эффективны на шоссе, но малоэффективны в городе. Несмотря на простоту реализации этой схемы, она не позволяет значительно улучшить как экологические параметры, так и эффективность использования ДВС.

Приверженцем такой схемы гибридов является компания «Хонда». Их гибридная система получила название Integrated Motor Assist (Интегрированный помощник двигателя). Она предусматривает, прежде всего, создание бензинового двигателя с увеличенным к.п.д. И только тогда, когда двигателю становится трудно, на помощь ему должен приходить электрический мотор. В этом случае система не требует сложного и дорогостоящего силового блока управления, и, следовательно, себестоимость такого автомобиля оказывается ниже. Система IMA состоит из бензинового двигателя (который предоставляет основной ресурс мощности), электромотора, который предоставляет дополнительную мощность и дополнительной батареи для электромотора. Когда автомобиль с обычным бензиновым двигателем замедляется, его кинетическая энергия гасится сопротивлением мотора (торможение двигателем) или рассеивается в виде тепла при нагреве тормозных дисков и барабанов. Автомобиль с системой IMA начинает тормозить электромотором. Таким образом, электромотор работает как генератор, вырабатывая электричество. Сохранённая при торможении энергия запасается в батарее. И когда автомобиль вновь начнёт ускоряться, батарея отдаст всю накопленную энергию на раскрутку электромотора, который снова перейдёт на свои тяговые функции. А расход бензина уменьшится ровно настолько, сколько энергии было запасено при предыдущих торможениях. В общем, в компании Honda считают, что гибридная система должна быть максимально простой, электрический мотор выполняет лишь одну функцию — помогает двигателю внутреннего сгорания сэкономить как можно больше горючего. Honda выпускает две гибридные модели:Insight и Civic.

Компания «Тойота» при создании гибридов пошла своим путем. Разработанная японскими инженерами система Hybrid Synergy Drive (HSD) объединяет в себе особенности двух предыдущих типов. В схему параллельного гибрида добавляется отдельный генератор и делитель мощности (планетарный механизм). В результате гибрид приобретает черты последовательного гибрида: автомобиль трогается и движется на малых скоростях только на электротяге. На высоких скоростях и при движении с постоянной скоростью подключается ДВС. При высоких нагрузках (ускорение, движение в гору и т.п.) электродвигатель дополнительно подпитывается от аккумулятора- т.е. гибрид работает как параллельный. Благодаря наличию отдельного генератора, заряжающего батарею, электродвигатель используется только для привода колес и при рекуперативном торможении. Планетарный механизм передает часть мощности ДВС на колеса, а остальную часть на генератор, который либо питает электродвигатель, либо заряжает батарею. Компьютерная система постоянно регулирует подачу мощности от обоих источников энергии для оптимальной эксплуатации при любых условиях движения. В этом типе гибрида большую часть времени работает электродвигатель, а ДВС используется только в наиболее эффективных режимах. Поэтому его мощность может быть ниже, чем в параллельном гибриде.

Важной особенностью ДВС также является то, что он работает по циклу Аткинсона, а не по циклу Отто, как обычные двигатели. Если работа двигателя организована по циклу Отто, то на такте впуска поршень, двигаясь вниз, создает в цилиндре разрежение, благодаря которому происходит всасывание в него воздуха и топлива. При этом в режиме малых оборотов, когда дроссельная заслонка почти закрыта, появляются так наз. насосные потери. (Чтобы лучше понять, что это такое, попробуйте, например, втянуть воздух через зажатые ноздри). Кроме того, при этом ухудшается наполнение цилиндров свежим зарядом и соответственно повышается расход топлива и выбросы вредных веществ в атмосферу. Когда поршень достигает нижней мертвой точки (НМТ), впускной клапан закрывается. В ходе такта выпуска, когда открывается выпускной клапан, отработанные газы еще находятся под давлением, и их энергия безвозвратно теряется- это так наз. потери выпуска.

В двигателе Аткинсона на такте впуска впускной клапан закрывается не вблизи НМТ, а значительно позже. Это дает целый ряд преимуществ. Во-первых, снижаются насосные потери, т. к. часть смеси, когда поршень прошел НМТ и начал движение вверх, выталкивается назад во впускной коллектор (и используется затем в другом цилиндре), что снижает в нем разрежение. Горючая смесь, выталкиваемая из цилиндра, также уносит с собой часть тепла с его стенок. Так как длительность такта сжатия по отношению к такту рабочего хода уменьшается, то двигатель работает по так наз. циклу с увеличенной степенью расширения, при котором энергия отработанных газов используется более длительное время, т. е., с уменьшением потерь выпуска. Таким образом,получаем лучшие экологические показатели , экономичность и больший КПД, но меньшую мощность. Но в том-то и суть, что мотор тойотовского гибрида функционирует в малонагруженных режимах, при которых этот недостаток цикла Аткинсона не играет большой роли.

К недостаткам последовательно- параллельного гибрида следует отнести более высокую стоимость, в виду того, что он нуждается в отдельном генераторе, большем блоке батарей, и более производительной и сложной компьютерной системе управления.

Система HSD установливается на хэтчбеке Toyota Prius, седане бизнес-класса Camry, вседорожниках Lexus RX400h, Toyota Highlander Hybrid, Harrier Hybrid, спортивном седане Lexus GS 450h и автомобиле люкс-класса — Lexus LS 600h. Ноу-хау компании Тойота куплено компаниями Форд и Ниссан и использовано при создании Ford Escape Hybrid и Nissan Altima Hybrid. Toyota Prius лидирует по продажам среди всех гибридов. Расход бензина в городе составляет 4 л на 100 км пробега. Это первый автомобиль, у которого потребление топлива при движении в городе меньше, чем на шоссе. На Парижском автосалоне 2008 была представлена модель Приус plug-in hybrid.

Из всего сказанного можно сделать вывод, что, наверное, нет смысла считать гибридные автомобили решением всех проблем. Это скорее промежуточный этап на пути к будущей машине с нулевым выбросом вредных веществ. Гибридные технологии дают возможность отработать ее ключевые технические компоненты — емкие компактные аккумуляторы, оптимизированные системы «повторного использования» энергии, технологию быстрой зарядки от внешних источников, новые электродвигатели, облегченные кузова. Только массовое производство этих узлов сможет приблизить то время, когда вместо поездки на заправку достаточно будет подключить железного коня на часок к обычной домашней электросети — а потом ездить целый день без подзарядки. Похоже, что, сев за руль гибридного автомобиля, человеческая цивилизация сможет прибыть в светлое электромобильное будущее самым коротким и самым эффективным путем.

svoya-pravda.ru

Двигатели будущего — itBoat

Производители двигателей ищут новое решение, которое помогло бы снизить воздействие на окружающую среду. Двигателю внутреннего сгорания пора уступить место более экологически чистым вариантам. Работающий на жидком пропане, водороде, электричестве или гибрид — каким будет яхтенный двигатель будущего?

Текст — Ален Бруссе

Ледники начали слишком быстро уменьшаться, а это явно указывает на потепление. Следующим после Эла Гора, кто напомнил нам о серьезности положения, был французский фотограф Ян Бертран. В его фильме «Человек», спонсором которого выступил концерн PPR миллиардера Франсуа Пино, обвинения звучат в адрес промышленности и транспортных средств, выбрасывающих в атмосферу отработанный газ.

В декабре 1997 года представители 160 государств собрались в Киото и приняли решение уменьшить (на 5—9% в зависимости от континента) выделение парниковых газов, среди которых значится и CO2 или диоксид углерода, который является одним из продуктов двигателей внутреннего сгорания, как бензиновых, так и дизельных.

Производителям двигателей пора найти какое-то решение. А что говорить о частном судоходстве? Частные суда воздействуют на атмосферу в 40 раз меньше, чем коммерческое судоходство. Но это не означает, что наш сектор полностью свободен от ответственности. Уже примерно 15 лет существует европейская директива RCD (Recreational Craft Directive), в соответствии с которой двигатели внутреннего сгорания частных судов должны уменьшить воздействие на окружающую среду.

Первый этап, то есть отсутствие выброса несгоревших частиц топлива, уже достигнут. Второй этап более сложен, так как он связан с уменьшением твердых частиц в отработанных газах, полученных в результате сгорания: диоксида углерода и оксида азота. С 1997 г. проектировщики смогли уменьшить выбросы более чем на 50%. Без радикального изменения принципа дизельного мотора специалисты работали над многочисленными другими аспектами: улучшением качества впуска, значительным увеличением давления (от 150 до 1800 бар) благодаря использованию общей топливной магистрали, новыми формами камер сгорания, поршней, турбин, выхлопных труб. Производители двигателей, предназначенных для частного судоходства, серьезно занялись изучением аспекта вреда окружающей среды.

Гибридный двигатель

Этот тип двигателя, уже заявленный в автомобильной индустрии (Toyota Prius, Lexus, BMW 5, 6 и 7 серий), а также в судоходстве (Mochi Craft Long Range 23M), сегодня является наиболее подходящим решением. Он основывается на сочетании традиционного дизеля и электромотора. Они не соединяются напрямую. Если они завязаны на единый передаточный вал, то могут работать отдельно друг от друга. Это значит, что в некоторых случаях можно идти только на электричестве. Преимущества — отсутствие загрязнения и шума. Недостатки — уменьшенные скорость и автономность.

Для сохранения электрической энергии используются аккумуляторы, которые заряжаются от дизель-генераторов. Это только начало, но уже многообещающее. Практически все производители судовых двигателей — MTU, Caterpillar, MAN, Volvo и Cummins — ведут активную работу в этом направлении.

Электродвигатель

Катамаран PlanetSolar

Катамаран PlanetSolar

Мог бы стать идеальным решением: не загрязняет и не шумит. Но сегодня он успешно применяется только на лодках длиной не больше 7 метров и развивающих скорость не более 5 узлов. Конечно, есть электродвигатели большой мощности (до 1 000 кВт), но их питание предполагает большое число аккумуляторов и генераторов. Может показаться, что такой «чистый» тип тяги не может успешно применяться в частном судоходстве. Однако, известный французский мореплаватель Жерар д'Абовилль недавно спустил на воду проект Planetsolar, революционный катамаран длиной 30 метров, оснащенный лишь электродвигателями, питающимися от аккумуляторов и солнечных батарей площадью 470 кв.м. Только в конце 2010 года, когда PlanetSolar завершит свое кругосветное путешествие, станет понятно, насколько эти идеи жизнеспособны с технической точки зрения. Итальянская верфь Arcadia Yachts предусмотрела оснащение яхт на 85, 115 и 135 футов солнечными батареями для питания бортового оборудования, в то время как тяга будет осуществляться от дизельных двигателей.

Электричество + топливные элементы

Сразу необходимо отметить, что эта комбинация — не то же самое, что и водородный двигатель. Топливные элементы — это генераторы электрохимической энергии, конвертирующие химическую энергию сгорания в электроэнергию. Водород является их предпочтительным «топливом». Топливные элементы питают традиционный электродвигатель через генератор постоянного тока. Помимо водорода, топливные элементы работают также на метаноле. Их эффективность считается высокой, примерно на 50% больше, чем у обычной батареи. Недостатки использования — сложное хранение и снабжение, не самая низкая цена водорода и себестоимость изготовления (катализаторы содержат платину и графит). Максимальная продолжительность работы не превышает 1000 часов. Австрийская верфь Frauscher выпустила небольшой катер (7 метров), оснащенный данной силовой установкой, но при смешанной тяге скорость не превышает 10 узлов.

Двигатель на топливных элементах устанавливается на Frauscher

Двигатель на топливных элементах устанавливается на Frauscher

Водородный двигатель

Этот тип двигателя не имеет ничего общего с топливным элементом. Речь идет о тепловом двигателе, работающем на водороде, а не на бензине. Единственным выхлопом будет в таком случае водяной пар. Уже в течение двух лет модель BMW серии 7 работает одновременно на бензине и водороде и демонстрирует отличные результаты. К сожалению, водород требует соблюдения крайней осторожности при перевозке и хранении. Это очень дорогое топливо и станций его хранения достаточно мало. Имеются высокие ограничения, некоторые элементы двигателя должны быть повышенной прочности. Несмотря на это, данной технологии предрекают большое будущее.

Двигатель, работающий на сжиженном газе

Эта не новая техника, она уже успешно применяется в наземном транспорте. Тепловой двигатель, работающий на бензине или дизеле, достаточно легко принимает в качестве топлива природный газ с небольшими преобразованиями. Не так давно Mercury выпустил подвесные лодочные газовые моторы. Все поверили в то, что новое топливо может быть решением для уменьшения вредных выбросов. Но первая проблема не заставила себя долго. Сначала нефтеторговцы затормозили распространение этого топлива по доступной цене, вторым подводным камнем стала безопасность. Произошла пара очень неприятных инцидентов (взрыв цистерн в двух лодках), и сегодня газ не используется в частном судоходстве. Однако его продолжают использовать судоходные компании. Rolls-Royce оснастил 132-метровый контейнеровоз Sea Cargo сложной системой, включающей газовый двигатель с уменьшением выбросов CO2 на 20% и оксида азота на 90%.

Опубликовано в журнале YACHTS #32

Тегизеленые технологии

Комментарии

itboat.com


Смотрите также